Приложение 2.31.1 к ОПОП по специальности 23.02.04 Техническая эксплуатация подъемнотранспортных, строительных, дорожных машин и оборудования (по отраслям)

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова

Многопрофильный колледж

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ПРАКТИЧЕСКИХ И ЛАБОРАТОРНЫХ ЗАНЯТИЙ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОП.09 ЭКСПЛУАТАЦИОННЫЕ МАТЕРИАЛЫ

для обучающихся специальности

23.02.04 Техническая эксплуатация подъёмно-транспортных, строительных, дорожных машин и оборудования (по отраслям)

ОДОБРЕНО

Предметно-цикловой комиссией «Строительных
и транспортных машин»
Председатель Жарова К.Е.
Протокол № 5 от «22» января 2025г.

Методической комиссией МпК Протокол № 3 от «19» февраля 2025г

Разработчики:

преподаватель ФГБОУ ВО «МГТУ им. Г.И. Носова» Многопрофильный колледж

И.Ю. Боровских

Методические указания по выполнению практических и лабораторных работ разработаны на основе рабочей программы «Эксплуатационные материалы».

Содержание практических работ ориентировано на формирование общих и профессиональных компетенций по программе подготовки специалистов среднего звена по специальности 23.02.04 Техническая эксплуатация подъемно-транспортных, строительных, дорожных машин и оборудования (по отраслям).

Эксплуатационные материалы Лабораторное занятие № 1 Определение качества бензинов.

Цель: определить основные показатели качества бензина.

Выполнив работу, Вы будете:

уметь:

У8. разрабатывать и внедрять в производство ресурсо- и энергосберегающие технологии;

- У01.1 распознавать задачу и/или проблему в профессиональном и/или социальном контексте:
 - У01.2 анализировать задачу и/или проблему и выделять её составные части;
- У01.4 выявлять и эффективно искать информацию, необходимую для решения задачи и/или проблемы;
 - У01.6 определить необходимые ресурсы;
 - У02.5 выделять наиболее значимое в перечне информации;
 - У03.2 применять современную научную профессиональную терминологию;
- У04.5 использовать коммуникационные навыки при работе в команде для успешной работы над групповым решением проблем;
 - У04.8 эффективно работать в команде;
- У07.2 определять направления ресурсосбережения в рамках профессиональной деятельности по специальности.

Материальное обеспечение: стеклянный цилиндр диаметром 40—55 мм; образцы испытуемого бензина, воронка делительная; пробирки, штатив; цилиндр мерный на 10 мл; дистиллированная вода; стакан химический; фенолфталеин (1%-ный спиртовой раствор); метиловый оранжевый (0,02%-ный водный раствор); стеклянные мерные цилиндры на 250 мл; прибор для определения фракционного состава топлива; колбонагреватель с реостатом; термометр на 360 °C с делением через 1 °C.

Задание:

- 1. Оценить испытуемый образец по внешним признакам.
- 2. Провести анализ на содержание водорастворимых кислот и щелочей.
- 3. Определить фракционный состав бензина.
- 4. Составить отчет о работе.

Порядок выполнения:

1. Оценить испытуемый образец по внешним признакам.

Оценка бензина по внешним признакам.

Бензины не должны содержать механических примесей и воды. Определение их отсутствия или наличия производится по внешним признакам или с помощью специальных приборов.

Для оценки по внешним признакам достаточно осмотреть образец бензина в стеклянном цилиндре. При этом невооруженным глазом не должно быть обнаружено твердых частиц как во взвешенном состоянии, так и в осадке.

В небольших количествах (сотые доли процента) вода способна растворяться в бензине, и он при этом не теряет прозрачности. Избыточное же количество воды- в бензине при перемешивании вызовет помутнение бензина, а при отстаивании вследствие большего удельного веса приведет к скоплению ее на дне емкости отдельным слоем.

Поэтому при оценке бензина на наличие воды достаточно осмотреть его в стеклянном цилиндре и зафиксировать наличие или отсутствие мути либо отдельного слоя воды на дне.

2. Провести анализ на содержание водорастворимых кислот и щелочей. Анализ на содержание водорастворимых кислот и щелочей. Нефтепродукты (топлива, масла) должны обладать минимальным коррозийным воздействием на металлы. Коррозионность нефтепродуктов обусловливается содержанием в них водорастворимых кислот и щелочей, органических кислот и сернистых соединений.

Поскольку минеральные кислоты и щелочи, находящиеся в ТСМ, являются одной из причин, вызывающих коррозию деталей двигателя, а также металлической тары и емкостей, горючесмазочные материалы, содержащие их, непригодны к эксплуатации.

Органические кислоты, в основном нафтеновые, содержащиеся в нефти, а также в продуктах ее переработки, по коррозионной активности слабее минеральных. Кроме того, органические кислоты повышают смазывающую способность топлива и масел, чем обусловливается их полезность. Поэтому ГОСТ допускает наличие органических кислот в топливах и маслах (смазках) в определенных количествах.

При большем содержании органических кислот, чем указано в ГОСТ 6307—75, топлива и масла к эксплуатации непригодны. Количество органических кислот в топливе (и, в частности, бензине) оценивается «кислотностью топлива».

Кислотностью топлива называется количество миллиграммов едкого калия, пошедшее на нейтрализацию органических кислот в 100 мл испытуемого топлива.

При определении содержания водорастворимых кислот в топливах простейшим (качественным) методом достаточно определенное количество топлива (в данном случае бензина) смешать с таким же количеством дистиллированной воды и после отстаивания водную вытяжку испытать индикаторами.

Окраска индикаторов в различных средах:

Среда	Метилоранж	Фенолфталеин
Щелочная	Желтая	Малиновая
Нейтральная	Оранжевая	Бесцветная
Кислая	Красная	Бесцветная

3. Определить фракционный состав бензина.

Определение фракционного состава бензина.

Фракция – это часть топлива, которая выкипает в определенных температурных пределах.

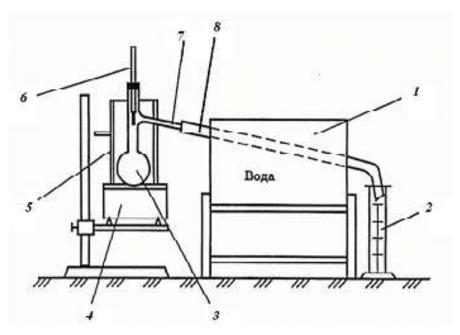
Фракционный состав — это важнейший показатель топлива, выражающий зависимость между температурой и количеством топлива, перегоняемого при этой температуре.

Фракционный состав оценивается величинами температур перегонки топлива:

- 1) начала перегонки 10 % топлива;
- 2) выкипания 50 % топлива;
- 3) конца перегонки 90 % топлива;
- 4) остатком в колбе топлива после перегонки 10 % топлива.

По величине температуры перегонки 10 % топлива судят о его пусковых свойствах. Температура перегонки 50 % топлива характеризует испаряемость средних фракций, оказывающих влияние: на время прогрева двигателя; устойчивость его работы и приемистость; равномерное распределение топлива по цилиндрам.

По температуре перегонки 90 % топлива судят о наличии в нем тяжелых фракций. С повышением температуры выкипания 90 % топлива увеличивается его расход и происходит разжижение им масла в картере. Это вызывает повышенный износ деталей кривошипношатунного механизма.


Испаряемость — это способность жидкого топлива переходить в парообразное состояние при данных условиях.

Испаряемость обуславливает эффективность смесеобразования и подачи топлива при пуске и эксплуатации двигателя в условиях низких и высоких температур или низкого давления. Пуск двигателя, время его прогрева и приемистость, расход топлива и износ цилиндропоршневой группы в значительной степени зависят от испаряемости топлива. Процесс испарения не только

предшествует воспламенению и горению, но в значительной мере определяет скорость этих процессов, а, следовательно, надежность и эффективность работы двигателя. Испаряемость топлива оценивают по совокупности двух главных показателей: теплоте испарения и фракционному составу.

4. Составить отчет о работе.

- 5.1. Пробу топлива, подготовленную для испытания, хорошо перемешать трехминутным встряхиванием в склянке.
- 5.2. Из перемешанной пробы отмерить мерным цилиндром 10 мл топлива и слить в делительную воронку.
 - 5.3. Отмерить 10 мл дистиллированной воды и также слить в воронку.
- 5.4. Воронку делительную закрыть пробкой, снять со штатива и содержимое перемешать взбалтыванием (но не слишком энергично) в течение 30—40 с.
 - 5.5. После взбалтывания воронку опять укрепить на штативе.
 - 5.6. После отстаивания водную вытяжку слить в стакан.
 - 5.7. Водную вытяжку из стакана налить в две пробирки.
- 5.8. В одну из пробирок с водной вытяжкой испытуемого топлива прибавить две капли раствора метилоранжа, а в другую три капли спиртового раствора фенолфталеина и содержимое в обеих пробирках хорошо взболтать. Сопоставляя получившиеся цвета индикаторов с данными табл. 1, сделать заключение о наличии или отсутствии в испытуемом образце водорастворимых кислот или щелочей.
- 5.9. Топливо считается выдержавшим испытание, если водная выдержка остается нейтральной. В противном случае опыт надо повторить, предварительно тщательно вымыв посуду и ополоснув ее дистиллированной водой. Если в результате второго испытания водная вытяжка получается кислой или щелочной, топливо бракуют.
- 6.1. Меры безопасности. Испытуемое топливо следует предварительно тщательно обезводить. Вода, попавшая вместе с нефтепродуктом в колбу, приведет при перегонке к мгновенному вскипанию и выбросу содержимого через горло колбы, и почти неминуемому пожару. Топливо обезвоживается отстаиванием перед занятием и обрабатывается хлористым кальцием. Студент, начиная работу, обязан проверить отсутствие следов воды и мути на дне склянки с образцом топлива. При обнаружении их образец к испытанию не допускается.
- 6.2. Сухим и чистым измерительным цилиндром (см. рис. 5) отмерить 100 мл обезвоженного топлива и осторожно перелить его в колбу 3, следя за тем, чтобы оно не попало в отводную трубку колбы 7. Для этого нужно держать колбу отводной трубкой вверх. Испытуемый продукт должен иметь температуру 20 ± 3 °C.
- 6.3. В шейку колбы с топливом вставить термометр 6, вмонтированный в плотно пригнанную пробку так, чтобы ось термометра совпала с осью шейки колбы, а верхний край ртутного шарика термометра находился на уровне нижнего края отводной трубки в месте припоя.
- 6.4. Отводную трубку 7 колбы соединить с верхним концом трубки 8 холодильника при помощи плотно пригнанной пробки так, чтобы отводная трубка колбы входила в трубку холодильника на 25–50 мм и не касалась стенок последней.
 - 6.5. На колбу 3 с бензином надеть термозащитный металлический кожух 5

- Рис. 1. Схема установки для фракционной разгонки светлых нефтепродуктов: 1 холодильник; 2 мерный цилиндр; 3 колба с отводной трубкой; 4 электроплитка; 5 металлический кожух; 6 термометр; 7 отводная трубка; 8 трубка холодильника.
- 6.6. Измерительный цилиндр 2, которым отмерялось испытуемое топливо, не высушивая, поставить так, чтобы сливная трубка холодильника входила в цилиндр не менее чем на 25 мм, но не ниже метки 100 мм и не касалась бы его стенок. Отверстие цилиндра прикрыть сверху ватой или листом фильтровальной бумаги.
- 6.7. Заполнить холодильник водой и поддерживать ее уровень постоянным немного выше сливного отверстия. Циркуляция воды должна быть постоянной.
 - 6.8. Определить барометрическое давление.
 - 6.9. Заготовить табл. 2 для записи результатов испытаний.
- 6.10. Отрегулировать, нагрев колбы так, чтобы первая капля дистиллята упала из трубки холодильника в мерный цилиндр не ранее, чем через 5 и не позже, чем через 10 минут после начала нагревания.
- 6.11. Записать температуру падения первой капли как температуру начала перегонки в табл. 2.
- 6.12. После падения первой капли перегонку вести с равномерной скоростью 4–5 мл в минуту (2–2,5 капли в секунду), измерительный цилиндр пододвинуть к концу трубки холодильника так, чтобы дистиллят стекал по стенке цилиндра.
- 6.13. Записать температуры, соответствующие моментам, когда уровень жидкости в мерном цилиндре доходит до делений, соответствующих $10,\ 20,\ 30,\ 40,\ 50,\ 60,\ 70,\ 80,\ 90\ \%$ от первоначально взятого количества бензина $100\ \text{мл}$.
- 6.14. После того как уровень бензина в цилиндре достигнет 90 мл, усилить нагрев колбы так, чтобы до конца разгонки оставалось от 3 до 5 мин.
- 6.15. Записать температуру конца перегонки. Для автомобильных бензинов моментом конца перегонки считается момент, когда ртутный столбик термометра после некоторой остановки на какой-то высоте начнет опускаться. Максимальную температуру, показанную термометром, записывают как температуру конца перегонки. Дизельное топливо отгонять после отгона 96 %, лигроин и керосин -98 %.
- 6.16. После окончания перегонки выключить нагрев колбы, дать ей остыть, слить воду из холодильника и разобрать прибор.
 - 6.17. Остаток из колбы перелить в малый мерный цилиндр и записать его объем.

- 6.18. Разность между 100 мл и суммой объемов дистиллята и остатка записать как потери при перегонке.
 - 6.19. Привести температуры к нормальному барометрическому давлению по формуле

$$T_{\rm np}=T_{\rm зам}+C,$$
 где $T_{\rm зам}$ — замеренная температура; $C=0,00009\,(101,3\cdot10^3-p)\,(273+T_{\rm зам})$, или $C=0,00012\,(760-p_{_1})\,(273+T_{_{\rm зам}})$ — поправка на барометрическое давление; p — барометрическое давление, Π a; $p_{_1}$ — барометрическое

В табл. 1 приведено приближенное значение поправок, вычисленных по приведенной формуле. Поправки прибавляются в случае, когда барометрическое давление ниже 100000 Па (750 мм рт. ст.), и вычитаются, когда давление выше 102600 Па (770 мм рт. ст). При барометрическом давлении 100000–102600 Па (750–770 мм рт. ст.) поправки не вносят.

Таблица 1 Величина поправок на барометрическое давление

давление, мм рт. ст.

Температурные пределы, °С	Поправка, °С, на разность в давлении на каж		
1182	10³ ∏a	10 мм рт. ст.	
10-30	0,26	0,35	
31-50	0,29	0,38	
51-70	0.30	0.40	
71-90	0.32	0.42	
91-110	0,34	0,45	
111-130	0.35	0,47	
131-150	0.38	0,50	
151-170	0.39	0.52	
171-190	0,41	0,54	
191-210	0,43	0,57	
211-230	0.44	0.59	
231-250	0.46	0.62	
251-270	0,48	0.64	
271-290	0,50	0,66	
291-310	0.52	0.69	
311-330	0,53	0.14	
331-350	0,56	0.74	
351-370	0,57	0,76	
371-390	0,59	0,78	
391-410	0,60	0,81	

Таблица 1. Результаты опыта

Результаты опыта

Температура, °С						Конец	Количес	тво, %				
Начало Выкипание пере-			ие, %				100	Остаток в колбе,	Поте-			
гонки	10	20	30	40	50	60	70	80	90	1 0 1	% %	% pn,
1	2	3	4	5	б	7	8	9	10	11	12	13

6.20Оценка результатов испытания

1. На бумаге в соответствии с масштабом вычертить график перегонки испытуемого образца топлива в координатах: количество перегнанного топлива (объемные проценты) – температура (рис. 2).

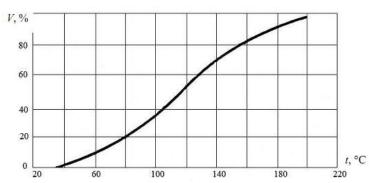


Рис 2 Фракционный состав бензина

Полученные результаты необходимо сравнить с нормами по ГОСТ 2084—77, т. е. с кривыми фракционного состава типовых сортов топлива. Необходимо учитывать, что кривые этих топлив (рис. 3) дают предельные значения фракционного состава.

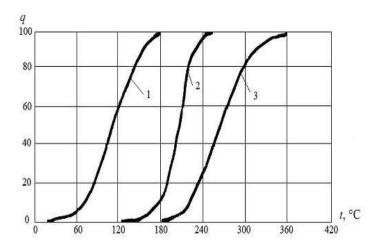


Рис. 3. Кривые фракционного состава типовых топлив: 1 – бензина; 2 – керосина; 3 – дизельного топлива; q – количество перегнанного топлива, %; t – температура перегонки фракций, ${}^{\circ}C$

2. Установив сорт топлива, сравнить полуденные характерные точки фракционного состава с требованиями стандартов и сделать вывод о соответствии топлива по этому показателю техническим нормам.

По ГОСТ 2084–77 или ТУ 38001165–97 допускается отклонение данных фракционного состава автомобильных бензинов от нормы в сторону повышения для температуры:

- перегонки 10 % на 1 °С;
- перегонки 50 % на 2 °С;
- перегонки 90 % на 2 °С;
- конца перегонки на 3 °C.

Допускается также увеличение остатка в колбе на 0,3 %;

3. По номограмме (рис. 4) определить эксплуатационную оценку бензина и сделать выводы по форме, приведенной в табл. 3.

Рис. 4. Номограмма для эксплуатационной оценки карбюраторных топлив: области: 1 — возможного образования паровых пробок; 2 — легкого пуска двигателя; 3 — затрудненного пуска двигателя; 4 — практически невозможного пуска двигателя; 5 — хорошей приемистости и неустойчивой работы двигателя; 7 — незначительного разжижения масла в картере; 8 — заметного разжижения масла; 9 — интенсивного разжижения масла в картере.

Таблица 2

Эксплуатационная оценка бензина

Температура наружного воздуха, °С, при которой возможно: образование паровых пробок	1,℃	Выводы из оценки бен- зина о его влиянии на работу двигателя
обеспечение легкого пуска двигателя		
обеспечение загрудненного пуска дви- гателя		
обеспечение быстрого прогрева и хо-		
рошей приемистости незначительное разжижение масла в		
картере		
заметное разжижение масла в картере		

6.21Заключение об эксплуатационных качествах бензина

По данным фракционного состава бензина можно сделать важные заключения о работе карбюраторного двигателя на данном топливе. Для этой цели предлагается ряд эмпирических формул и графики (см. рис. 4 и рис. 5), разработанные на основании ряда исследований и данных практики.

1. Температура воздуха, °C, выше которой можно ожидать перебои в работе двигателя из-за образования паровоздушных пробок,

$$t_B \ge t_{10} + 10$$

2. Температура воздуха, выше которой возможны: легкий пуск холодного двигателя

$$t_{\rm n,n} = t_{10\%}/1,25-59;$$

удовлетворительный пуск двигателя

$$t_{\rm уд.п.} = 0,679 \cdot t_{10\,\%} - 68,5 - 0,9\,\sqrt{S}\,,$$
где $S = (t_{\rm n.n} - t_{\rm n.n})\,/10\,.$

3. Температура воздуха, ниже которой практически невозможен пуск холодного двигателя,

$$T_{\text{H, II}} = 0.657 \cdot t_{10\%} - 68.5 - 0.9 \cdot \sqrt{S}$$
 или $t_{\text{H, II}} = 0.5t_{10\%} - 50.5$.

4. Температура горючей смеси во впускном трубопроводе, при которой заканчивается прогрев двигателя,

$$T_{\rm np} = 0.5(t_{50\%} - 60)$$
 или $t_{\rm np} = (t_{50\%} - 60) / 2.$

5. Изменение динамичности автомобиля, %, по сравнению с условно нормальной

$$\Delta \Pi = 100 - 0.5(t_{50\%} - 90).$$

6. Изменение рабочего износа двигателя, %, по сравнению с нормальным износом

$$\Delta \text{И3H} = 100 + 0.03(t_{90\%} - 160)^2.$$

На рис. 5 представлены кривые, выражающие зависимость пусковых качеств бензина, его способности обеспечивать достаточную приемистость двигателя, образовывать паровые пробки и разжижать масло в картере от значений характерных точек фракционного состава и температуры окружающего воздуха.

При пользовании этой номограммой по оси абсцисс наносят температуры перегонки 10 %-ного, 50 %-ного и 90 %-ного бензина и, восстанавливая из них перпендикуляры до пересечения с соответствующими кривыми, отмечают на оси ординат предельные температуры воздуха для применения испытуемого топлива.

Например, используя график фракционного состава бензина (см. рис. 2), получают следующие показатели: $t_{10\,\%}$ = 60 °C; $t_{50\,\%}$ = 115 °C; $t_{10\,\%}$ = 175 °C.

В этом случае наблюдается следующее: образование паровых пробок можно ожидать при температуре воздуха выше +25 °C; легкий пуск холодного двигателя (1–2 оборота коленчатого вала со скоростью 35–45 об/мин) возможен при температуре ниже 0 °C; легкий пуск двигателя без предварительного подогрева практически возможен лишь при температуре воздуха выше -20 °C; хорошая приемистость двигателя, работающего на данном топливе, будет при температурах воздуха до -3 °C; при температуре воздуха ниже -20 °C можно ожидать интенсивного разжижения картерного масла, а при температуре воздуха выше +2 °C разжижение масла в картере будет незначительным. По графику (см. рис. 5), выражающему зависимость износов двигателя от температуры конца перегонки применяемого топлива, можно судить, как изменяются износы при переходе двигателя с работы на стандартном бензине А-66 на испытуемое топливо. По этой же номограмме можно судить о расходе данного топлива по сравнению с расходом стандартного бензина.

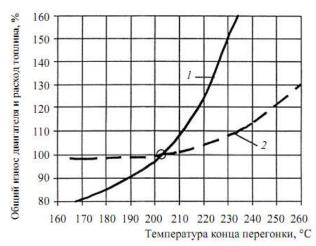


Рис. 5. График зависимости износа двигателя и расхода топлива от температуры конца перегонки

Форма представления результата:

После завершения работы студенты должны представлять отчет, в котором следует выполнить и показать следующее:

- 1. Указать, что выражает показатель фракционного состава топлива и каково его влияние на работу автомобильного двигателя.
 - 2. Вычертить схему опытной установки и дать ее описание.
 - 3. Описать методику проведения работы.
 - 4. Начертить таблицу с результатами опыта.
- 5. Полученные экспериментальные результаты показать в сравнении с требованиями стандарта.
- 6. Как главный вывод дать заключение о годности испытуемого топлива к применению в эксплуатации на двигателях внутреннего сгорания.

Отчет о лабораторной работе по оценке качества (указать наименование и марку продукта)

Цель работы			
Задание			
	Основные показатели ка	чества оцениваемого обр	разца
	Наименование показателей	По ГОСТу	Полученные на основании проведенных анализов
	Цвет		
	Механические примеси, вода		
Результаты оценки	Водорастворимые кислоты щелочи		
	Фракционный состав, °C: tнп 10% 20% 30% 40%		

	50%	
	60%	
	70%	
	80%	
	90%	
	t к.п.	
Заключение о		
пригодности образца		
к применению		

Критерии оценки: Универсальная шкала оценки образовательных достижений

Процент результативности	Качественная оценка уровня подготовки			
(правильных ответов)	Балл (отметка) Вербальный аналог			
90 – 100%	5	Отлично		
80 – 89%	4	Хорошо		
60 – 79%	3	Удовлетворительно		
менее 60%	2	Неудовлетворительно		

Тема 2 Автомобильные топлива

Лабораторное занятие № 2 Определение качества дизельного топлива

Цель: определить основные показатели качества дизельного топлива.

Выполнив работу, Вы будете:

уметь:

У8. разрабатывать и внедрять в производство ресурсо- и энергосберегающие технологии;

- У01.1 распознавать задачу и/или проблему в профессиональном и/или социальном контексте;
 - У01.2 анализировать задачу и/или проблему и выделять её составные части;
- У01.4 выявлять и эффективно искать информацию, необходимую для решения задачи и/или проблемы;
 - У01.6 определить необходимые ресурсы;
 - У02.5 выделять наиболее значимое в перечне информации;
 - У03.2 применять современную научную профессиональную терминологию;
- У04.5 использовать коммуникационные навыки при работе в команде для успешной работы над групповым решением проблем;
 - У04.8 эффективно работать в команде;
- У07.2 определять направления ресурсосбережения в рамках профессиональной деятельности по специальности.

Материальное обеспечение: вискозиметр типа ВПЖ-2 и вискозиметр Пинкевича, стеклянные цилиндры диаметром 40... 55 мм, дизельное топливо

Задание:

Определить марку испытуемого образца.

Порядок выполнения работы:

- 1. Определить качество образца дизельного топлива по внешним признакам (прозрачность, цвет, запах, наличие воды и видимых невооруженным глазом механических примесей).
- 2. Определить кинематическую вязкость испытуемого образца дизельного топлива при температуре +20 °C.
 - 3. Определить плотность испытуемого образца дизельного топлива при температуре +20 °C.
- 4. Установить по имеющимся данным марки испытуемого образца топлива, его соответствия ГОСТу (или ТУ) и оформление заключения о пригодности данного образца топлива для двигателей автомобилей.

Ход работы:

Оценка дизельных топлив по внешним признакам

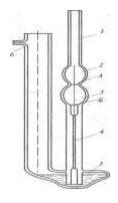
Все дизельные топлива окрашены, что обусловлено наличием в них растворенных смол. В зависимости от природы и количества смол цвет топлива, определяемый в стеклянных цилиндрах диаметром 40... 55 мм, изменяется от желтого до светло-коричневого. Чем меньше интенсивность окраски топлива, т. е. чем оно светлее, тем меньше в нем смолистых веществ и тем выше его качество.

В большинстве случаев дизельные топлива имеют нерезко выраженный запах, типичный для многих нефтепродуктов (за исключением бензинов и керосинов). Зимние и особенно арктические сорта дизельных топлив мало отличаются по фракционному составу от керосинов, поэтому по запаху они могут быть схожи с керосинами.

После оценки испытуемого образца по внешним признакам необходимо сравнить его с имеющимися в лаборатории пробами стандартных дизельных топлив и дать предварительное заключение о его принадлежности к той или иной марке дизельного топлива.

Определение кинематической вязкости испытуемого образца топлива

Вязкость подавляющего большинства нефтепродуктов (топлив, жидких смазочных материалов, Специальных жидкостей) принято выражать в единицах кинематической вязкости, которая определяется с помощью капиллярных вискозиметров по ГОСТ 33-2000.


Вязкостью называется свойство жидкости оказывать сопротивление перемещению ее слоев под действием внешней силы. Это свойство является следствием трения, возникающего между слоями жидкости.

Для определения кинематической вязкости v используют вискозиметры различных типов. Наибольшее распространение получили вискозиметр типа ВПЖ-2 и вискозиметр Пинкевича.

При определении кинематической вязкости жидкостей необходимо:

- 1. заполнить почти до краев имеющийся на рабочем месте фарфоровый тигель испытуемым дизельным топливом;
- 2. надеть резиновую трубку 7 с грушей на полый отросток 6 вискозиметра Пинкевича и перевернуть вискозиметр, направив открытыми концами вниз, как показано на рисунке. Затем зажать нижнюю часть широкого колена 5между средним и указательным пальцами правой руки так, чтобы большим пальцем можно было закрыть с торца широкое колено. После этого взять в левую руку тигель с топливом и опустить в него (до дна) узкое колено / вискозиметра;
- 3. с помощью груши через узкое колено / заполнить топливом расширительные емкости 2 и 3. Когда уровень топлива достигнет метки Б, следует прекратить отсос воздуха грушей и быстро перевернуть вискозиметр, направив открытые концы его колен вверх;.
- 4. снять резиновую трубку с полого отростка 6 и тем же концом надеть ее на узкое колено, предварительно обтерев его тканью или фильтровальной бумагой. Затем вертикально погрузить вискозиметр в термостат и закрепить в зажиме штатива верхнюю часть широкого колена так, чтобы расширительная емкость 2 оказалась полностью в термостатной жидкости;
- 5. испытание начинать, выдержав вискозиметр в термостате не менее 15 мин при температуре +20 °C, которую нужно поддерживать в течение всего опыта с точностью ± 0.3 °C. Не вынимая вискозиметра из термостата, медленно заполнить топливом, перетекшим в процессе выдерживания в термостате в расширительную емкость 4, расширительную емкость 3 так, чтобы его уровень был выше метки А. При заполнении и выдерживании вискозиметра в топливе не должно образовываться разрывов и пузырьков воздуха. Подняв с помощью груши топливо выше метки А, необходимо наблюдать за происходящим после этого перетеканием топлива через капилляр в расширение. В тот момент, когда уровень топлива достигнет метки А, нужно включить секундомер, а после вытекания топлива из расширительной емкости, т. е. в момент прохождения уровнем метки Б, его выключить.

Замер времени осуществляется с точностью до 0,1 с. С той же порцией топлива повторить опыт столько раз, чтобы можно было выбрать пять значений времени истечения (t1 t2, t3, t4, t5), максимальная разница между которыми не превышала бы 1 % от значения одного из них; вычислить кинематическую вязкость испытуемого топлива при температуре +20 °C по формуле γ =C*tcp

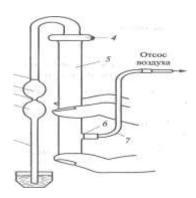


Рис. 6 Заполнение дизельным топливом вискозиметра Пинкевйча 1 —узкое колено; 2, 3, 4 — расширительные емкости; 5 — широкое колено; 6 — полый отросток; 7 — резиновая трубка; А, Б — метки

где C — постоянная вискозиметра (указана в паспорте вискозиметра), mm^2/c^2 ; tcp — среднее арифметическое из пяти значений времени истечения испытуемой жидкости, c.

Вычисленное значение γ округлить с точностью до третьего знака, т.е. в окончательном результате должны быть отражены три последовательных десятичных порядка.

Форма представления результата:

После завершения работы студенты должны представлять отчет, в котором следует выполнить и показать следующее:

- 1. Вычертить схему опытной установки и дать ее описание.
- 2. Описать методику проведения работы.
- 3. Начертить таблицу с результатами опыта.
- 4. Полученные экспериментальные результаты показать в сравнении с требованиями стандарта.
- 5. Как главный вывод дать заключение о соответствия ГОСТу (или ТУ) и оформление заключения о пригодности данного образца топлива для двигателей автомобилей.

Показание ареометра	Температура топлива, °С	Температурная поправка у, кг/(м3 °C)	Плотность топлива р при +20 °C, г/см3

Критерии оценки:

	Процент результативности	Каче	ственная оценка уровня подготовки
	(правильных ответов)	Балл (отметка)	Вербальный аналог
	90 – 100%	5	Отлично
Ī	80 - 89%	4	Хорошо
	60 – 79%	3	Удовлетворительно
	менее 60%	2	Неудовлетворительно

Тема 2 Автомобильные топлива

Практическое занятие № 1 Определение расхода топлива

Цель: определить потребное количество топлива с учетом заданных климатических и дорожных условий.

Выполнив работу, Вы будете:

уметь:

- У8. разрабатывать и внедрять в производство ресурсо- и энергосберегающие технологии;
- У01.1 распознавать задачу и/или проблему в профессиональном и/или социальном контексте:
 - У01.2 анализировать задачу и/или проблему и выделять её составные части;
- У01.4 выявлять и эффективно искать информацию, необходимую для решения задачи и/или проблемы;
 - У01.6 определить необходимые ресурсы;
 - У02.5 выделять наиболее значимое в перечне информации;
 - У03.2 применять современную научную профессиональную терминологию;
- У04.5 использовать коммуникационные навыки при работе в команде для успешной работы над групповым решением проблем;
 - У04.8 эффективно работать в команде;
- У07.2 определять направления ресурсосбережения в рамках профессиональной деятельности по специальности.

Материальное обеспечение: посадочные места по количеству обучающихся; рабочее место преподавателя; конспект лекций, интернет-ресурсы, линейка, транспортир, карандаш, ластик.

Задание:

Определить расход топлива для легкового и грузового автомобиля, автобуса, автомобилясамосвала и спецавтомобиля.

Порядок выполнения работы:

1 Определить расход топлива для легкового автомобиля:

$$Q_{H} = 0.01 \cdot H_{s} \cdot S (1 + 0.01 \cdot D);$$

где H_s – норма расхода топлива на пробег автомобиля, л/100 км;

- S пробег автомобиля, км;
- D поправочный коэффициент (суммарная относительная надбавка или снижение) к норме в процентах.
 - 2. Для автобусов нормируемое значение расхода топлива определяется:

$$Q_{H} = 0.01 \cdot H_{s} S (1 + 0.01 \cdot D) + H_{om} T$$

3.Для грузовых автомобилей нормируемое значение расхода топлива определяется по следующему соотношению:

$$Q_{\mu} = 0.01 (H_{san} \cdot S + H_{w} \cdot W) (1 + 0.01 \cdot D);$$

$$Q_{H}=0.01*(41*348+2*3.2*230)*(1+0.01*12)=176.29\pi$$

Для автомобилей-самосвалов нормируемое значение расхода топлива определяется по следующему соотношению:

$$Q_{H} = 0.01 \cdot H_{sanc} S \cdot (1 + 0.01 \cdot D) + H_{7} \cdot Z$$

4. Нормативный расход топлив (л) для спецавтомобилей определяется следующим образом:

$$Q_{H} = (0,01 \cdot H_{SC} \cdot S + H_{t} \cdot T) \cdot (1+0,01 \cdot D)$$

Форма представления результата:

Обосновать выбор поправочных коэффициентов, отчет предоставить преподавателю на проверку в тетради или по средствам образовательного портала МГТУ.

Критерии оценки:

· · · · · · · · · · · · · · · · ·						
Процент результативности	Качественная оценка уровня подготовки					
(правильных ответов)	Балл (отметка) Вербальный аналог					
90 – 100%	5	Отлично				
80 – 89%	4	Хорошо				
60 – 79%	3	Удовлетворительно				
менее 60%	2	Неудовлетворительно				

Тема 2 Автомобильные топлива

Практическое занятие № 2

Определение октанового числа бензина, полученного смешением двух марок.

Цель: определить марку бензина полученного путем смешения двух марок с различным октановым числом.

Выполнив работу, Вы будете:

уметь:

- У8. разрабатывать и внедрять в производство ресурсо- и энергосберегающие технологии;
- У01.1 распознавать задачу и/или проблему в профессиональном и/или социальном контексте;
 - У01.2 анализировать задачу и/или проблему и выделять её составные части;
- У01.4 выявлять и эффективно искать информацию, необходимую для решения задачи и/или проблемы;
 - У01.6 определить необходимые ресурсы;
 - У02.5 выделять наиболее значимое в перечне информации;
 - У03.2 применять современную научную профессиональную терминологию;
- У04.5 использовать коммуникационные навыки при работе в команде для успешной работы над групповым решением проблем;
 - У04.8 эффективно работать в команде;
- У07.2 определять направления ресурсосбережения в рамках профессиональной деятельности по специальности.

Материальное обеспечение: посадочные места по количеству обучающихся; рабочее место преподавателя; конспект лекций, интернет-ресурсы, линейка, транспортир, карандаш, ластик.

Задание:

- 1. Определить октановое число бензина, полученного смешением двух марок с различными октановыми числами (по моторному методу).
- 2. Определить разницу в массе нефтепродукта, перевозимого в бензовозе вместимостью 33000 л (33 м3) при температуре +200С и при температуре указанной в варианте.

Порядок выполнения работы:

- 1 Определить октановое число смешиваемых марок бензина по моторному методу.
- 2 Определить октановое число полученного бензина.
- 3Определить марку полученного бензина по октановому числу.
- 4 Определить температурную поправку $\Delta \rho$ в зависимости от исходной плотности нефтепродукта.
 - 5 Определить разницу температур Δt
 - 6 Определить плотность нефтепродукта при температуре t₁.
 - 7 Определить разницу в массе перевозимого нефтепродукта при температурах t и t₁

Октановое число определяется по формуле:

$$O_{H}=O_{H}+(J_{B}*(O_{B}-O_{H})/100),$$

где ОЧн и ОЧв - октановые числа (по моторному методу) соответственно низко- и высокооктановогобензина:

Дв - доля высокооктанового бензина в смеси, %.

Перед решением задачи необходимо перевести октановое число бензина, определенное исследовательским методом, в соответствующее ему значение октанового числа, определенное моторным методом.

Масса нефтепродукта в бензовозе определяется по формулам

$$M = V*\rho$$
 и $M_1 = V*\rho_1$.

Разница в массе определяется по формуле

 $\Delta M = M - M_1$

При этом если t_1 меньше $20^0 C$, то $\rho_1 = \rho + (\Delta \rho^* \Delta t)$,

Если t_1 если больше 20^{0} С, то $\rho_1 = \rho$ - $(\Delta \rho * \Delta t)$.

Типовые задания:

Вариант	ОЧн	ОЧв	Дв	Температура	Плотность
				нефтепродукта t_1 , 0 С	нефтепродукта при
					$t=20^{0}$ C, Γ/cm^{3}
0	A-76	АИ-92	20	+ 35	0,742
1	A-76	АИ-95	25	-10	0,762
2	A-76	АИ-98	30	-20	0,821
3	АИ-92	АИ-95	35	-5	0,850
4	АИ-92	АИ-98	40	+10	0,755
5	АИ-95	АИ-98	45	+33	0,783
6	A-76	АИ-95	50	+17	0,875
7	АИ-95	АИ-98	55	+ 7	0,749
8	АИ-92	АИ-95	60	0	0,835
9	АИ-92	АИ-98	65	+ 22	0,885

Таблица4. Температурная поправка к плотности нефтепродуктов

Плотность	Температурная поправка	Плотность	Температурная поправка	
нефтепродукта	Δρ на 1°	нефтепродукта	∆рна 1°	
ρ , Γ /cm ³	-	ρ, г/cm ³		
0,6900-0,6999	0,000910	0,8500-0,8599	0,000699	
0,7000-0,7099	0,000897	0,8600-0,8699	0,000686	
0,7100-0,7199	0,000884	0,8700-0,8799	0,000673	
0,7200-0,7299	0,000870	0,8800-0,8899	0,000660	
0,7300-0,7399	0,000857	0,8900-0,8999	0,000647	
0,7400-0,7499	0,000844	0,9000-0,9099	0,000633	
0,7500-0,7599	0,000831	0,9100-0,9199	0,000620	
0,7600-0,7699	0,000818	0,9200-0,9299	0,000607	
0,7700-0,7799	0,000805	0,9300-0,9399	0,000594	
0,7800-0,7899	0,000792	0,9400-0,9499	0,000581	
0,7900-0,7999	0,000778	0,9500-0,9599	0,000567	
0,8000-0,8099	0,000765	0,9600-0,9699	0,000554	
0,8100-0,8199	0,000752	0,9700-0,9799	0,000541	
0,8200-0,8299	0,000739	0,9800-0,9899	0,000580	
0,8300-0,8399	0,000725	0,9900-1,000	0,000515	
0,8400-0,8499	0,000712			

Форма представления результата:

отчет предоставить преподавателю на проверку в тетради или по средствам образовательного портала МГТУ.

Критерии оценки:

· · · · · · · · · · · · · · · · ·						
Процент результативности	Качественная оценка уровня подготовки					
(правильных ответов)	Балл (отметка) Вербальный аналог					
90 – 100%	5	Отлично				
80 – 89%	4	Хорошо				
60 – 79%	3	Удовлетворительно				
менее 60%	2	Неудовлетворительно				

Тема 3. Автомобильные смазочные материалы.

Лабораторное занятие № 4 Определение качества масел

Цель: определить основные показатели качества масла.

Выполнив работу, Вы будете:

уметь:

У8. разрабатывать и внедрять в производство ресурсо- и энергосберегающие технологии;

- У01.1 распознавать задачу и/или проблему в профессиональном и/или социальном контексте;
 - У01.2 анализировать задачу и/или проблему и выделять её составные части;
- У01.4 выявлять и эффективно искать информацию, необходимую для решения задачи и/или проблемы;
 - У01.6 определить необходимые ресурсы;
 - У02.5 выделять наиболее значимое в перечне информации;
 - У03.2 применять современную научную профессиональную терминологию;
- У04.5 использовать коммуникационные навыки при работе в команде для успешной работы над групповым решением проблем;
 - У04.8 эффективно работать в команде;
- У07.2 определять направления ресурсосбережения в рамках профессиональной деятельности по специальности.

Материальное обеспечение: вискозиметр типа ВПЖ-2 и вискозиметр Пинкевича, стеклянные цилиндры диаметром 40... 55 мм, образцы масла

Задание: определить марку испытуемого масла.

Порядок выполнения работы:

- 1. Оценить испытуемый образец масла по внешним признакам и записать в отчет
- 2.Определение кинематической вязкости испытуемого образца моторного масла
- 3. Определение индекса вязкости испытуемого образца моторного масла

Ход работы:

Одним из путей повышения эксплуатационной надежности двигателей внутреннего сгорания автомобилей и экономичного использования моторных масел является установление рациональных сроков их замены.

В настоящее время периодичность замены моторных масел определяется заводомизготовителем и измеряется в километрах пробега автомобиля. Такой подход не учитывает фактического состояния масла на момент его замены. Старение масла происходит вследствие загрязнения пылью, продуктами износа, сгорания топлива и физико-химических изменений углеводородов. Масло оказывает влияние на техническое состояние двигателя. В то же время изменения, происходящие в работе систем и механизмов двигателя, оказывают влияние на качество масла. В связи с этим отработавшее масло является носителем комплексной информации, которая позволяет оценить состояние масла, своевременно обнаружить неисправность в двигателе и произвести замену масла по его фактическому состоянию.

Смазочные масла оценивают по внешним признакам так же, как бензины и дизельные топлива. Современные моторные и трансмиссионные масла содержат значительно больше смол, чем дизельное топливо, поэтому по сравнению с последним они имеют более интенсивную окраску (например, слой масла толщиной 40...55 мм становится непрозрачным). В связи с этим для жидких масел, кроме цвета в проходящем свете, необходимо дополнительно фиксировать и оттенок в отраженном свете.

К важнейшим эксплуатационным характеристикам масел относятся вязкостные свойства (в паспорте на масло указаны кинематическая вязкость и индекс вязкости).

При установлении марки вязкость определяют при тех же температурах, при которых работают узлы трения (+40 u + 100 °C).

Время истечения масла из капилляра вискозиметра замеряют с точностью до 0,2 с. Для определения кинематической вязкости испытуемого образца моторного масла при заданной температуре (+40 и +100 °C) достаточно провести три замера. Постоянную вискозиметра C, мм2/c2, берут из паспорта вискозиметра.

Время истечения масла при температуре +40 °C, с:

$$\tau_1 = ; \tau_2 = ; \tau_3 = ;$$

$$\tau_{cp} = \frac{\tau_1 + \tau_2 + \tau_3}{3} =$$

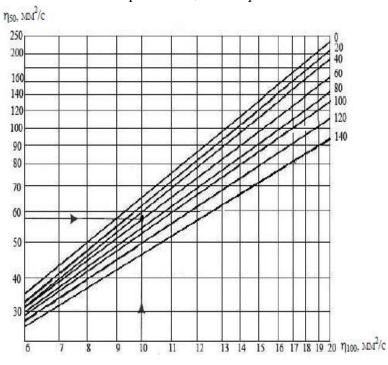
Кинематическая вязкость масла при температуре +40 °C, мм2/с:

$$V_{40} = C \tau_{cp} =$$

Время истечения масла при температуре +100 °C, с:

$$\tau_1 = ; \tau_2 = ; \tau_3 = ;$$

$$\tau_{cp} = \frac{\tau_1 + \tau_2 + \tau_3}{3} =$$

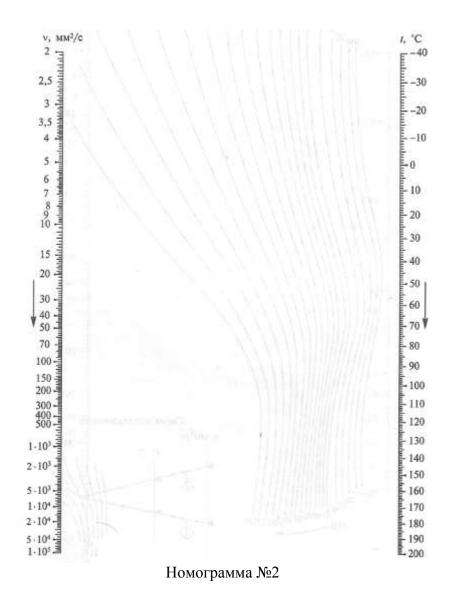

Кинематическая вязкость масла при температуре +100 °C, мм2/с:

$$v_{100} = C\tau_{cp} =$$

Индекс вязкости масла –условный показатель, получаемый путем сопоставления вязкости данного масла с двумя эталонными, вязкостно-температурные свойства одного из которых приняты за 100, а второго – за единицу. Индекс вязкости характеризует вязкость масла. Чем он выше, тем вязкостно-температурные свойства масла лучше.

На основании ряда исследований установлено, что пуск двигателя оказывается достаточно легким и не сопровождается, как и последующий прогрев, интенсивным изнашиванием только при условии, если вязкость масел не превосходит критического значения, равного для автомобильных двигателей $1*10^4 \, \mathrm{mm}^2/\mathrm{c}$.

Определить индекс вязкости можно при помощи номограммы


Для этого нужно отложить по осям ординат соответствующие величины вязкости, провести горизонтальную и вертикальную прямые линии. На месте их пересечения найти линию индекса вязкости и записать его значения при 50 и 100^{0} C в отчет.

4. Определение температуры застывания испытуемого образца моторного масла

Температуры, при которых масла достигают критических значений вязкости, определяют с помощью номограммы

Находим по номограмме № 2 температуру, при которой испытуемый образец масла марки $M-6_3/10\Gamma_1$ будет иметь вязкость, равную $10~\text{мm}^2/\text{c}$. Точку на левой шкале, соответствующую $10~\text{мm}^2/\text{c}$, соединяем прямой линией с точкой на правой шкале, соответствующей 100~°C. Далее проводим вторую прямую, для которой исходными точками служат $1000~\text{мm}^2/\text{c}$ и 0~°C. Затем накладываем линейку с одной стороны на точку, соответствующую $1~10^4~\text{km}^2/\text{c}$, а с другой — на точку, образовавшуюся от пересечения двух указанных прямых. В месте пересечения линейки с правой шкалой читаем ответ: -25 °C.

Таким образом, образец масла марки M- $6_3/10\Gamma_1$, обеспечивает пуск автомобильного двигателя (без использования средств разогрева) при температуре не ниже -25 °C.

Форма представления результата:

После завершения работы студенты должны представлять отчет, в котором следует выполнить и показать следующее:

- 1. Вычертить схему опытной установки и дать ее описание.
- 2. Описать методику проведения работы.
- 3. Начертить таблицу с результатами опыта.
- 4. Полученные экспериментальные результаты показать в сравнении с требованиями стандарта.
- 5. Как главный вывод дать заключение о соответствия ГОСТу (или ТУ) и оформление заключения о пригодности данного образца

Основные	Значения показателей для	Значения основных	Фактические отклонения
показатели	испытуемого образца	показателей по ГОСТу	показателей от ГОСТа
		или ТУ на масло марки	или ТУ
Вязкость, мм ² /с: ^v 100			
Vo			
Индекс вязкости			
Температура			
застывания			

Критерии оценки:

Процент результативности	Качественная оценка уровня подготовки		
(правильных ответов)	Балл (отметка) Вербальный аналог		
90 – 100%	5	Отлично	
80 – 89%	4	Хорошо	
60 – 79%	3	Удовлетворительно	
менее 60%	2	Неудовлетворительно	

Тема 3. Автомобильные смазочные материалы.

Практическое занятие № 3 Определение расхода смазочных материалов

Цель: определить потребное смазочных материалов для заданных условий.

Выполнив работу, Вы будете:

уметь:

У8. разрабатывать и внедрять в производство ресурсо- и энергосберегающие технологии;

- У01.1 распознавать задачу и/или проблему в профессиональном и/или социальном контексте;
 - У01.2 анализировать задачу и/или проблему и выделять её составные части;
- У01.4 выявлять и эффективно искать информацию, необходимую для решения задачи и/или проблемы;
 - У01.6 определить необходимые ресурсы;
 - У02.5 выделять наиболее значимое в перечне информации;
 - У03.2 применять современную научную профессиональную терминологию;
- У04.5 использовать коммуникационные навыки при работе в команде для успешной работы над групповым решением проблем;
 - У04.8 эффективно работать в команде;
- У07.2 определять направления ресурсосбережения в рамках профессиональной деятельности по специальности.

Материальное обеспечение: посадочные места по количеству обучающихся; рабочее место преподавателя; конспект лекций, интернет-ресурсы, линейка, транспортир, карандаш, ластик.

Задание:

Определить расход смазочных материалов для легкового и грузового автомобиля, автобуса, автомобиля-самосвала и спецавтомобиля.

Порядок выполнения работы:

- 1 Определить расход топлива для автомобиля.
- 2 Обосновать выбор и расход смазочных материалов для заданных марок автомобилей:

$$Q_{cM} = 0.01 \cdot Q_H q_{cM}$$

где q_{cm} норма расхода масел (смазок) на 100 л расхода топлива

Форма представления результата:

Отчет по проделанной работе предоставляется в табличной форме

Марка	Расход		Расход смазоч	ных масел	
автомобиля	топлива	моторного, л/100 л	трансмиссионного, л/100 л	специальных, л/100 л	пластичных, кг/100 л

Критерии оценки:

Процент результативности	Качественная оценка уровня подготовки			
(правильных ответов)	Балл (отметка)	Вербальный аналог		
90 – 100%	5	Отлично		
80 – 89%	4	Хорошо		
60 – 79%	3	Удовлетворительно		
менее 60%	2	Неудовлетворительно		

Тема 4. Автомобильные специальные жидкости

Практическое занятие № 4

Определение основных показателей топлива, смазочных материалов и специальных жидкостей по их маркам

Цель: определить соответствие основных показателей стандарту.

Выполнив работу, Вы будете:

уметь:

- У8. разрабатывать и внедрять в производство ресурсо- и энергосберегающие технологии;
- У01.1 распознавать задачу и/или проблему в профессиональном и/или социальном контексте:
 - У01.2 анализировать задачу и/или проблему и выделять её составные части;
- У01.4 выявлять и эффективно искать информацию, необходимую для решения задачи и/или проблемы;
 - У01.6 определить необходимые ресурсы;
 - У02.5 выделять наиболее значимое в перечне информации;
 - У03.2 применять современную научную профессиональную терминологию;
- У04.5 использовать коммуникационные навыки при работе в команде для успешной работы над групповым решением проблем;
 - У04.8 эффективно работать в команде;
- У07.2 определять направления ресурсосбережения в рамках профессиональной деятельности по специальности.

Материальное обеспечение: посадочные места по количеству обучающихся; рабочее место преподавателя; конспект лекций, интернет-ресурсы, линейка, транспортир, карандаш, ластик.

Задание:

- 1. Расшифровать марку заданных топлив, смазочных материалов, специальных жидкостей.
 - 2. Сравнить заданный образец с показателями стандарта.

Порядок выполнения работы: 1 Дать расшифровку марке бензина, используя справочные материалы определить показатели и эксплуатационные свойства бензина: фракционный состав, детонационная стойкость, давление насыщенных паров, кислотность, содержание серы, плотность, содержание воды и механических примесей.

- 2 Дать расшифровку марке дизельного топлива, указать применение, используя справочные материалы определить показатели и эксплуатационные свойства ДТ: цетановое число, дизельный индекс, фракционный состав, вязкость кинематическая, температура застывания, температура помутнения, температура вспышки, массовая доля серы, содержание сероводорода, кислотность, зольность, коксуемость, содержание механических примесей, плотность, содержание ароматических углеводородов.
- 3 Дать расшифровку марке моторного масла, указать применение, используя справочные материалы определить его показатели и эксплуатационные свойства: вязкость, индекс вязкости, зольность, щелочное число, массовая доля механических примесей и воды, температура вспышки, температура застывания, плотность, применение.
- 4 Дать расшифровку марке трансмиссионного масла, указать применение, используя справочные материалы определить его показатели и эксплуатационные свойства: плотность, вязкость кинематическая и динамическая, температура вспышки, температура застывания, массовая доля механических примесей, зольность, кислотное число, применение. Подобрать соответствующую марку зарубежного трансмиссионного масла.
- 5 Используя справочные материалы указать область применения, показатели и эксплуатационные свойства пластичной смазки, подобрать соответствующую марки зарубежных пластических смазок.

- 6 Используя справочные материалы указать область применения, показатели и эксплуатационные свойства тормозной жидкости.
- 7 Используя справочные материалы указать область применения, показатели и эксплуатационные свойства антифриза.
- 8 Проанализируйте работу заданного образца. Дайте рекомендации по улучшению показателей.

Пример типового задания:

Проанализируйте работу двигателя на данном образце бензина АИ98:

- октановое число по исследовательскому методу 98;
- 10% перегоняется при температуре-75°C;
- 50% перегоняется при температуре -118 °C;
- 90% перегоняется при температуре-185°C;

-индукционный период -890 мин.

Вариант	1	2
Марка бензина	АИ 93	A-72
Марка дизельного топлива	Л-0,2-40	3-0,2-35
Марка моторного масла	M-6/10-B	M -6/12- Γ_1
Марка трансмиссионного масла	ТАД-17гип	TC
Марка пластичной смазки	Лита	Солидол С
Марка тормозной жидкости	DOT-2	DOT-5
Марка антифриза	G11	G13

Форма представления результата:

Отчет предоставляется с описанием каждой марки исследуемого образца, описанием отклонений от стандарта, возможными последствиями применения, и рекомендациями по восстановлению (улучшению) показателей. Отчет предоставить преподавателю на проверку в тетради или по средствам образовательного портала МГТУ.

Критерии оценки:

· · · · · · · · · · · · · · · · · ·						
Процент результативности	Качественная оценка уровня подготовки					
(правильных ответов)	Балл (отметка) Вербальный аналог					
90 – 100%	5	Отлично				
80 – 89%	4	Хорошо				
60 – 79%	3	Удовлетворительно				
менее 60%	2	Неудовлетворительно				

Тема 5. Конструкционно-ремонтные материалы.

Практическое занятие № 5 Определение расхода лакокрасочных материалов

Цель: определить потребное количество лакокрасочных материалов.

Выполнив работу, Вы будете:

уметь:

У8. разрабатывать и внедрять в производство ресурсо- и энергосберегающие технологии;

У01.1 распознавать задачу и/или проблему в профессиональном и/или социальном контексте;

У01.2 анализировать задачу и/или проблему и выделять её составные части;

У01.4 выявлять и эффективно искать информацию, необходимую для решения задачи и/или проблемы;

У01.6 определить необходимые ресурсы;

У02.5 выделять наиболее значимое в перечне информации;

У03.2 применять современную научную профессиональную терминологию;

У04.5 использовать коммуникационные навыки при работе в команде для успешной работы над групповым решением проблем;

У04.8 эффективно работать в команде;

У07.2 определять направления ресурсосбережения в рамках профессиональной деятельности по специальности.

Материальное обеспечение: посадочные места по количеству обучающихся; рабочее место преподавателя; конспект лекций, интернет-ресурсы, линейка, транспортир, карандаш, ластик.

Задание:

Определить расход ЛКМ в соответствии с предложенным способом их нанесения.

Порядок выполнения работы:

- 1 Осуществить выбор конкретного наименования ЛКМ и его растворителя. Привести обозначения принятых ЛКМ согласно ГОСТ 9825-73 "Материалы лакокрасочные. Классификация и обозначения".
 - 2 Определить расход ЛКМ в соответствии с предложенным способом их нанесения.
- 3 Выбрать способ сушки. Указать вид теплоносителя, продолжительность процесса, его преимущества и недостатки.

Расход ЛКМ определяется по формуле:

$$R = k s o$$
,

где k- количество слоев ЛКМ одним видом покрытия:

s – площадь окраски, M^2 ;

 ρ – удельный расход ЛКМ, кг/м².

Удельный расход ЛКМ определяется по формуле:

$$\rho = \frac{\gamma \cdot \delta \cdot 10^4}{q(1-\eta)}$$

где δ - толщина пленки одного слоя, м;

 \mathbf{V} - плотность пленки, кг/ \mathbf{M}^3 ;

q- сухой остаток материала исходной вязкости, %

η- коэффициент потерь материала.

Количество слоев одним видом покрытия зависит от используемого материала и составляет для нитроэмалей — 5 слоев; для синтетических эмалей (пентафталевых, глифталевых и меламиноалкидных) — 2...3 слоя.

Плотность пленки и сухой остаток зависят от вида ЛКМ (табл. 5).

Толщина одного слоя пленки и коэффициент потерь ЛКМ, за исключением шпатлевки, зависят от способа нанесения. Значения $\boldsymbol{\delta}$ и $\boldsymbol{\eta}$ приведены в табл. 6.

Шпатлевка, как правило, наносится вручную шпателем, максимальная толщина не более $5\cdot 10^{-3}$ м. Площадь шпатлевания не должна превышать 10% общей площади покрытия. Для шпатлевки η обычно принимают равным 0,4.

Таблица 5 Плотность пленки и сухой остаток

№ п/п	Наименование ЛКМ	γ , κ Γ / M ³	q, %
1	Грунты	1,82,0	4045
2	Нитроэмали	1,41,85	25
3	Синтетические	1,5	45
4	Шпатлевки	2,0	50

Таблица 6 Толщина одного слоя пленки и коэффициент потерь ЛКМ

	Способ нанесения							
		атическим распылением		Безвоздушным распылением		в электрическом		
Наименование ЛКМ	без подог	грева с подогревом				поле		
	δ 10 ⁻⁵ ,	η	δ 10 ⁻⁵ ,	η	δ 10 ⁻⁵ ,	η	δ 10 ⁻⁵ ,	η
Нитроэмали	1020		3032		3035			
Синтетические эмали	2030	0,4	4045	0,25	4045	0,15	2025	0

Следует отметить, что нитроэмали в электрическом поле нанесению не подлежат.

Форма представления результата:

Отчет предоставить преподавателю на проверку в тетради или по средствам образовательного портала МГТУ.

Критерии оценки:

Промоче поруду тотири ости	V		
Процент результативности	Качественная оценка уровня подготовки		
(правильных ответов)	Балл (отметка)	Вербальный аналог	
90 – 100%	5	Отлично	
80 – 89%	4	Хорошо	
60 – 79%	3	Удовлетворительно	
менее 60%	2	Неудовлетворительно	