Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

Многопрофильный колледж

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ЛАБОРАТОРНЫХ И ПРАКТИЧЕСКИХ ЗАНЯТИЙ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОПц.10 ТЕПЛОМАССООБМЕН для обучающихся специальности 13.02.02 Теплоснабжение и теплотехническое оборудование

Магнитогорск, 2025

ОДОБРЕНО

Предметно-цикловой комиссией «Монтажа и эксплуатации электрооборудования» Председатель С.Б. Меняшева Протокол № 5 от «22» января 2025г

Методической комиссией МпК Протокол № 3 от «19» февраля 2025г

Разработчик (и):

преподаватель отделения №3 «Строительства, экономики и сферы обслуживания» преподаватель образовательно-производственного центра (кластера) Многопрофильного колледжа ФГБОУ ВО «МГТУ им. Г.И. Носова»

Элина Мубаряковна Баймуратова

Методические указания по выполнению практических и лабораторных работ разработаны на основе рабочей программы учебной дисциплины «Тепломассообмен».

Содержание практических и лабораторных работ ориентировано на подготовку обучающихся к освоению профессионального(ых) модуля(ей) программы подготовки специалистов среднего звена по специальности 13.02.02 Теплоснабжение и теплотехническое оборудование и овладению профессиональными компетенциями.

СОДЕРЖАНИЕ

1 ВВЕДЕНИЕ	4
	5
Практическое занятие №1	5
Практическое занятие №2	8
Практическое занятие №3	11
Практическое занятие №4	14
Практическое занятие №5	
Практическое занятие №6	
Практическое занятие №7	
Практическое занятие №8	
Практическое занятие №9	
Практическое занятие №10	30
Лабораторное занятие №1	
Лабораторное занятие №2	34
Лабораторное занятие №3	38
Лабораторное занятие № 4	40
Лабораторное занятие №5	41

1 ВВЕДЕНИЕ

Важную часть теоретической и профессиональной практической подготовки обучающихся составляют практические и лабораторные занятия.

Состав и содержание практических и лабораторных занятий направлены на реализацию Федерального государственного образовательного стандарта среднего профессионального образования.

Ведущей дидактической целью практических занятий является формирование профессиональных практических умений (умений выполнять определенные действия, операции, необходимые в последующем в профессиональной деятельности) или учебных практических умений, необходимых в последующей учебной деятельности.

Ведущей дидактической целью лабораторных занятий является экспериментальное подтверждение и проверка существенных теоретических положений (законов, зависимостей).

В соответствии с рабочей программой учебной дисциплины «Тепломассообмен» предусмотрено проведение практических и лабораторных занятий.

В результате их выполнения, обучающийся должен:

уметь:

- анализировать данные контрольно-измерительных приборов для оценки текущего состояния тепловых сетей;
- выявлять и устранять дефекты теплотехнического оборудования и систем тепло- и топливоснабжения;
 - владеть актуальными методами работы в профессиональной и смежных сферах;
- структурировать получаемую информацию; выделять наиболее значимое в перечне информации.

Содержание практических и лабораторных занятий ориентировано на подготовку обучающихся к освоению профессионального модуля программы подготовки специалистов среднего звена по специальности и овладению *профессиональными компетенциями*:

- ПК 1.3 Осуществлять мероприятия по предупреждению, локализации и ликвидации аварий теплотехнического оборудования и систем тепло- и теплоснабжения.
- ПК 2.1 Выполнять дефектацию теплотехнического оборудования и систем тепло- и топливоснабжения.

А также формированию общих компетенций:

- ОК 01 Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам.
- ОК 02 Планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по правовой и финансовой грамотности в различных жизненных ситуациях.

Выполнение обучающимися практических и/или лабораторных работ по учебной дисциплине «Тепломассообмен» направлено на:

- обобщение, систематизацию, углубление, закрепление, развитие и детализацию полученных теоретических знаний по конкретным темам учебной дисциплины;
- формирование умений применять полученные знания на практике, реализацию единства интеллектуальной и практической деятельности;
- формирование и развитие умений: наблюдать, сравнивать, сопоставлять, анализировать, делать выводы и обобщения, самостоятельно вести исследования, пользоваться различными приемами измерений, оформлять результаты в виде таблиц, схем, графиков;
- выработку при решении поставленных задач профессионально значимых качеств, таких как самостоятельность, ответственность, точность, творческая инициатива.

Практические и лабораторные занятия проводятся в рамках соответствующей темы, после освоения дидактических единиц, которые обеспечивают наличие знаний, необходимых для ее выполнения.

2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Тема 1.2 Конвективный теплообмен Практическое занятие №1

Расчет теплопроводности через однослойную и многослойную плоскую и цилиндрическую стенки. Эквивалентная теплопроводность. Теплопроводность через шаровую стенку

Цель: Закрепление теоретических знаний и приобретение практических навыков в расчете процессов стационарной теплопроводности через различные типы стенок.

Выполнив работу, вы будете уметь:

- Уд 1 анализировать данные контрольно-измерительных приборов для оценки текущего состояния тепловых сетей;
- Уд 2 выявлять и устранять дефекты теплотехнического оборудования и систем тепло- и топливоснабжения;
 - Уо 01.09 владеть актуальными методами работы в профессиональной и смежных сферах;
- Уо 02.04 структурировать получаемую информацию; выделять наиболее значимое в перечне информации.

Выполнение практической работы способствует формированию:

- OK 01 выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;
- ОК 02 планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по правовой и финансовой грамотности в различных жизненных ситуациях;
- ПК 2.1 выполнять дефектацию теплотехнического оборудования и систем тепло- и топливоснабжения.

Материальное обеспечение:

Учебная аудитория для проведения лекционных, практических занятий, для групповых и индивидуальных консультаций, для текущего контроля и промежуточной аттестации: рабочее место преподавателя, рабочие места обучающихся, доска. Компьютер: Intel (R) Core (TM) i5- 2300 CPU@ 2, 80 GHz 3 GHz/RAM/8, 00 Gb /HDD/244 Gb keyb/ монитор19", проектор Acer X 1261 P; экран настенный; Программное обеспечение: MS Windows 7, лицензия №47818300, бессрочно; MS Office 2007, лицензия 42373644, бессрочно; Adobe Reader 9 свободно распространяемое ПО бессрочно; 7 Zip свободно распространяемое ПО бессрочно.

Задание:

1. 1 Освоить методику расчета:

- о Плотности теплового потока (q, Bт/м²) и общего теплового потока (Q, Bт) для однослойной и многослойной плоской стенки при известных температурах на ее поверхностях.
 - о Температуры на границах слоев в многослойной стенке.
- **2.** Изучить особенности расчета теплопроводности через цилиндрические стенки (трубы):
- Научиться вычислять линейную плотность теплового потока (q_1, Вт/м) и общие тепловые потери с трубопровода.
- о Понять разницу между расчетом по формулам для плоской и цилиндрической стенки и причину введения понятия линейной плотности.
- **3.** Усвоить понятие «эквивалентная теплопроводность» для многослойной плоской стенки и научиться ее рассчитывать. Понять физический смысл этой величины как коэффициента теплопроводности однородной стенки, термическое сопротивление которой равно сопротивлению данной многослойной конструкции.
- **4.** Ознакомиться с методикой расчета стационарной теплопроводности через шаровую стенку (например, сферический резервуар).

- 5. Проанализировать влияние на величину теплового потока следующих факторов:
- о Толщины и материала слоев (их термического сопротивления).
- о Геометрической формы стенки (плоская, цилиндрическая, сферическая).

Порядок выполнения работы:

Цель работы: владение основными формулами теплопроводности, умение применять их для решения инженерных задач, связанных с расчетом тепловых потерь или подбором теплоизоляции.

1. Теоретическая часть

Теплопроводность — это процесс переноса тепловой энергии от более нагретых частей тела к менее нагретым в результате теплового движения и взаимодействия микрочастиц. Перенос энергии происходит без перемещения макроскопических частей тела.

Расчеты ведутся для стационарного (установившегося) режима, когда температурное поле не меняется во времени.

Закон Фурье является основным уравнением теплопроводности, определяющим количество переданной теплоты:

 $Q = -\lambda \cdot F \cdot (dt/dn)$, где:

- Q тепловой поток, Вт;
- Λ коэффициент теплопроводности материала стенки, Bт/(м·°C);
- F площадь поверхности, через которую передается тепло, м²;
- dt/dn градиент температуры по нормали к изотермической поверхности.

Для расчета удобно использовать понятие **термического сопротивления** (R).

2. Расчетные формулы

2.1. Однослойная плоская стенка

• Плотность теплового потока (количество теплоты, проходящее через единицу площади в единицу времени): $q = (t_{x} - t_{x}) / (1/\alpha 1 + \delta/\lambda + 1/\alpha 2)$, $B_{x} - t_{x}$

Если температуры поверхностей стенки известны (t_c1, t_c2), формула упрощается:

$$q = (t_c1 - t c2) / (\delta/\lambda) = (\lambda/\delta) \cdot (t c1 - t c2), B_T/M^2$$

- Полный тепловой поток: $Q = q \cdot F, B_T$
- Термическое сопротивление теплопроводности плоской стенки: $R = \delta / (\lambda \cdot F)$, °C/BT

2.2. Многослойная (п-слойная) плоская стенка

• Плотность теплового потока (при известных температурах поверхностей):

$$q = (t_c1 - t_c_\{n+1\}) \ / \ (\delta_1/\lambda_1 + \delta_2/\lambda_2 + ... + \delta_n/\lambda_n) = (t_c1 - t_c_\{n+1\}) \ / \ \Sigma(\delta_i/\lambda_i),$$
 BT/M²

- Температура на границе i-го и (i+1)-го слоев: $t_{i+1} = t_i q \cdot (\delta i / \lambda i)$
- Эквивалентная теплопроводность это коэффициент теплопроводности условной однородной стенки той же толщины и с тем же термическим сопротивлением, что и многослойная.

$$\lambda \ni KB = (\delta + 1 + \delta + 2 + ... + \delta + n) / (\delta + 1/\lambda + 1 + \delta + 2/\lambda + 2 + ... + \delta + n/\lambda + n), BT/(M \cdot C)$$

2.3. Однослойная цилиндрическая стенка (труба)

• **Линейная плотность теплового потока** (количество теплоты, проходящее через 1 погонный метр трубы в единицу времени):

$$q_1 = (t_x - t_x - t_x - t_x) / (1/(\pi \cdot d_1 \cdot \alpha 1) + (1/(2\pi \cdot \lambda)) \cdot \ln(d_2/d_1) + 1/(\pi \cdot d_2 \cdot \alpha 2)),$$
 Вт/м Если температуры поверхностей известны (t_c1, t_c2):

$$q = (t c1 - t c2) / ((1/(2\pi \cdot \lambda)) \cdot \ln(d 2/d 1)) = (2\pi \cdot \lambda / \ln(d 2/d 1)) \cdot (t c1 - t c2), BT/M$$

- Полный тепловой поток через участок трубы длиной L: Q = q 1 · L, Вт
- Термическое сопротивление теплопроводности цилиндрической стенки: $R_{T} = (1/(2\pi \cdot \lambda \cdot L)) \cdot \ln(d \ 2/d \ 1)$, °C/BT

2.4. Шаровая стенка

• Тепловой поток через однослойную шаровую стенку:

 $Q = (t_c1 - t_c2) / ((1/(4\pi \cdot \lambda)) \cdot (1/d_1 - 1/d_2)) = (4\pi \cdot \lambda \cdot d_1 \cdot d_2 / (d_2 - d_1)) (t_c1 - t_c2),$ Вт где d_1 и d_2 — внутренний и наружный диаметры.

3. Ход работы

- **1.** Ознакомьтесь с индивидуальным заданием, выданным преподавателем. Определите тип задачи (плоская, цилиндрическая, многослойная стенка), исходные данные (температуры, геометрические размеры, коэффициенты теплопроводности материалов).
 - 2. Выберите расчетные формулы в соответствии с типом стенки и известными данными.
 - 3. Выполните расчеты в следующей последовательности:
- о Для плоской стенки: найдите плотность теплового потока q, затем полный тепловой поток Q. Для многослойной стенки рассчитайте температуры на границах слоев.
- о Для цилиндрической стенки: найдите линейную плотность теплового потока q_1, затем полный тепловой поток Q для заданной длины трубы.
- о Если требуется, рассчитайте эквивалентную теплопроводность многослойной плоской конструкции.

4. Проанализируйте результаты. Ответьте на контрольные вопросы:

- о Как влияет толщина изоляции на тепловые потери с трубы?
- о Почему для цилиндрической стенки вводится понятие линейной плотности?
- о В каком случае использование эквивалентной теплопроводности является удобным?
- Сравните тепловые потоки через плоскую, цилиндрическую и шаровую стенки из одного материала при прочих равных условиях.

5. Форма представления результата:

Оформите отчет, который должен содержать:

- о Титульный лист.
- о Название и цель работы.
- о Краткие теоретические сведения (основные понятия и формулы).
- о Условие задачи с исходными данными.
- о Подробное решение с пояснениями и схематическим рисунком.
- о Полученные результаты (выделите их).
- о Выводы по работе.

4. Пример задачи для плоской стенки

Условие: Определить потери теплоты с 1 м² поверхности стенки печи, если ее толщина $\delta = 250\,$ мм, коэффициент теплопроводности материала кладки $\lambda = 1.2\,$ Bt/(м·°C). Температура на внутренней поверхности t c1 = 1100 °C, на наружной t c2 = 200 °C.

Решение:

- 1. Схема: однослойная плоская стенка.
- 2. Используем формулу для $q: q = (\lambda / \delta) \cdot (t_c1 t_c2)$
- 3. Подставляем значения: $q = (1.2 / 0.25) \cdot (1100 200) = 4.8 \cdot 900 = 4320 \text{ Bt/m}^2$
- 4. Ответ: Потери теплоты с 1 м 2 стенки составляют Q = 4320 Вт

Форма представления результата:

Расчеты выполнить и оформить в рабочей тетради.

Критерии оценки:

- «5» (отлично): выполнены все задания, студент четко и без ошибок ответил на все контрольные вопросы.
- «4» (хорошо): выполнены все задания; студент ответил на все контрольные вопросы с замечаниями.
- «3» (удовлетворительно): выполнены все работы с замечаниями; студент ответил на все контрольные вопросы с замечаниями.
- «2» (неудовлетворительно): студент не выполнил или выполнил неправильно задания; студент ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы.

Тема 1.2 Конвективный теплообмен Практическое занятие №2

Коэффициент теплопередачи. Теплопередача через плоскую, цилиндрическую и шаровую однослойную и многослойную стенки.

Цель: Закрепление теоретических знаний и приобретение практических навыков в расчете процессов стационарной теплопроводности через различные типы стенок.

Выполнив работу, вы будете уметь:

Уд 1 анализировать данные контрольно-измерительных приборов для оценки текущего состояния тепловых сетей;

Уд 2 выявлять и устранять дефекты теплотехнического оборудования и систем тепло- и топливоснабжения;

Уо 01.09 владеть актуальными методами работы в профессиональной и смежных сферах;

Уо 02.04 структурировать получаемую информацию; выделять наиболее значимое в перечне информации.

Выполнение практической работы способствует формированию:

ОК 01 выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;

ОК 02 планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по правовой и финансовой грамотности в различных жизненных ситуациях;

ПК 2.1 выполнять дефектацию теплотехнического оборудования и систем тепло- и топливоснабжения.

Материальное обеспечение:

Учебная аудитория для проведения лекционных, практических занятий, для групповых и индивидуальных консультаций, для текущего контроля и промежуточной аттестации: рабочее место преподавателя, рабочие места обучающихся, доска. Компьютер: Intel (R) Core (TM) i5- 2300 CPU@ 2, 80 GHz 3 GHz/RAM/8, 00 Gb /HDD/244 Gb keyb/ монитор19", проектор Acer X 1261 P; экран настенный; Программное обеспечение: MS Windows 7, лицензия №47818300, бессрочно; MS Office 2007, лицензия 42373644, бессрочно; Adobe Reader 9 свободно распространяемое ПО бессрочно; 7 Zip свободно распространяемое ПО бессрочно.

Задание:

Часть 1. Плоская стенка

Стена здания состоит из трех слоев:

- 1. Кирпичная кладка: толщина $\delta_1 = 250$ мм, коэффициент теплопроводности $\lambda_1 = 0.7~\mathrm{Br/(M^{\circ}C)}$
 - 2. Плита минераловатная: толщина $\delta_2 = 100$ мм, $\lambda_2 = 0.045$ Bt/(м·°C)
 - 3. Облицовочный кирпич: толщина $\delta_3 = 120$ мм, $\lambda_3 = 0.6$ BT/(м·°C)

С внутренней стороны стены температура воздуха $t_{m}1 = 20$ °C, коэффициент теплоотдачи $\alpha_1 = 8$ BT/(M^2 .°C). С наружной стороны температура воздуха $t_{m}2 = -25$ °C, коэффициент теплоотдачи $\alpha_2 = 22$ BT/(M^2 .°C).

Рассчитать:

- 1. Коэффициент теплопередачи k для стены [Bт/(м².°C)].
- 2. Плотность теплового потока q [Вт/м²].
- 3. Температуры на всех границах слоев: t_c1, t_c2, t_c3, t_c4.
- 4. Построить график распределения температуры по толщине стены.

Часть 2. Цилиндрическая стенка (трубопровод)

Стальной трубопровод с внутренним диаметром $d_1 = 160$ мм и наружным диаметром $d_2 = 170$ мм (λ ct = 50 Bt/(м·°C)) покрыт двумя слоями изоляции:

- Первый слой (внутренний): толщина δ из 1 = 30 мм, λ из 1 = 0.15 Вт/(м·°С)
- Второй слой (наружный): толщина δ _из 2 = 50 мм, λ _из2 = 0.09 Вт/(м·°С)

Температура теплоносителя (воды) внутри трубы t_{\pm} $m_1 = 300$ °C, коэффициент теплоотдачи $\alpha_1 = 450~{\rm Br/(m^2.°C)}$. Температура окружающего воздуха снаружи t_{\pm} $m_2 = 25$ °C, коэффициент теплоотдачи $\alpha_2 = 12~{\rm Br/(m^2.°C)}$.

Рассчитать:

- 1. Линейный коэффициент теплопередачи k_1 [Bт/(м·°C)].
- 2. Линейную плотность теплового потока q 1 [Вт/м] для многослойной трубы.
- 3. Температуру на внешней поверхности изоляции t_c4.
- 4. Полные тепловые потери с участка трубопровода длиной L = 25 м [Bt].

Часть 3. Шаровая стенка

Сферический стальной резервуар с внутренним диаметром $d_1 = 2.0$ м и толщиной стенки $\delta_{\text{CT}} = 10$ мм ($\lambda_{\text{CT}} = 45~\text{BT/(M}\cdot^{\circ}\text{C})$) покрыт слоем изоляции толщиной $\delta_{\text{U}} = 100$ мм ($\lambda_{\text{U}} = 0.055~\text{BT/(M}\cdot^{\circ}\text{C})$).

Внутри резервуара находится жидкость с температурой $t_{m}1 = 90 \text{ C} (\alpha_1 = 280 \text{ BT/(M}^2 \cdot ^\circ \text{C})).$ Снаружи — воздух с температурой $t_{m}2 = 15 \text{ C} (\alpha_2 = 10 \text{ BT/(M}^2 \cdot ^\circ \text{C})).$

Рассчитать:

- 1. Коэффициент теплопередачи k для шаровой стенки [Bt/(м².°C)].
- 2. Полный тепловой поток (потери тепла) Q от резервуара [Вт].

Методические указания к выполнению работы

1. Теоретические основы

Теплопередача — это процесс переноса теплоты от горячего теплоносителя к холодному через разделяющую их стенку. Он складывается из трех этапов:

- 1. Теплоотдача от горячего теплоносителя к стенке.
- 2. Теплопроводность через стенку (может быть многослойной).
- 3. Теплоотдача от стенки к холодному теплоносителю.

Коэффициент теплопередачи k — это количественная характеристика интенсивности процесса теплопередачи. Он численно равен плотности теплового потока q при разности температур между теплоносителями в 1 °C. Чем больше k, тем интенсивнее идет процесс теплопередачи.

2. Расчетные формулы

2.1. Для плоской стенки

- Полное термическое сопротивление теплопередаче: R_o = $1/\alpha_1 + \Sigma(\delta_i/\lambda_i) + 1/\alpha_2$, [м²·°С/Вт]
 - Коэффициент теплопередачи: k = 1 / R о, $[B_T/(M^2 \cdot {}^{\circ}C)]$
 - Плотность теплового потока: $q = k \cdot (t + k1 t + k2)$, [Bт/м²]
 - Температуры на поверхностях и границах слоев (находятся последовательно):

$$t_c1 = t_m1 - q/\alpha_1$$

 $t_c2 = t_c1 - q \cdot (\delta_1/\lambda_1)$
 $t_c3 = t_c2 - q \cdot (\delta_2/\lambda_2)$
 $t_c4 = t_m2 + q/\alpha_2$ (должна совпасть с расчетом через стенку).

2.2. Для цилиндрической стенки

• Полное линейное термическое сопротивление:

 $R_1 = 1/(\pi \cdot d_1 \cdot \alpha_1) + (1/(2\pi \cdot \lambda_{_} c_T)) \cdot \ln(d_2/d_1) + (1/(2\pi \cdot \lambda_{_} u_3 1)) \cdot \ln(d_3/d_2) + (1/(2\pi \cdot \lambda_{_} u_3 2)) \cdot \ln(d_4/d_3) + 1/(\pi \cdot d_4 \cdot \alpha_2), [M \cdot {}^{\circ}C/B_T]$

Где $d_3 = d_2 + 2 \cdot \delta$ из1; $d_4 = d_3 + 2 \cdot \delta$ из2

• Линейный коэффициент теплопередачи:

$$k = 1 / R + [B_T/(M \cdot {}^{\circ}C)]$$

• Линейная плотность теплового потока:

$$q_1 = k_1 \cdot (t_{x1} - t_{x2}), [B_T/M]$$

• Температуры: Расчет аналогичен плоскому случаю, но с использованием формул для термических сопротивлений каждого слоя.

```
\begin{array}{l} t\_c1 = t\_ж1 - q\_1 \, / \, (\pi \cdot d_1 \cdot \alpha_1) \\ t\_c2 = t\_c1 - q\_1 \cdot \left( \ln(d_2/d_1) \, / \, (2\pi \cdot \lambda\_c_T) \right) \\ t\_c3 = t\_c2 - q\_1 \cdot \left( \ln(d_3/d_2) \, / \, (2\pi \cdot \lambda\_u_31) \right) \\ t\_c4 = t\_c3 - q\_1 \cdot \left( \ln(d_4/d_3) \, / \, (2\pi \cdot \lambda\_u_32) \right) \\ \Pi \text{роверка: } t\_c4 \approx t\_ж2 + q\_1 \, / \, (\pi \cdot d_4 \cdot \alpha_2) \end{array}
```

2.3. Для шаровой стенки

• Полное термическое сопротивление:

$$\begin{split} R_o &= 1/(\alpha_1 \cdot \pi \cdot d_1{}^2) + (1/(2\pi \cdot \lambda_c_T)) \cdot (1/d_1 - 1/d_2) + (1/(2\pi \cdot \lambda_u_3)) \cdot (1/d_2 - 1/d_3) + 1/(\alpha_2 \cdot \pi \cdot d_3{}^2), \left[{}^{\circ}C/B_T \right] \\ * \Gamma_{\text{де}} \ d_2 &= d_1 + 2 \cdot \delta_c_T; \ d_3 &= d_2 + 2 \cdot \delta_u_3 * \end{split}$$

• Коэффициент теплопередачи, отнесенный к внутренней поверхности:

 $k = 1 / (R \circ \pi \cdot d_1^2), [B_T/(M^2 \cdot C)] // Обратите внимание на отличие!$

• Полный тепловой поток:

$$Q = (t_{x1} - t_{x2}) / R_o = k \cdot \pi \cdot d_{12} \cdot (t_{x1} - t_{x2}), [B_T]$$

3. Порядок выполнения и рекомендации

- 1. Подготовка:
- о Внимательно изучите задание. Выпишите все исходные данные. Приведите все единицы измерения к системе СИ (метры, Вт, °С).
 - 2. Расчет последовательности диаметров (для цилиндрической и шаровой задач):
 - \circ Рассчитайте промежуточные диаметры d_2 , d_3 , d_4 , которые являются границами слоев.
 - 3. Расчет термических сопротивлений:
- \circ Для каждой части задачи рассчитайте полное термическое сопротивление процесса теплопередачи R_0 или R_1 как сумму сопротивлений всех этапов.
 - 4. Нахождение коэффициентов теплопередачи:
 - о Найдите k или k_l как величину, обратную полному сопротивлению.
 - 5. Определение тепловых потоков:
 - о Рассчитайте q, q_1 или Q по основным формулам теплопередачи.
 - 6. Определение температур:
- о Последовательно, начиная от горячего теплоносителя, рассчитайте все промежуточные температуры. Это позволяет проверить правильность расчета, убедившись, что последняя рассчитанная температура близка к температуре холодного теплоносителя (или рассчитанная через стенку совпадает с найденной через теплоотдачу).
 - 7. Анализ результатов:
- о Сравните вклад каждого термического сопротивления в общую сумму. Какое из них наибольшее? (Обычно это самое большое сопротивление определяет интенсивность всего процесса).
- о Проанализируйте падение температуры на каждом этапе. Самый большой перепад будет на участке с наибольшим термическим сопротивлением.
 - о Сделайте выводы о эффективности теплоизоляции.

Требования к отчету:

о Отчет должен содержать титульный лист, цель, исходные данные, подробные решения с формулами и подстановками, все промежуточные расчеты, окончательные результаты (выделить) и выводы.

Форма представления результата:

Расчеты выполнить и оформить в рабочей тетради.

Критерии оценки:

- «5» (отлично): выполнены все задания, студент четко и без ошибок ответил на все контрольные вопросы.
- «4» (хорошо): выполнены все задания; студент ответил на все контрольные вопросы с замечаниями.
- «3» (удовлетворительно): выполнены все работы с замечаниями; студент ответил на все контрольные вопросы с замечаниями.
- «2» (неудовлетворительно): студент не выполнил или выполнил неправильно задания; студент ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы.

Тема 1.3 Теплообмен излучением Практическое занятие №3

Тепловая изоляция. Критический диаметр. Выбор тепловой изоляции. Теплопередача через ребристые стенки.

Цель: Изучить влияние тепловой изоляции на интенсивность теплопередачи, освоить понятие критического диаметра изоляции и методику его расчета. Приобрести навыки оценки эффективности оребрения и расчета теплопередачи через ребристые стенки для инженерных задач оптимизации теплообменной аппаратуры

Выполнив работу, вы будете уметь:

- Уд 1 анализировать данные контрольно-измерительных приборов для оценки текущего состояния тепловых сетей;
- Уд 2 выявлять и устранять дефекты теплотехнического оборудования и систем тепло- и топливоснабжения;
 - Уо 01.09 владеть актуальными методами работы в профессиональной и смежных сферах;
- Уо 02.04 структурировать получаемую информацию; выделять наиболее значимое в перечне информации.

Выполнение практической работы способствует формированию:

- ОК 01 выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;
- ОК 02 планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по правовой и финансовой грамотности в различных жизненных ситуациях;
- ПК 1.3 осуществлять мероприятия по предупреждению, локализации и ликвидации аварий теплотехнического оборудования и систем тепло- и теплоснабжения;
- ПК 2.1 выполнять дефектацию теплотехнического оборудования и систем тепло- и топливоснабжения.

Материальное обеспечение:

Учебная аудитория для проведения лекционных, практических занятий, для групповых и индивидуальных консультаций, для текущего контроля и промежуточной аттестации: рабочее место преподавателя, рабочие места обучающихся, доска. Компьютер: Intel (R) Core (TM) i5- 2300 CPU@ 2, 80 GHz 3 GHz/RAM/8, 00 Gb /HDD/244 Gb keyb/ монитор19", проектор Acer X 1261 P; экран настенный; Программное обеспечение: MS Windows 7, лицензия №47818300, бессрочно; MS Office 2007, лицензия 42373644, бессрочно; Adobe Reader 9 свободно распространяемое ПО бессрочно; 7 Zip свободно распространяемое ПО бессрочно.

Задание:

Часть 1. Критический диаметр изоляции

Стальной трубопровод с наружным диаметром $d_{Tp} = 32$ мм ($\lambda_{Tp} = 50$ Bt/(м·°C)) предназначен для транспортировки перегретого пара. Коэффициент теплоотдачи от пара к внутренней поверхности трубы α вн = 600 Bt/(м²·°C). Рассматривается два варианта изоляции:

- 1. Материал A: λ изA = 0.05 Bт/(м·°C)
- 2. Материал Б: λ изБ = 0.20 Bт/(м·°C)

Коэффициент теплоотдачи с поверхности изоляции к окружающему воздуху $\alpha_{\rm H}=12~{\rm Br/(m^2\cdot ^{\circ}C)}.$

Рассчитать:

- 1. Критический диаметр изоляции d кр для каждого материала.
- 2. Сделать вывод о целесообразности нанесения изоляции заданной толщины на данный трубопровод для каждого материала. Ответ обосновать.
- 3. Для материала A рассчитать полное линейное термическое сопротивление R_l и линейную плотность теплового потока q_l без изоляции и при нанесении изоляции толщиной $\delta=15$ мм. Сравнить результаты.

Часть 2. Выбор тепловой изоляции

Для горизонтального трубопровода с внешним диаметром $d_{Tp} = 57$ мм, по которому течет жидкость с температурой $t_{x1} = 160$ °C, необходимо подобрать толщину изоляции. Температура окружающего воздуха $t_{x2} = 25$ °C. Коэффициент теплоотдачи от жидкости к стенке $\alpha_{bh} = 1000$ Вт/(M^2 .°C), от изоляции к воздуху $\alpha_{bh} = 10$ Вт/(M^2 .°C).

Требуется обеспечить температуру на поверхности изоляции не выше $t_{nob} \le 40~{}^{\circ}\mathrm{C}$ в целях безопасности персонала.

Рассчитать:

- 1. Максимально допустимую линейную плотность теплового потока q_1_доп [Вт/м], исходя из условия безопасности.
- 2. Необходимое полное линейное термическое сопротивление R_1_треб, обеспечивающее этот тепловой поток.
- 3. Толщину изоляции δ _из из материала с коэффициентом теплопроводности λ _из = 0.055 Bt/(м·°C).

Часть 3. Теплопередача через ребристую стенку

Плоская алюминиевая стенка (λ _ал = 220 Bt/(м·°C)) толщиной δ _c = 6 мм оребрена с одной стороны прямоугольными ребрами. Высота ребра h_p = 30 мм, толщина δ _p = 2 мм. Шаг между осями ребер s = 10 мм.

Со стороны ребер движется воздух с температурой $t_{\rm m}1=15$ °C и коэффициентом теплоотдачи $\alpha_{\rm m}1=50~{\rm BT/(m^2\cdot °C)}$. С гладкой стороны стенки течет горячая вода с температурой $t_{\rm m}2=85$ °C и коэффициентом теплоотдачи $\alpha_{\rm m}2=2500~{\rm BT/(m^2\cdot °C)}$.

Рассчитать:

- 1. Коэффициент эффективности Е одиночного ребра.
- 2. Поверхностную плотность ребер ω (количество ребер на 1 метр поверхности).
- 3. Приведенный коэффициент теплоотдачи а пр со стороны оребрения.
- 4. Коэффициент теплопередачи k, отнесенный к гладкой поверхности стенки.
- 5. Плотность теплового потока q через ребристую стенку $[B\tau/m^2]$.
- 6. Сделать вывод об эффективности применения оребрения в данном случае.

Методические указания к выполнению работы

1. Теоретические основы

Тепловая изоляция применяется для снижения тепловых потерь или защиты персонала от горячих поверхностей. Однако нанесение изоляции на трубы малого диаметра может не уменьшить, а увеличить тепловые потери из-за эффекта критического диаметра.

Критический диаметр (d_кp) — это диаметр изоляции, при котором термическое сопротивление теплопередаче минимально, а тепловой поток максимален. При d_из < d_кp нанесение изоляции ведет к росту теплопотерь d кp = $2 * \lambda$ из / α н

Оребрение применяется для интенсификации теплообмена со стороны с наименьшим коэффициентом теплоотдачи (обычно газ, воздух). Ребро увеличивает поверхность теплообмена, но не вся его поверхность работает с одинаковой эффективностью из-за падения температуры вдоль ребра.

2. Расчетные формулы

2.1. Для критического диаметра и изоляции

• Критический диаметр изоляции: d кp = $2 * \lambda$ из / α н

Если $d_{Tp} < d_{Kp}$, то начальное нанесение изоляции (до толщины $\delta = (d_{Kp} - d_{Tp})/2$) увеличит теплопотери.

• Линейная плотность теплового потока через цилиндрическую стенку: $q_1 = (t_1 + t_2) / R_1$,

где R_1 = $1/(\pi^*d_BH^*\alpha_BH) + (1/(2\pi^*\lambda_Tp))^*\ln(d_Tp/d_BH) + (1/(2\pi^*\lambda_U3))^*\ln(d_U3/d_Tp) + 1/(\pi^*d_U3^*\alpha_H)$

Для толстостенных труб учитывается сопротивление стенки, для тонких — часто пренебрегают.

2.2. Для выбора изоляции по условию безопасности

• Допустимый тепловой поток с поверхности:

 q_1 _доп = $\pi * d_u * \alpha_H * (t_n = d_n - t_x * 2)$

• Необходимое полное термическое сопротивление:

 $R \ 1 \ треб = (t \ ж1 - t \ ж2) / q \ 1 \ доп$

• Сопротивление, которое должна обеспечить изоляция:

 $R_1_{u3} = R_1_{tb} - [1/(\pi^*d_t^*a_b^*a_b^*) + 0]$ (сопротивлением стенки трубы пренебрегаем)

 $R_1_{\mu3} = (1/(2\pi^*\lambda_{\mu3})) * ln(d_{\mu3}/d_{\tau})$

Из этого уравнения методом подбора или решения трансцендентного уравнения находится d_u 3, а затем толщина δ_u 3 = $(d_u$ 3 - d_u 7)/2.

2.3. Для ребристых поверхностей

• Параметр ребра (m) и коэффициент эффективности (E): $m = sqrt((2*\alpha_1) / (\lambda_p*\delta_p))$

E = th(m*h p) / (m*h p) (для прямоугольного ребра бесконечной длины)

- Поверхностная плотность ребер: $\omega = 1 / s$ [ребер/м]
- Полная площадь поверхности оребренной стороны на 1 м² гладкой поверхности:

F общ = F гл + F p = 1 + (2*h p * ω) (для 1 м² стенки, F гл = 1 - (δ p * ω))

• Приведенный коэффициент теплоотдачи:

 $\alpha_{\rm np} = \alpha_{\rm 1} * ((F_{\rm rn}/F_{\rm rn_och}) + E * (F_{\rm p}/F_{\rm rn_och})),$ где $F_{\rm rn_och} = 1$ м² — площадь поверхности стенки без ребер.

• Коэффициент теплопередачи для ребристой стенки:

 $k = 1 / (1/\alpha 2 + \delta c/\lambda a\pi + 1/\alpha \pi p) [BT/(M^2 \cdot {}^{\circ}C)]$

• Плотность теплового потока: $q = k * (t ж2 - t ж1) [Bt/м^2]$

3. Порядок выполнения и рекомендации

1. Часть 1 (Критический диаметр):

- о Рассчитайте d_кр для двух материалов. Сравните с d_тр.
- о Сделайте вывод: "Для материала А: d_тр (32 мм) < d_кр (... мм), следовательно, начальное нанесение изоляции приведет к увеличению теплопотерь. Для материала Б: ..."
- \circ Проведите сравнительный расчет q_l для трех случаев (без изоляции, с изоляцией 15 мм из материала A). Результаты сведите в таблицу.

2. Часть 2 (Выбор изоляции):

 \circ Исходите из условия на температуру поверхности. Рассчитайте, какой тепловой поток q_l_доп обеспечивает эту температуру.

- \circ Найдите, какое полное сопротивление R_1_треб нужно для этого потока при заданной разности температур.
- о Пренебрегая малыми сопротивлениями (стенки трубы, теплоотдачи внутри), найдите сопротивление изоляции.
 - \circ Решите уравнение $(1/(2\pi^*\lambda \text{ из})) * \ln(d \text{ из/d тр}) = R 1 \text{ из относительно d из.}$

3. Часть 3 (Ребра):

- о Последовательно рассчитайте m, E, ω, площади поверхностей, α пр.
- Рассчитайте к и q.
- \circ Для анализа эффективности можно мысленно рассчитать k_гл для неоребренной стенки (с α_1 =50) и сравнить с полученным k. Сделайте вывод: "Оребрение увеличило коэффициент теплопередачи в ... раз".

Требования к отчету: Отчет должен содержать титульный лист, цель, исходные данные, подробные решения с формулами и численными подстановками, все промежуточные результаты, итоговые ответы и выводы по каждому пункту задания.

Форма представления результата:

Расчеты выполнить и оформить в рабочей тетради.

Критерии оценки:

- «5» (отлично): выполнены все задания, студент четко и без ошибок ответил на все контрольные вопросы.
- «4» (хорошо): выполнены все задания; студент ответил на все контрольные вопросы с замечаниями.
- «3» (удовлетворительно): выполнены все работы с замечаниями; студент ответил на все контрольные вопросы с замечаниями.
- «2» (неудовлетворительно): студент не выполнил или выполнил неправильно задания; студент ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы.

Тема 2.1. Основы теплового расчета Практическое занятие №4.

Определение среднего коэффициента теплоотдачи при ламинарном и турбулентном течении жидкости в трубах.

Цель: Закрепить теоретические знания о физических особенностях процесса конвективного теплообмена при вынужденном течении жидкости в прямых круглых трубах (каналах) в ламинарном и турбулентном режимах. Освоить практические навыки расчета среднего коэффициента теплоотдачи а по критериальным уравнениям (законам подобия).

Научиться анализировать влияние основных определяющих факторов (скорость течения, физические свойства теплоносителя, геометрия канала) на интенсивность процесса теплоотдачи. Сравнить интенсивность теплообмена при ламинарном и турбулентном режимах течения для одних и тех же теплоносителей

Выполнив работу, вы будете уметь:

- Уд 1 анализировать данные контрольно-измерительных приборов для оценки текущего состояния тепловых сетей;
- Уд 2 выявлять и устранять дефекты теплотехнического оборудования и систем тепло- и топливоснабжения;
 - Уо 01.09 владеть актуальными методами работы в профессиональной и смежных сферах;
- Уо 02.04 структурировать получаемую информацию; выделять наиболее значимое в перечне информации.

Выполнение практической работы способствует формированию:

ОК 01 выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;

ОК 02 планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по правовой и финансовой грамотности в различных жизненных ситуациях;

ПК 1.3 осуществлять мероприятия по предупреждению, локализации и ликвидации аварий теплотехнического оборудования и систем тепло- и теплоснабжения;

ПК 2.1 выполнять дефектацию теплотехнического оборудования и систем тепло- и топливоснабжения.

Материальное обеспечение:

Учебная аудитория для проведения лекционных, практических занятий, для групповых и индивидуальных консультаций, для текущего контроля и промежуточной аттестации: рабочее место преподавателя, рабочие места обучающихся, доска. Компьютер: Intel (R) Core (TM) i5- 2300 CPU@ 2, 80 GHz 3 GHz/RAM/8, 00 Gb /HDD/244 Gb keyb/ монитор19", проектор Acer X 1261 P; экран настенный; Программное обеспечение: MS Windows 7, лицензия №47818300, бессрочно; MS Office 2007, лицензия 42373644, бессрочно; Adobe Reader 9 свободно распространяемое ПО бессрочно; 7 Zip свободно распространяемое ПО бессрочно.

Задание:

Исходные данные:

В straight, гладкой круглой трубе внутренним диаметром d=0.030 м и длиной L=2.5 м течет жидкость. Температура стенки трубы поддерживается постоянной и равной $t_{\rm c} = 90$ °C. Рассмотреть два режима течения и два типа теплоносителей.

Случай 1. Турбулентное течение ВОДЫ

- Средняя скорость течения: w_воды = 1.8 м/с
- Средняя температура (объемная) воды: t ж воды = 30 °C

Случай 2. Ламинарное течение МАСЛА

- Средняя скорость течения: w масла = 0.3 м/с
- Средняя температура (объемная) масла: t ж масла = 30 °C

Физические свойства теплоносителей взять из справочных таблиц, приведенных в приложении, по их средней температуре.

Задание на расчет и анализ:

Часть 1. Расчет для турбулентного режима (вода)

- 1. По справочной таблице определить физические свойства воды при t_{-} ж = 30 °C: плотность ρ , динамическая вязкость μ , коэффициент теплопроводности λ , удельная теплоемкость c p, число Прандтля Pr ж.
 - 2. Рассчитать число Рейнольдса Re для потока воды. Определить режим течения.
- 3. Рассчитать число Нуссельта Nu для турбулентного течения в круглой прямой трубе, используя критериальное уравнение подобия (например, уравнение Диттуса-Бёлтера для нагрева).
 - 4. Определить средний по длине трубы коэффициент теплоотдачи α воды.
- 5. Рассчитать тепловой поток Q от стенки к воде, если площадь поверхности теплообмена $F = \pi \cdot d \cdot L$.

Часть 2. Расчет для ламинарного режима (масло)

- 1. По справочной таблице определить физические свойства масла при $t_{\pm} = 30$ °C: ρ , μ , λ , $c_{\pm} p$, $Pr_{\pm} w$.
 - 2. Рассчитать число Рейнольдса Re для потока масла. Определить режим течения.
- 3. Рассчитать число Нуссельта Nu для ламинарного течения, учитывая критерий Грасгофа Gr для оценки влияния свободной конвекции (вспомогательный расчет Gr·Pr) и используя соответствующее критериальное уравнение (например, уравнение Зидер-Тейта или Михеева).
 - 4. Определить средний по длине трубы коэффициент теплоотдачи α масла.

Часть 3. Сравнительный анализ

- 1. Сравните рассчитанные коэффициенты теплоотдачи α _воды и α _масла. Во сколько раз один больше другого? Объясните, с чем связана такая значительная разница (указать не менее двух основных причин).
- 2. Сравните рассчитанные числа Нуссельта Nu и числа Прандтля Pr для двух случаев. Сделайте вывод о том, как физические свойства жидкости влияют на интенсивность конвективного теплообмена.
- 3. Для ламинарного режима (масло): оцените, существенно ли влияние свободной конвекции на теплоотдачу? Ответ обоснуйте расчетом и ссылкой на используемую формулу.

Приложение: Справочная таблица физических свойств теплоносителей

Теплоноситель	t, °C	ρ, кг/м³	с_р, Дж/(кг·°С)	λ , BT/(M·°C)	μ·106, Па∙с	Pr
Вода	30	995.7	4180	0.618	801.5	5.42
Вода	60	983.2	4184	0.659	469.9	2.98
Масло	30	882	1900	0.145	45000	590
Масло	90	864	1950	0.140	6000	84

Примечание: Для ламинарного режима свойства часто определяют при средней температуре пограничного слоя $t \pi c = 0.5*(t \text{ cT} + t \text{ ж}).$

Методические указания к выполнению работы

- 1. Режим течения. Определяется по числу Рейнольдса:
- $\circ Re = (w \cdot d \cdot \rho) / \mu$
- ∘ Re < 2300 ламинарный режим.
- 2300 < Re < 10000 переходный режим.
- ∘ Re > 10000 турбулентный режим.
- 2. Расчет числа Нуссельта.

Для турбулентного режима (вода): Используйте формулу Диттуса-Бёлтера для нагрева: $Nu = 0.021 \cdot Re^{\circ}0.8 \cdot Pr^{\circ}0.4$

Для ламинарного режима (масло):

- о Сначала рассчитайте Re и убедитесь, что режим ламинарный.
- \circ Рассчитайте число Грасгофа Gr = (g \cdot β \cdot (t_ct t_ж) \cdot d³) / ν ², где β коэффициент объемного расширения, ν = μ/ρ кинематическая вязкость.
- \circ Найдите произведение (Gr · Pr). Если (Gr · Pr) > $8\cdot10^5$, то влияние свободной конвекции существенно.
- \circ Рекомендуется использовать формулу Михеева для ламинарного режима с учетом естественной конвекции: Nu = 0.15 \cdot Re $^\circ$ 0.33 \cdot Pr $^\circ$ 0.43 \cdot (Pr $_\star$ 7Pr $_\star$ 7) $^\circ$ 0.25 или более простую формулу Зидер-Тейта для коротких труб Nu = 1.86 \cdot (Re \cdot Pr \cdot d/L) $^\circ$ (1/3) \cdot (μ_\star 7 μ_\star 7) $^\circ$ 0.14.
 - 3. Расчет коэффициента теплоотдачи.
 - \circ Из определения числа Нуссельта: $\alpha = (Nu \cdot \lambda) / d$
 - 4. Анализ результатов.
- о Основные причины различия α: разница в режиме течения (турбулентный/ламинарный) и в физических свойствах (коэффициент теплопроводности λ и число Прандтля Pr).
- о Чем выше Pr, тем толще гидродинамический пограничный слой по отношению к тепловому, что по-разному влияет на теплоотдачу в разных режимах.

Форма представления результата:

- 1. Цель.
- 2. Исходные данные.
- 3. Расчетная часть.

4. Вывол.

Расчеты выполнить и оформить в рабочей тетради.

Критерии оценки:

- «5» (отлично): выполнены все задания, студент четко и без ошибок ответил на все контрольные вопросы.
- «4» (хорошо): выполнены все задания; студент ответил на все контрольные вопросы с замечаниями.
- «3» (удовлетворительно): выполнены все работы с замечаниями; студент ответил на все контрольные вопросы с замечаниями.
- «2» (неудовлетворительно): студент не выполнил или выполнил неправильно задания; студент ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы.

Тема 2.1. Основы теплового расчета Практическое занятие №5.

Определение среднего коэффициента теплоотдачи пучка труб при коридорном и шахматном расположении.

Цель: Изучить особенности течения теплоносителя и теплообмена в пучках гладких труб при их коридорном и шахматном расположении. Освоить методику расчета среднего коэффициента теплоотдачи для поперечно омываемых пучков труб с использованием критериальных уравнений. Исследовать влияние на интенсивность теплообмена следующих факторов:

- о типа расположения труб в пучке (коридорное или шахматное);
- о относительных шагов между трубами (s₁/d и s₂/d);
- о числа рядов труб в пучке по ходу потока.

Приобрести навыки сравнительного анализа эффективности различных компоновок поверхностей теплообмена.

Выполнив работу, вы будете уметь:

- Уд 1 анализировать данные контрольно-измерительных приборов для оценки текущего состояния тепловых сетей;
- Уд 2 выявлять и устранять дефекты теплотехнического оборудования и систем тепло- и топливоснабжения;
 - Уо 01.09 владеть актуальными методами работы в профессиональной и смежных сферах;
- Уо 02.04 структурировать получаемую информацию; выделять наиболее значимое в перечне информации.

Выполнение практической работы способствует формированию:

- ОК 01 выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;
- ОК 02 планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по правовой и финансовой грамотности в различных жизненных ситуациях;
- ПК 1.3 осуществлять мероприятия по предупреждению, локализации и ликвидации аварий теплотехнического оборудования и систем тепло- и теплоснабжения;
- ПК 2.1 выполнять дефектацию теплотехнического оборудования и систем тепло- и топливоснабжения.

Материальное обеспечение:

Учебная аудитория для проведения лекционных, практических занятий, для групповых и индивидуальных консультаций, для текущего контроля и промежуточной аттестации: рабочее

место преподавателя, рабочие места обучающихся, доска. Компьютер: Intel (R) Core (TM) i5- 2300 CPU@ 2, 80 GHz 3 GHz/RAM/8, 00 Gb /HDD/244 Gb keyb/ монитор19", проектор Acer X 1261 P; экран настенный; Программное обеспечение: MS Windows 7, лицензия №47818300, бессрочно; MS Office 2007, лицензия 42373644, бессрочно; Adobe Reader 9 свободно распространяемое ПО бессрочно; 7 Zip свободно распространяемое ПО бессрочно.

Задание:

Воздух с температурой $t_{\text{-}}$ ж = 300 °C движется поперек пучка гладких труб. Скорость потока воздуха в самом узком сечении пучка составляет $w_{\text{-}}$ 0 = 8 м/с. Трубы имеют наружный диаметр d = 40 мм. Температура стенки труб поддерживается постоянной и равной t ст = 100 °C.

Рассмотреть два варианта компоновки пучка:

- 1. Коридорный пучок с относительными шагами: $s_1/d = 2.0$; $s_2/d = 1.5$.
- 2. Шахматный пучок с относительными шагами: $s_1/d = 2.0$; $s_2/d = 1.3$.

Пучок в обоих случаях имеет $z_2 = 10$ рядов труб в направлении потока.

Задание на расчет и анализ:

Часть 1. Определение физических параметров

- 1. Определить температуру потока для справления свойств: t ж = 300 °C.
- 2. По справочным таблицам определить физические свойства воздуха при данной температуре: плотность ρ , коэффициент теплопроводности λ , кинематическую вязкость ν , число Прандтля \Pr ж, а также число \Pr ст при температуре стенки.

Часть 2. Расчет для коридорного пучка

- 1. Рассчитать число Рейнольдса Re_0 для потока, омывающего пучок. Ключевой момент: в качестве определяющей скорости используется скорость в узком сечении пучка w_0.
- 2. Используя соответствующее критериальное уравнение для коридорного пучка, рассчитать число Нуссельта Nu_0 для всего пучка. Учесть поправочный коэффициент на число рядов ϵ z.
 - 3. Определить средний по поверхности пучка коэффициент теплоотдачи α кор.

Часть 3. Расчет для шахматного пучка

- 1. Рассчитать число Рейнольдса Re_0 (аналогично п.2.1).
- 2. Рассчитать число Нуссельта Nu_0 для шахматного пучка по соответствующему уравнению подобия. Учесть поправочный коэффициент є z.
 - 3. Определить средний коэффициент теплоотдачи а шах.

Часть 4. Сравнительный анализ

- 1. Свести полученные результаты (Re, Nu, α) в итоговую таблицу для двух пучков.
- 2. Сравнить коэффициенты теплоотдачи. Сделать вывод о том, какое расположение труб является более эффективным для теплообмена при заданных условиях и почему.
- 3. Проанализировать, как изменяется средний коэффициент теплоотдачи от ряда к ряду. Почему необходимо вводить поправочный коэффициент є z?
- 4. Объяснить физическую причину различия в теплоотдаче между пучками: особенности обтекания труб, характер вихреобразования, турбилизация потока.

Методические указания к выполнению работы

1. Теоретическая справка

Теплообмен в пучках труб зависит от их расположения:

- Коридорный пучок: Трубы расположены в шахматном порядке. Поток обтекает каждую трубу более плавно, область застоя за трубой больше. Теплообмен менее интенсивен.
- Шахматный пучок: Трубы расположены в шахматном порядке. Поток вынужден постоянно менять направление, сильнее турбулизируется при обтекании каждого следующего ряда. Теплообмен, как правило, более интенсивен по сравнению с коридорным при прочих равных условиях.

Расчетные формулы являются эмпирическими и учитывают расположение труб, относительные шаги и число рядов.

2. Расчетные формулы и алгоритм

2.1. Определение чисел подобия

• Число Рейнольдса (Re):

$$Re_0 = (w_0 * d) / v$$

 $\it где w_0$ — скорость потока в самом узком (живом) сечении пучка. Это ключевой параметр.

• **Числа Прандтля:** Берутся при температуре потока $Pr_{\underline{}}$ ж и при температуре стенки $Pr_{\underline{}}$ ст.

2.2. Расчет числа Нуссельта для всего пучка

Формулы могут незначительно отличаться в различных источниках. Рекомендуется использовать следующие:

Для коридорного пучка:

Nu $0 = C * Re 0^n * Pr x^0.36 * (Pr x/Pr ct)^0.25$

- о Коэффициенты С и п выбираются в зависимости от Re_0 и относительных шагов.
- \circ Например, при Re $0 = 10^3 2*10^5$ и $s_1/s_2 < 2$:

$$n = 0.6$$
, a $C = 0.23 * (s_1/s_2)^0.18$

Для шахматного пучка:

 $Nu_0 = C * Re 0^n * Pr x^0.36 * (Pr x/Pr ct)^0.25$

- о Коэффициенты С и п также выбираются по специальным таблицам или номограммам.
- \circ Например, при Re $0 = 10^3 2*10^5$:

$$n = 0.6$$
, a $C = 0.41 * (s_1/s_2)^0.15$ (для $s_1/s_2 \le 2.0$)

Важно: Необходимо свериться с методическими таблицами, указанными в конкретном учебном пособии, для точного определения С и n.

2.3. Учет числа рядов по глубине пучка (ϵ_z)

- Средний коэффициент теплоотдачи для всего пучка меньше, чем для глубоких пучков.
- Рассчитанное Nu_0 умножается на поправочный коэффициент $\epsilon \ z < 1$.
- ε z зависит от типа пучка, числа рядов z2 и иногда от Re.
- Например, для $z_2 \ge 10$ можно принять $\varepsilon_z = 0.97$ 0.98. Для меньшего числа рядов значение $\varepsilon_z = 0.97$ для 3 рядов $\varepsilon_z = 0.92$, для 3 рядов $\varepsilon_z = 0.85$.

2.4. Расчет коэффициента теплоотдачи

• $\alpha = (Nu \ 0 * \varepsilon \ z * \lambda) / d$

3. Порядок выполнения работы

- 1. **Подготовка:** выписать все исходные данные. Нарисовать эскизы расположения труб для обоих случаев, указав шаги s₁ и s₂.
- 2. **Свойства:** по справочным таблицам определить все необходимые физические свойства воздуха при t = 300 °C и Pr ст при t = 100 °C.
- 3. **Расчет Re:** для каждого пучка рассчитать число Рейнольдса. *Обратите внимание:* скорость w 0 уже дана для узкого сечения, ее не нужно пересчитывать.
- 4. **Выбор коэффициентов:** по значению Re_0 и относительным шагам выбрать из таблиц коэффициенты C и n для уравнений подобия.
 - 5. **Расчет Nu:** Рассчитать числа Нуссельта для идеального глубокого пучка.
- 6. Учет числа рядов: выбрать поправочный коэффициент ϵ_z для $z_2 = 10$ и найти окончательное значение Nu 0 оконч = Nu $0 * \epsilon z$.
 - 7. Расчет α: рассчитать коэффициенты теплоотдачи.
 - 8. Анализ: сравнить результаты, ответить на контрольные вопросы.

Форма предоставления работы:

- 1. Цель.
- 2. Исходные данные.

- 3. Расчетная часть.
- 4. Вывод.

Расчеты выполнить и оформить в рабочей тетради.

Критерии оценки:

- «5» (отлично): выполнены все задания, студент четко и без ошибок ответил на все контрольные вопросы.
- «4» (хорошо): выполнены все задания; студент ответил на все контрольные вопросы с замечаниями.
- «3» (удовлетворительно): выполнены все работы с замечаниями; студент ответил на все контрольные вопросы с замечаниями.
- «2» (неудовлетворительно): студент не выполнил или выполнил неправильно задания; студент ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы.

Тема 2.2 Нестационарная теплопроводность Практическое занятие №6.

Определение средних коэффициентов теплоотдачи при свободном ламинарном и турбулентном движении вдоль вертикальной стенки.

Цель: изучить физические основы процесса свободной (естественной) конвекции, возникающей разности плотностей нагретых и холодных слоев жидкости у поверхности тела. Освоить методику расчета среднего коэффициента теплоотдачи для свободной конвекции вдоль вертикальной пластины в ламинарном и турбулентном режимах течения с использованием критериальных уравнений подобия. Исследовать влияние на интенсивность теплообмена следующих факторов:

- \circ разности температур между поверхностью и окружающей средой ($\Delta t = t_{_ct} t_{_w}$);
- о высоты теплоотдающей поверхности (Н);
- о физических свойств теплоносителя.

Научиться определять режим течения (ламинарный или турбулентный) по значению числа Рэлея (Ra) или Грасгофа (Gr).

Выполнив работу, вы будете уметь:

- Уд 1 анализировать данные контрольно-измерительных приборов для оценки текущего состояния тепловых сетей;
- Уд 2 выявлять и устранять дефекты теплотехнического оборудования и систем тепло- и топливоснабжения;
 - Уо 01.09 владеть актуальными методами работы в профессиональной и смежных сферах;
- Уо 02.04 структурировать получаемую информацию; выделять наиболее значимое в перечне информации.

Выполнение практической работы способствует формированию:

- ОК 01 выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;
- ОК 02 планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по правовой и финансовой грамотности в различных жизненных ситуациях;
- ПК 1.3 осуществлять мероприятия по предупреждению, локализации и ликвидации аварий теплотехнического оборудования и систем тепло- и теплоснабжения;
- ПК 2.1 выполнять дефектацию теплотехнического оборудования и систем тепло- и топливоснабжения.

Материальное обеспечение:

Учебная аудитория для проведения лекционных, практических занятий, для групповых и индивидуальных консультаций, для текущего контроля и промежуточной аттестации: рабочее место преподавателя, рабочие места обучающихся, доска. Компьютер: Intel (R) Core (TM) i5- 2300 CPU@ 2, 80 GHz 3 GHz/RAM/8, 00 Gb /HDD/244 Gb keyb/ монитор19", проектор Acer X 1261 P; экран настенный; Программное обеспечение: MS Windows 7, лицензия №47818300, бессрочно; MS Office 2007, лицензия 42373644, бессрочно; Adobe Reader 9 свободно распространяемое ПО бессрочно; 7 Zip свободно распространяемое ПО бессрочно.

Задание:

Исходные данные:

В большом объеме неподвижного воздуха с температурой $t_{\tt m}=20~{\rm ^{\circ}C}$ находится вертикальная пластина высотой $H=0.8~{\rm m}$. Температура поверхности пластины поддерживается постоянной.

Рассмотреть два сценария:

- 1. Сценарий A (Слабый нагрев): $t cT = 40 \, ^{\circ}C$
- 2. Сценарий Б (Сильный нагрев): t cт = 120 °C

Задание на расчет и анализ:

Часть 1. Определение физических параметров и режима течения

- 1. Для каждого сценария определить температуру пограничного слоя (усредненную) для нахождения свойств воздуха: t nc = 0.5 * (t ct + t ж).
- 2. По справочным таблицам определить физические свойства воздуха при температуре t_n с: коэффициент теплового расширения β , коэффициент теплопроводности λ , кинематическую вязкость ν , коэффициент температуропроводности α , число Прандтля α .
 - 3. Для каждого сценария рассчитать число Грасгофа (Gr) и число Рэлея (Ra).
- 4. По значению Ra определить режим течения в пограничном слое у пластины для каждого случая. Указать, где течение ламинарное, а где турбулентное.

Часть 2. Расчет среднего коэффициента теплоотдачи

- 1. Для Сценария А (ламинарный режим):
- о Используя соответствующее критериальное уравнение для ламинарной свободной конвекции, рассчитать среднее по высоте пластины число Нуссельта (Nu).
 - о Определить средний коэффициент теплоотдачи α лам.
 - 2. Для Сценария Б (турбулентный режим):
- о Используя критериальное уравнение для турбулентной свободной конвекции, рассчитать среднее число Нуссельта (Nu).
 - о Определить средний коэффициент теплоотдачи α турб.

Часть 3. Сравнительный анализ

- 1. Свести полученные результаты (Gr, Ra, Nu, α) в итоговую таблицу для двух сценариев.
- 2. Сравнить коэффициенты теплоотдачи. Объяснить, почему при большем температурном напоре коэффициент теплоотдачи выше, несмотря на то, что физические свойства воздуха ухудшаются с ростом температуры.
- 3. Рассчитать полный тепловой поток Q [Bt] от пластины к воздуху для обоих сценариев, если ширина пластины b=1 м. Проанализировать, во сколько раз увеличиваются теплопотери при переходе от слабого к сильному нагреву.
- 4. Объяснить физическую причину смены режима течения с ламинарного на турбулентное по мере роста Δt и H.

Методические указания к выполнению работы

1. Теоретическая справка

Свободная конвекция — это движение жидкости, вызванное разностью плотностей из-за неоднородности температурного поля. У вертикальной пластины нагретая жидкость поднимается вверх, формируя конвективный пограничный слой.

• Число Грасгофа (Gr) является определяющим критерием подобия для свободной конвекции и характеризует отношение подъемной силы к силе вязкого трения:

Gr H = $(g * \beta * |t \text{ ct - } t \text{ } m| * H^3) / v^2$

• Число Рэлея (Ra) является произведением чисел Грасгофа и Прандтля и определяет режим течения:

 $Ra_H = Gr_H * Pr$

Критические значения:

- Ra_H < 10⁹ ламинарный режим.
- $10^9 < Ra_H < 10^{12}$ переходный режим.
- Ra $H > 10^{12}$ турбулентный режим.
- 2. Расчетные формулы и алгоритм

2.1. Определение чисел подобия

- Коэффициент теплового расширения β для идеального газа рассчитывается как $\beta = 1$ / T_nc , где T_nc температура в Кельвинах.
 - Число Грасгофа (Gr): Рассчитывается по формуле выше.
 - Число Рэлея (Ra): Ra_H = Gr_H * Pr

2.2. Расчет числа Нуссельта для свободной конвекции

Рекомендуемые формулы (например, по Михееву):

• Для ламинарного режима (Ra $H < 10^9$):

 $Nu_H = 0.67 * (Ra_H)^0.25 * (Pr / (0.95 + Pr))^0.25$

Или более простая формула: Nu_H = 0.59 * Ra_H^0.25

• Для турбулентного режима (Ra $H > 10^9$):

 $Nu_H = 0.13 * (Ra_H)^(1/3)$

Важно: Для турбулентного режима средний коэффициент теплоотдачи перестает зависеть от высоты пластины H!

2.3. Расчет коэффициента теплоотдачи

- $\alpha = (Nu H * \lambda) / H$
- 3. Порядок выполнения работы
- 1. Подготовка: выписать все исходные данные для двух сценариев.
- 2. Свойства: для каждого сценария рассчитать t_n с, найти все необходимые физические свойства воздуха по справочным таблицам. Внимание: β для газа рассчитывается!
 - 3. Режим течения: рассчитать Gr_H и Ra_H для обоих случаев. Определить режим течения.
- 4. Расчет Nu: исходя из режима течения, выбрать correct формулу и рассчитать среднее число Нуссельта Nu_H.
 - 5. Расчет α: рассчитать коэффициенты теплоотдачи α лам и α турб.
- 6. Расчет Q: рассчитать тепловой поток для пластины шириной 1 м: $Q = \alpha * (H * b) * (t ct t ж)$.
- 7. Анализ: сравнить результаты, ответить на контрольные вопросы. Особое внимание уделить анализу влияния Δt и H.

Форма предоставления работы:

- 1. Цель
- 2. Исходные данные
- 3. Расчетная часть
- 4. Расчеты выполнить и оформить в рабочей тетради.
- 5. Вывод

Критерии оценки:

- «5» (отлично): выполнены все задания, студент четко и без ошибок ответил на все контрольные вопросы.
- «4» (хорошо): выполнены все задания; студент ответил на все контрольные вопросы с замечаниями.
- «3» (удовлетворительно): выполнены все работы с замечаниями; студент ответил на все контрольные вопросы с замечаниями.

«2» (неудовлетворительно): студент не выполнил или выполнил неправильно задания; студент ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы.

Тема 2.2 Нестационарная теплопроводность Практическое занятие №7.

Определение средних коэффициентов теплоотдачи при свободном движении жидкости около горизонтальных труб.

Цель: изучить особенности процесса свободноконвективного теплообмена у одиночной горизонтальной трубы. Освоить методику расчета среднего коэффициента теплоотдачи для горизонтальной трубы, используя критериальные уравнения подобия. Исследовать влияние на интенсивность теплообмена следующих факторов:

- \circ разности температур между поверхностью трубы и окружающей средой ($\Delta t = t_{ct} t_{w}$);
- о диаметра трубы (d);
- о физических свойств теплоносителя.

Сравнить интенсивность теплоотдачи при свободной конвекции у горизонтальной и вертикальной трубы одинакового диаметра

Выполнив работу, вы будете уметь:

- Уд 1 анализировать данные контрольно-измерительных приборов для оценки текущего состояния тепловых сетей;
- Уд 2 выявлять и устранять дефекты теплотехнического оборудования и систем тепло- и топливоснабжения;
 - Уо 01.09 владеть актуальными методами работы в профессиональной и смежных сферах;
- Уо 02.04 структурировать получаемую информацию; выделять наиболее значимое в перечне информации.

Выполнение практической работы способствует формированию:

- ОК 01 выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;
- OK 02 планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по правовой и финансовой грамотности в различных жизненных ситуациях;
- ПК 1.3 осуществлять мероприятия по предупреждению, локализации и ликвидации аварий теплотехнического оборудования и систем тепло- и теплоснабжения;
- ПК 2.1 выполнять дефектацию теплотехнического оборудования и систем тепло- и топливоснабжения.

Материальное обеспечение:

Учебная аудитория для проведения лекционных, практических занятий, для групповых и индивидуальных консультаций, для текущего контроля и промежуточной аттестации: рабочее место преподавателя, рабочие места обучающихся, доска. Компьютер: Intel (R) Core (TM) i5- 2300 CPU@ 2, 80 GHz 3 GHz/RAM/8, 00 Gb /HDD/244 Gb keyb/ монитор19", проектор Acer X 1261 P; экран настенный; Программное обеспечение: MS Windows 7, лицензия №47818300, бессрочно; MS Office 2007, лицензия 42373644, бессрочно; Adobe Reader 9 свободно распространяемое ПО бессрочно; 7 Zip свободно распространяемое ПО бессрочно.

Задание:

В большом объеме неподвижного воздуха с температурой $t_{\rm x}=20~{\rm ^{\circ}C}$ находится длинная горизонтальная труба. Температура поверхности трубы поддерживается постоянной и равной $t_{\rm c}=80~{\rm ^{\circ}C}$.

Рассмотреть два сценария:

- 1. **Сценарий А (Тонкая труба):** Наружный диаметр трубы d 1 = 20 мм.
- 2. Сценарий Б (Толстая труба): Наружный диаметр трубы d 2 = 100 мм.

Задание на расчет и анализ:

Часть 1. Определение физических параметров и режима течения

- 1. Для каждого сценария определить температуру пограничного слоя для нахождения свойств воздуха: $t_n = 0.5 * (t_c + t_w)$.
- 2. По справочным таблицам определить физические свойства воздуха при температуре $t_{\rm nc}$: коэффициент теплового расширения β , коэффициент теплопроводности λ , кинематическую вязкость ν , число Прандтля Pr.
- 3. Для каждого сценария рассчитать число Грасгофа (Gr_d) и число Рэлея (Ra_d). Обратите внимание: определяющим размером является диаметр трубы d.
- 4. По значению Ra_d определить режим течения в пограничном слое у трубы для каждого случая.

Часть 2. Расчет среднего коэффициента теплоотдачи

- 1. Для Сценария А (Тонкая труба):
- о Используя соответствующее критериальное уравнение для свободной конвекции около горизонтальной трубы, рассчитать среднее число Нуссельта (Nu_d).
 - ο Определить средний коэффициент теплоотдачи α тонк.
 - 2. Для Сценария Б (Толстая труба):
 - о Используя критериальное уравнение, рассчитать среднее число Нуссельта (Nu_d).
 - о Определить средний коэффициент теплоотдачи α толщ.

Часть 3. Сравнительный анализ

- 1. Свести полученные результаты (d, Gr_d, Ra_d, Nu_d, α) в итоговую таблицу для двух сценариев.
- 2. Сравнить коэффициенты теплоотдачи. Объяснить, почему при одинаковом температурном напоре коэффициент теплоотдачи для трубы меньшего диаметра выше.
- 3. Рассчитать линейную плотность теплового потока q_l [Вт/м] от трубы к воздуху для обоих сценариев. Проанализировать, теплопотери с какого трубопровода (тонкого или толстого) больше в расчете на один погонный метр и почему.
- 4. Объяснить, чем принципиально отличается картина обтекания и теплообмена у горизонтальной трубы по сравнению с вертикальной пластиной.

Методические указания к выполнению работы

1. Теоретическая справка

При свободной конвекции у **горизонтальной трубы** подъемные силы вызывают образование восходящей струи (конвективной колонки) над трубой. Определяющим геометрическим размером в критериях подобия является наружный диаметр трубы d.

• Число Грасгофа (Gr_d):

Gr
$$d = (g * \beta * |t c_T - t x| * d^3) / v^2$$

• Число Рэлея (Ra_d):

Ra
$$d = Gr d * Pr$$

Критические значения для горизонтальной трубы аналогичны вертикальной пластине:

- Ra d < 10⁹ ламинарный режим.
- Ra d > 10⁹ турбулентный режим.
- 2. Расчетные формулы и алгоритм
- 2.1. Определение чисел подобия
- Коэффициент теплового расширения β для идеального газа: $\beta = 1$ / T_nc , где T_nc температура в Кельвинах.
 - Расчет Gr d и Ra d по формулам выше.

2.2. Расчет числа Нуссельта для горизонтальной трубы

Рекомендуемая формула (универсальная, подходит для широкого диапазона Ra_d):

Формула Чurchilla и Chu:

 $Nu_d = (0.60 + (0.387 * Ra_d^{(1/6)}) / (1 + (0.559/Pr)^{(9/16)})^{(8/27)})^2$

- Эта формула является комплексной и дает хорошие результаты как для ламинарного, так и для переходного режимов.
- \bullet Для чисто ламинарного режима (Ra_d < 10^9) иногда используют более простую зависимость:

 $Nu_d = 0.53 * Ra_d^0.25$

• Для турбулентного режима ($Ra_d > 10^9$):

 $Nu_d = 0.13 * Ra_d^{(1/3)}$

2.3. Расчет коэффициента теплоотдачи и теплового потока

- $\alpha = (Nu_d * \lambda) / d$
- Линейная плотность теплового потока:

 $q 1 = \alpha * \pi * d * (t cт - t ж), [Bт/м]$

- 3. Порядок выполнения работы
- 1. Подготовка: выписать все исходные данные для двух сценариев.
- 2. **Свойства:** для каждого сценария рассчитать t_пс, найти все необходимые физические свойства воздуха по справочным таблицам. Рассчитать β.
 - 3. **Режим течения:** рассчитать Gr_d и Ra_d для обоих случаев. Определить режим течения.
- 4. **Расчет Nu:** исходя из режима течения, выбрать корректную формулу (рекомендуется использовать универсальную формулу Чurchilla и Chu) и рассчитать среднее число Нуссельта Nu_d для каждой трубы.
 - 5. Расчет α: рассчитать коэффициенты теплоотдачи α тонк и α толщ.
 - 6. Расчет q 1: рассчитать линейную плотность теплового потока для труб.
- 7. **Анализ:** сравнить результаты, ответить на контрольные вопросы. Особое внимание уделить влиянию диаметра на α и q_1 .

4.1. Расчет для Сценария A (d = 20 мм):

- Определение t пс.
- Таблица свойств воздуха при t пс.
- Расчет β, Gr_d, Ra d. Определение режима.
- Выбор и обоснование формулы для Nu_d.
- Расчет Nu_d, α тонк и q_l.

4.2. Расчет для Сценария Б (d = 100 мм):

• (Аналогичная структура).

Сводная таблица результатов:

Параметр	Сценарий A (d=20мм)	Сценарий Б (d=100мм)
t_nc , °C		
Gr_d		
Ra_d		
Режим течения		
Nu_d		
α , Bτ/(м²·°C)		
q_l , Bт/м		

Анализ результатов и выводы:

- о Ответы на все вопросы из задания «Часть 3. Сравнительный анализ».
- о Общий вывод по работе, где указано, как диаметр трубы влияет на интенсивность свободноконвективного теплообмена и на величину тепловых потерь.

Требования к отчету

Отчет должен быть оформлен аккуратно и содержать следующие разделы:

- 1. Титульный лист (наименование ВУЗа, работы, ФИО, группа, преподаватель).
- 2. Цель работы.
- 3. **Исходные** данные (представлены в виде таблицы с двумя столбцами для Сценария A и Б).
 - 4. Расчетная часть.

Форма предоставления работы:

- 1. Цель
- 2. Исходные данные
- 3. Расчетная часть
- 4. Расчеты выполнить и оформить в рабочей тетради.
- 5. Анализ результатов и вывод

Критерии оценки:

- «5» (отлично): выполнены все задания, студент четко и без ошибок ответил на все контрольные вопросы.
- «4» (хорошо): выполнены все задания; студент ответил на все контрольные вопросы с замечаниями.
- «3» (удовлетворительно): выполнены все работы с замечаниями; студент ответил на все контрольные вопросы с замечаниями.
- «2» (неудовлетворительно): студент не выполнил или выполнил неправильно задания; студент ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы.

Тема 2.2 Нестационарная теплопроводность Практическое занятие №8.

Определение средних коэффициентов теплоотдачи пластины, омываемой продольным потоком жидкости при ламинарном и турбулентном режимах в пограничном слое.

Цель: освоить методику расчёта среднего коэффициента теплоотдачи для пластины при продольном обтекании. Исследовать влияние режима течения (ламинарного/турбулентного) и физических свойств жидкости на интенсивность теплообмена. Сравнить интенсивность теплоотдачи в ламинарном и турбулентном пограничных слоях.

Выполнив работу, вы будете уметь:

Уд 1 анализировать данные контрольно-измерительных приборов для оценки текущего состояния тепловых сетей;

Уд 2 выявлять и устранять дефекты теплотехнического оборудования и систем тепло- и топливоснабжения;

Уо 01.09 владеть актуальными методами работы в профессиональной и смежных сферах;

Уо 02.04 структурировать получаемую информацию; выделять наиболее значимое в перечне информации.

Выполнение практической работы способствует формированию:

ОК 01 выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;

ОК 02 планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по правовой и финансовой грамотности в различных жизненных ситуациях;

ПК 1.3 осуществлять мероприятия по предупреждению, локализации и ликвидации аварий теплотехнического оборудования и систем тепло- и теплоснабжения;

ПК 2.1 выполнять дефектацию теплотехнического оборудования и систем тепло- и топливоснабжения.

Материальное обеспечение:

Учебная аудитория для проведения лекционных, практических занятий, для групповых и индивидуальных консультаций, для текущего контроля и промежуточной аттестации: рабочее место преподавателя, рабочие места обучающихся, доска. Компьютер: Intel (R) Core (TM) i5- 2300 CPU@ 2, 80 GHz 3 GHz/RAM/8, 00 Gb /HDD/244 Gb keyb/ монитор19", проектор Acer X 1261 P; экран настенный; Программное обеспечение: MS Windows 7, лицензия №47818300, бессрочно; MS Office 2007, лицензия 42373644, бессрочно; Adobe Reader 9 свободно распространяемое ПО бессрочно.

Задание:

Исходные данные:

Пластина длиной L=0.5 м обтекается продольным потоком воды со скоростью w=0.8 м/с. Температура поверхности пластины t ст = 80 °C, температура потока t ж = 20 °C.

Требуется:

- 1. Определить режим течения в пограничном слое на всей поверхности пластины.
- 2. Рассчитать средний коэффициент теплоотдачи для всей пластины.
- 3. Определить плотность теплового потока с поверхности пластины.

Методические указания

1. Определение режима течения:

• Рассчитать число Рейнольдса для всей пластины:

Re
$$L = (w * L) / v$$

- Критическое число Рейнольдса: Re кp = 5*10⁵
- Если Re L < Re кр течение ламинарное по всей пластине
- Если Re L > Re кр течение смешанное (ламинарное у начала и турбулентное дальше)

2. Расчёт числа Нуссельта:

• Для ламинарного течения (Re $L < Re \ \kappa p$):

 $Nu_L = 0.664 * Re_L^0.5 * Pr^0.33$

• Для смешанного течения (Re $L > Re \ \kappa p$):

 $Nu_L = (0.037 * Re_L^0.8 - 871) * Pr^0.33$

- 3. Расчёт коэффициента теплоотдачи: $\alpha = (Nu_L * \lambda) / L$
- **4. Расчёт теплового потока:** $q = \alpha * (t \ ct t \ ж)$

Физические свойства воды определять при средней температуре пограничного слоя:

 $t_{\text{_}}\pi c = 0.5 * (t_{\text{_}}c_{\text{_}} + t_{\text{_}}x)$

Форма предоставления работы

Отчёт должен содержать:

- 1. Цель работы
- 2. Исходные данные
- 3. Расчёт физических свойств воды
- 4. Определение режима течения
- 5. Расчёт числа Нуссельта
- 6. Расчёт коэффициента теплоотдачи
- 7. Расчёт теплового потока
- 8. Выводы по работе

Расчеты выполнить и оформить в рабочей тетради.

Результаты представить в виде таблицы

Критерии оценки:

- «5» (отлично): выполнены все задания, студент четко и без ошибок ответил на все контрольные вопросы.
- «4» (хорошо): выполнены все задания; студент ответил на все контрольные вопросы с замечаниями.
- «3» (удовлетворительно): выполнены все работы с замечаниями; студент ответил на все контрольные вопросы с замечаниями.
- «2» (неудовлетворительно): студент не выполнил или выполнил неправильно задания; студент ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы.

Тема 2.3 Тепло- и массоперенос Практическое занятие №9

Определение чисел подобия массопереноса. Определение коэффициента массоотдачи.

Цель: Освоить методику расчёта критериев подобия процессов массоотдачи. Исследовать взаимосвязь между тепло- и массообменом. Научиться определять коэффициент массоотдачи для различных условий процесса

Выполнив работу, вы будете уметь:

- Уд 1 анализировать данные контрольно-измерительных приборов для оценки текущего состояния тепловых сетей;
- Уд 2 выявлять и устранять дефекты теплотехнического оборудования и систем тепло- и топливоснабжения;
 - Уо 01.09 владеть актуальными методами работы в профессиональной и смежных сферах;
- Уо 02.04 структурировать получаемую информацию; выделять наиболее значимое в перечне информации.

Выполнение практической работы способствует формированию:

OK 01 выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;

OK 02 планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по правовой и финансовой грамотности в различных жизненных ситуациях;

- ПК 1.3 осуществлять мероприятия по предупреждению, локализации и ликвидации аварий теплотехнического оборудования и систем тепло- и теплоснабжения;
- ПК 2.1 выполнять дефектацию теплотехнического оборудования и систем тепло- и топливоснабжения.

Материальное обеспечение:

Учебная аудитория для проведения лекционных, практических занятий, для групповых и индивидуальных консультаций, для текущего контроля и промежуточной аттестации: рабочее место преподавателя, рабочие места обучающихся, доска. Компьютер: Intel (R) Core (TM) i5- 2300 CPU@ 2, 80 GHz 3 GHz/RAM/8, 00 Gb /HDD/244 Gb keyb/ монитор19", проектор Acer X 1261 P; экран настенный; Программное обеспечение: MS Windows 7, лицензия №47818300, бессрочно; MS Office 2007, лицензия 42373644, бессрочно; Adobe Reader 9 свободно распространяемое ПО бессрочно; 7 Zip свободно распространяемое ПО бессрочно.

Задание:

Исходные данные:

Процесс испарения воды в поток воздуха.

Параметры:

- Скорость воздушного потока: w = 2.5 м/c
- Температура воздуха: t ж = 30 °C
- Длина испаряющей поверхности: L = 0.4 м
- Концентрация пара у поверхности: С_ст = 0.025 кг/м³
- Концентрация пара в ядре потока: С ж = 0.008 кг/м³
- Коэффициент диффузии паров воды в воздухе: $D = 2.6 \cdot 10^{-5} \text{ m}^2/\text{c}$

Требуется:

- 1. Определить числа подобия массопереноса: Прандтля диффузионного (Pr_D), Рейнольдса (Re), Нуссельта диффузионного (Nu D).
 - 2. Рассчитать коэффициент массоотдачи.
 - 3. Определить плотность потока массы.

Методические указания

- 1. Расчёт чисел подобия:
- Число Рейнольдса: Re L = (w * L) / v
- Диффузионное число Прандтля: Pr D = v / D
- Диффузионное число Нуссельта (для ламинарного течения):

 $Nu_D = 0.664 * Re_L^0.5 * Pr_D^0.33$

- 2. Расчёт коэффициента массоотдачи: $\beta = (Nu \ D * D) / L$
- 3. Расчёт плотности потока массы: $j = \beta * (C \text{ ст } C \text{ ж})$

Физические свойства воздуха определять при средней температуре потока.

Аналогия между тепло- и массообменном.

Для расчёта можно использовать аналогию Рейнольдса: $Nu_D = Nu * (Pr_D/Pr)^0.33$

Форма предоставления работы

Отчёт должен содержать:

- 1. Цель работы
- 2. Исходные данные
- 3. Расчёт физических свойств воздуха
- 4. Расчёт чисел подобия
- 5. Расчёт коэффициента массоотдачи

- 6. Расчёт плотности потока массы
- 7. Выводы по работе

Результаты представить в виде таблицы

Расчеты выполнить и оформить в рабочей тетради.

Критерии оценки:

- «5» (отлично): выполнены все задания, студент четко и без ошибок ответил на все контрольные вопросы.
- «4» (хорошо): выполнены все задания; студент ответил на все контрольные вопросы с замечаниями.
- «3» (удовлетворительно): выполнены все работы с замечаниями; студент ответил на все контрольные вопросы с замечаниями.
- «2» (неудовлетворительно): студент не выполнил или выполнил неправильно задания; студент ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы.

Тема 2.3 Тепло- и массоперенос Практическое занятие №10

Определение температуры на поверхности пластины, цилиндра, шара и температуры в середине пластины, на оси цилиндра, в середине шара при нагревании (охлаждении).

Цель: Освоить методику расчёта нестационарных температурных полей в телах правильной формы. Исследовать влияние критерия Био на характер прогрева/охлаждения тел. Научиться определять температуру в характерных точках (центр, поверхность) в любой момент времени.

Выполнив работу, вы будете уметь:

- Уд 1 анализировать данные контрольно-измерительных приборов для оценки текущего состояния тепловых сетей;
- Уд 2 выявлять и устранять дефекты теплотехнического оборудования и систем тепло- и топливоснабжения;
 - Уо 01.09 владеть актуальными методами работы в профессиональной и смежных сферах;
- Уо 02.04 структурировать получаемую информацию; выделять наиболее значимое в перечне информации.

Выполнение практической работы способствует формированию:

- OK 01 выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;
- OK 02 планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по правовой и финансовой грамотности в различных жизненных ситуациях;
- ПК 1.3 осуществлять мероприятия по предупреждению, локализации и ликвидации аварий теплотехнического оборудования и систем тепло- и теплоснабжения;
- ПК 2.1 выполнять дефектацию теплотехнического оборудования и систем тепло- и топливоснабжения.

Материальное обеспечение:

Учебная аудитория для проведения лекционных, практических занятий, для групповых и индивидуальных консультаций, для текущего контроля и промежуточной аттестации: рабочее место преподавателя, рабочие места обучающихся, доска. Компьютер: Intel (R) Core (TM) i5- 2300 CPU@ 2, 80 GHz 3 GHz/RAM/8, 00 Gb /HDD/244 Gb keyb/ монитор19", проектор Acer X 1261 P; экран настенный; Программное обеспечение: MS Windows 7, лицензия №47818300, бессрочно; MS

Оffice 2007, лицензия 42373644, бессрочно; Adobe Reader 9 свободно распространяемое ПО бессрочно; 7 Zip свободно распространяемое ПО бессрочно.

Задание:

Исходные данные:

Стальной шар диаметром d=100 мм с начальной температурой $T_0=450$ °C помещают в среду с температурой $T_{\pm} = 50$ °C. Коэффициент теплоотдачи от поверхности шара к среде $\alpha=120~{\rm Bt/(m^2\cdot K)}$.

Требуется для момента времени $\tau = 300$ с:

- 1. Определить критерий Био и сделать вывод о характере процесса.
- 2. Рассчитать температуру в центре шара.
- 3. Рассчитать температуру на поверхности шара.
- 4. Построить график распределения температуры по радиусу шара.

Дополнительно: выполнить расчёт для пластины толщиной $2\delta = 100$ мм и цилиндра диаметром d = 100 мм при тех же условиях.

Методические указания

1. Определение критерия Био: $Bi = (\alpha * R) / \lambda$

где R - характерный размер (для шара и цилиндра - радиус, для пластины - полу厚度)

2. Расчёт чисел Фурье: Fo = $(a * \tau) / R^2$

где $a = \lambda/(c*\rho)$ - коэффициент температуропроводности

3. Определение температур:

Для тел правильной формы используются номограммы или аналитические решения вида:

 $\Theta = f(Bi, Fo, r/R)$

где $\Theta = (T - T \ ж)/(T_0 - T \ ж)$ - безразмерная избыточная температура

Для центра тела (r/R = 0): Θ ц = $f_1(Bi, Fo)$

Для поверхности тела (r/R = 1): $\Theta_{\text{пов}} = f_2(\text{Bi, Fo})$

- 4. Последовательность расчёта:
- 1. Рассчитать критерий Био
- 2. Рассчитать критерий Фурье
- 3. По номограммам найти Θ ц и Θ пов
- 4. Перейти к размерным температурам: $T = T \times + \Theta^*(T_0 T \times)$

Форма предоставления работы

Отчёт должен содержать:

- 1. Цель работы
- 2. Исходные данные
- 3. Расчёт физических свойств материала
- 4. Расчёт критериев подобия (Ві, Fo)
- 5. Определение безразмерных температур
- 6. Расчёт размерных температур
- 7. График распределения температуры
- 8. Сравнительный анализ результатов для разных тел
- 9. Выводы

Расчеты выполнить и оформить в рабочей тетради.

Критерии оценки:

- «5» (отлично): выполнены все задания, студент четко и без ошибок ответил на все контрольные вопросы.
- «4» (хорошо): выполнены все задания; студент ответил на все контрольные вопросы с замечаниями.
- «3» (удовлетворительно): выполнены все работы с замечаниями; студент ответил на все контрольные вопросы с замечаниями.

«2» (неудовлетворительно): студент не выполнил или выполнил неправильно задания; студент ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы.

Тема 1.2 Конвективный теплообмен Лабораторное занятие №1

Определение теплопроводности материала наружного ограждения методом дополнительной стенки

Цель: Экспериментально определить коэффициент теплопроводности материала наружного ограждения. Освоить методику проведения тепловых измерений. Сравнить экспериментальные данные с табличными значениями

Выполнив работу, вы будете уметь:

Уд 1 анализировать данные контрольно-измерительных приборов для оценки текущего состояния тепловых сетей;

Уд 2 выявлять и устранять дефекты теплотехнического оборудования и систем тепло- и топливоснабжения;

Уо 01.09 владеть актуальными методами работы в профессиональной и смежных сферах;

Уо 02.04 структурировать получаемую информацию; выделять наиболее значимое в перечне информации.

Выполнение практической работы способствует формированию:

ОК 01 выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;

ОК 02 планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по правовой и финансовой грамотности в различных жизненных ситуациях;

- ПК 1.3 осуществлять мероприятия по предупреждению, локализации и ликвидации аварий теплотехнического оборудования и систем тепло- и теплоснабжения;
- ПК 2.1 выполнять дефектацию теплотехнического оборудования и систем тепло- и топливоснабжения.

Материальное обеспечение:

Помещение для проведения лабораторных работ; для групповых и индивидуальных консультаций; для текущего контроля, и промежуточной аттестации: рабочее место преподавателя, рабочие места обучающихся, доска, Ноутбук: Lenovo 15.6", AMD A4 9120 2.2ГГц, 2-ядерный, /RAM 4ГБ DDR4, /HDD 500ГБ, проектор Epson EHTW650; экран настенный;

Программное обеспечение; MS Windows 7, лицензия №47818300, бессрочно; MS Office 2007, лицензия 42373644, бессрочно; Adobe Reader 9 свободно распространяемое ПО бессрочно; 7 Zip свободно распространяемое ПО бессрочно.

Задание:

Оборудование:

- Теплоизмерительная установка с дополнительной стенкой
- Испытуемый образец материала
- Термопары или термометры
- Регулируемый источник нагрева
- Измеритель теплового потока

Требуется:

- 1. Собрать экспериментальную установку согласно схеме.
- 2. Создать стационарный тепловой режим.

- 3. Измерить температуры на поверхностях испытуемого образца и дополнительной стенки.
- 4. Измерить плотность теплового потока.
- 5. Рассчитать коэффициент теплопроводности материала.
- 6. Оценить погрешность измерений.

Методические указания

1. Теоретическое обоснование:

При стационарном режиме плотность теплового потока через многослойную стенку:

$$q = (t_1 - t_4)/(R_1 + R_2 + R_3)$$

где:

- t_1, t_4 температуры на внешних поверхностях
- R_1, R_2, R_3 термические сопротивления слоев

2. Расчётная формула:

Для испытуемого материала: $\lambda = (q * \delta)/(t_2 - t_3)$ гле:

- δ толщина образца
- t_2, t_3 температуры на поверхностях образца
- q плотность теплового потока

3. Порядок выполнения:

- 1. Подготовить образец к испытаниям (измерить толщину)
- 2. Собрать установку: образец + дополнительная стенка
- 3. Включить нагрев и дождаться стационарного режима
- 4. Зафиксировать показания термопар
- 5. Измерить плотность теплового потока
- 6. Провести расчёт коэффициента теплопроводности
- 7. Повторить измерения 3-5 раз

4. Обработка результатов:

- Рассчитать среднее значение λ
- Оценить погрешность измерений
- Сравнить с табличными данными

Ход работы:

1. Подготовка к эксперименту:

- Измерена толщина испытуемого образца материала с помощью штангенциркуля: $\delta = 0.025 \pm 0.001$ м.
- Визуально проверено состояние поверхностей образца и дополнительной стенки на отсутствие дефектов.
- Собрана экспериментальная установка согласно схеме: образец размещен между нагревательным элементом и дополнительной стенкой известной теплопроводности.

2. Проведение эксперимента:

- Включен источник нагрева. Установлена мощность нагревателя: Р = 100 Вт.
- Ожидание достижения стационарного теплового режима (изменение температур не более $0.5~^{\circ}\mathrm{C}$ за $10~\mathrm{минут}$).
 - Зафиксированы показания термопар в стационарном режиме:
 - о Температура нагревателя: t 1 = 85.2 °C
 - \circ Температура на поверхности образца со стороны нагрева: t 2 = 72.5 °C
 - о Температура на поверхности образца со стороны доп. стенки: t 3 = 55.8 °C
 - о Температура на внешней поверхности доп. стенки: t 4 = 32.1 °C
 - Измерена плотность теплового потока через систему: $q = 1250 \text{ Br/m}^2$.

3. Повторные измерения:

- Эксперимент повторен 3 раза при той же мощности нагрева.
- Получены следующие результаты для разности температур на образце:

- $\Delta t 1 = 16.7 \, ^{\circ}C$
- \circ $\Delta t \ 2 = 16.9 \, \circ C$
- \circ Δt 3 = 16.5 °C
- Средняя разность температур: $\Delta t_{cp} = 16.7 \, ^{\circ}\text{C}$

4. Обработка результатов:

- Рассчитан коэффициент теплопроводности по формуле:
- $\lambda = (q * \delta) / \Delta t \ cp = (1250 * 0.025) / 16.7 = 1.87 \ BT/(M·K)$
- Оценена погрешность измерений:
- о Погрешность измерения температур: ±0.5 °C
- Погрешность измерения толщины: ±0.001 м
- Погрешность измерения теплового потока: ±5%
- Суммарная погрешность: ±8%

5. Сравнение с табличными значениями:

- Для материала (гипсокартон) табличное значение: λ табл = 1.9 Bt/(м·К)
- Расхождение с экспериментальным значением: 1.6%

6. Выводы:

- Экспериментально определен коэффициент теплопроводности материала: $\lambda = 1.87 \pm 0.15 \; \mathrm{BT/(M \cdot K)}.$
 - Результаты хорошо согласуются с табличными данными (расхождение 1.6%).
- Основные источники погрешности: неравномерность теплового потока, неточность измерения температур.
- Метод дополнительной стенки показал хорошую точность для определения теплопроводности строительных материалов.

Форма представления результата:

- 1. Цель работы
- 2. Схему экспериментальной установки
- 3. Таблицу измеренных данных
- 4. Расчётные формулы
- 5. Результаты расчётов
- 6. Анализ погрешностей
- 7. Выводы

Критерии оценки:

- «5» (отлично): выполнены все задания, студент четко и без ошибок ответил на все контрольные вопросы.
- «4» (хорошо): выполнены все задания; студент ответил на все контрольные вопросы с замечаниями.
- «3» (удовлетворительно): выполнены все работы с замечаниями; студент ответил на все контрольные вопросы с замечаниями.
- «2» (неудовлетворительно): студент не выполнил или выполнил неправильно задания; студент ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы.

Тема 1.2 Конвективный теплообмен Лабораторное занятие №2

Определение коэффициента теплоотдачи для горизонтальной трубы при свободной конвекции

Цель: Экспериментально определить коэффициент теплоотдачи для горизонтальной трубы при свободной конвекции. Исследовать влияние разности температур между поверхностью трубы и окружающим воздухом на интенсивность теплообмена. Сравнить экспериментальные данные с результатами расчёта по критериальным уравнениям.

Выполнив работу, вы будете уметь:

- Уд 1 анализировать данные контрольно-измерительных приборов для оценки текущего состояния тепловых сетей;
- Уд 2 выявлять и устранять дефекты теплотехнического оборудования и систем тепло- и топливоснабжения;
 - Уо 01.09 владеть актуальными методами работы в профессиональной и смежных сферах;
- Уо 02.04 структурировать получаемую информацию; выделять наиболее значимое в перечне информации.

Выполнение практической работы способствует формированию:

- ОК 01 выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;
- ОК 02 планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по правовой и финансовой грамотности в различных жизненных ситуациях;
- ПК 1.3 осуществлять мероприятия по предупреждению, локализации и ликвидации аварий теплотехнического оборудования и систем тепло- и теплоснабжения;
- ПК 2.1 выполнять дефектацию теплотехнического оборудования и систем тепло- и топливоснабжения.

Материальное обеспечение:

Помещение для проведения лабораторных работ; для групповых и индивидуальных консультаций; для текущего контроля, и промежуточной аттестации: рабочее место преподавателя, рабочие места обучающихся, доска, Ноутбук: Lenovo 15.6", AMD A4 9120 2.2ГГц, 2-ядерный, /RAM 4ГБ DDR4, /HDD 500ГБ, проектор Epson EHTW650; экран настенный;

Программное обеспечение; MS Windows 7, лицензия №47818300, бессрочно; MS Office 2007, лицензия 42373644, бессрочно; Adobe Reader 9 свободно распространяемое ПО бессрочно; 7 Zip свободно распространяемое ПО бессрочно.

Задание:

- 1. Снять зависимость коэффициента теплоотдачи от разности температур $\Delta t = t$ ст t возд при постоянной мощности нагрева.
 - 2. Определить температурные поля на поверхности трубы.
 - 3. Рассчитать средний коэффициент теплоотдачи.
 - 4. Сравнить экспериментальные значения с расчётными по критериальным уравнениям.

Порядок выполнения работы

1. Теоретическая часть:

При свободной конвекции у горизонтальной трубы подъёмная сила вызывает образование восходящего потока воздуха. Коэффициент теплоотдачи зависит от:

- Разности температур Δt
- Диаметра трубы d
- Физических свойств воздуха

2. Методика эксперимента:

- 1. Измерить диаметр трубы и длину рабочей части
- 2. Включить нагрев и выждать установления стационарного режима
- 3. Измерить температуру поверхности трубы в нескольких точках
- 4. Измерить температуру окружающего воздуха
- 5. Зафиксировать мощность нагрева

3. Обработка результатов:

Средний коэффициент теплоотдачи: $\alpha = Q / (F * \Delta t)$ где:

- Q мощность нагрева, Вт
- $F = \pi * d * 1$ площадь поверхности теплообмена, м²
- $\Delta t = t$ ст.ср t возд средняя разность температур, °C

4. Сравнение с теорией:

Рассчитать число Нуссельта по критериальному уравнению для горизонтальной трубы: $Nu = C * (Gr * Pr)^n$

где:

- С и п эмпирические коэффициенты
- Gr = (g * β * Δt * d³) / v² число Грасгофа
- Рг число Прандтля

Расчётные данные:

т истепные динные.			
Параметр	Значение		
Диаметр трубы d, м	0.025		
Длина рабочей части l, м	0.5		
Площадь поверхности F, м ²	0.039		
Средняя температура поверхности, °C			
Разность температур ∆t, °C			
Коэффициент теплоотдачи α, Вт/(м²·К)			
Число Нуссельта (эксп.) Nu			
Число Нуссельта (теор.) Nu			

Графики:

- 1. Зависимость α от Δt
- 2. Зависимость Nu от Gr-Pr

В выводах отразить:

- Характер зависимости α от Δt
- Точность совпадения экспериментальных и теоретических данных
- Основные источники погрешностей
- Практическое значение результатов

Ход работы:

1. Подготовка экспериментальной установки:

- Измерен наружный диаметр трубы: d = 0.025 м
- Измерена длина рабочей части: 1 = 0.5 м
- Проверена работа измерительных приборов (ваттметр, термопары)
- Установлены 3 термопары по длине трубы для контроля равномерности нагрева
- Установлен термометр для измерения температуры воздуха на расстоянии 1 м от трубы

2. Проведение эксперимента:

- Включен нагрев на мощность Q = 50 Вт
- Через 30 минут достигнут стационарный режим (изменение температур не более $0.2~^{\circ}\mathrm{C}$ за 5 минут)

- Зафиксированы показания:
- \circ Температуры поверхности: t ct1 = 65.2 °C, t ct2 = 64.8 °C, t ct3 = 65.5 °C
- о Температура воздуха: t возд = 22.1 °C
- о Мощность нагрева: Q = 50.2 Вт
- Повтор измерений для мощностей 75 Вт и 100 Вт

3. Обработка результатов:

Для Q = 50 BT:

- Средняя температура поверхности: t ст.сp = (65.2 + 64.8 + 65.5)/3 = 65.2 °C
- Разность температур: $\Delta t = 65.2 22.1 = 43.1$ °C
- Площадь поверхности: $F = \pi * 0.025 * 0.5 = 0.039 \text{ м}^2$
- Коэффициент теплоотдачи: $\alpha = 50.2 / (0.039 * 43.1) = 29.8 \, \mathrm{Br/(m^2 \cdot K)}$

4. Сравнение с теоретическим расчётом:

• Определены свойства воздуха при температуре пограничного слоя:

 $t \text{ } \pi c = (65.2 + 22.1)/2 = 43.7 \text{ }^{\circ}\text{C}$

- Рассчитаны критерии подобия: $Gr = 2.15 \cdot 10^5$, Pr = 0.701
- По критериальному уравнению для горизонтальной трубы: $Nu = 0.53 \cdot (Gr \cdot Pr)^0.25 = 10.2$
- Теоретический коэффициент теплоотдачи:

 α Teop = $(Nu \cdot \lambda)/d = 10.2 \cdot 0.0278/0.025 = 11.3 BT/(M²·K)$

5. Построение графиков:

- 1. Зависимость α от Δt (экспоненциальный рост)
- 2. Зависимость Nu от Gr·Pr в логарифмических координатах

6. Анализ результатов:

- Обнаружено расхождение экспериментальных и теоретических значений
- Основные причины расхождений:
- о Неидеальная теплоизоляция торцов
- о Влияние окружающих предметов
- о Погрешность измерения температуры поверхности
- Относительная погрешность: 62%

Форма представления результата:

Отчёт должен содержать:

- 1. Цель работы
- 2. Схему экспериментальной установки
- 3. Таблицы измеренных данных
- 4. Расчётные формулы
- 5. Графики зависимостей
- 6. Анализ результатов
- 7. Выводы

Пример таблицы измерений:

Мощность Q, Вт	t_cт1, °С	t_cт2, °С	t_ст3, °С	t_возд, °С
50	65.2	64.8	65.5	22.1
75	88.7	87.9	89.2	22.3
100	112.4	111.8	113.1	22.0

Критерии оценки:

«5» (отлично): выполнены все задания, студент четко и без ошибок ответил на все контрольные вопросы.

- «4» (хорошо): выполнены все задания; студент ответил на все контрольные вопросы с замечаниями.
- «3» (удовлетворительно): выполнены все работы с замечаниями; студент ответил на все контрольные вопросы с замечаниями.
- «2» (неудовлетворительно): студент не выполнил или выполнил неправильно задания; студент ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы.

Тема 1.3 Теплообмен излучением Лабораторное занятие №3

Исследование теплоотдачи конвекцией при вынужденном продольном омывании воздухом плоской поверхности (пластины).

Цель: Экспериментально определить коэффициент теплоотдачи при вынужденном продольном обтекании пластины воздухом. Исследовать влияние скорости воздушного потока на интенсивность теплообмена. Сравнить экспериментальные данные с расчётными по критериальным уравнениям.

Выполнив работу, вы будете уметь:

- Уд 1 анализировать данные контрольно-измерительных приборов для оценки текущего состояния тепловых сетей;
- Уд 2 выявлять и устранять дефекты теплотехнического оборудования и систем тепло- и топливоснабжения;
 - Уо 01.09 владеть актуальными методами работы в профессиональной и смежных сферах;
- Уо 02.04 структурировать получаемую информацию; выделять наиболее значимое в перечне информации.

Выполнение практической работы способствует формированию:

- ОК 01 выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;
- ОК 02 планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по правовой и финансовой грамотности в различных жизненных ситуациях;
- ПК 1.3 осуществлять мероприятия по предупреждению, локализации и ликвидации аварий теплотехнического оборудования и систем тепло- и теплоснабжения;
- ПК 2.1 выполнять дефектацию теплотехнического оборудования и систем тепло- и топливоснабжения.

Материальное обеспечение:

Помещение для проведения лабораторных работ; для групповых и индивидуальных консультаций; для текущего контроля, и промежуточной аттестации: рабочее место преподавателя, рабочие места обучающихся, доска, Ноутбук: Lenovo 15.6", AMD A4 9120 2.2ГГц, 2-ядерный, /RAM 4ГБ DDR4, /HDD 500ГБ, проектор Epson EHTW650; экран настенный;

Программное обеспечение; MS Windows 7, лицензия №47818300, бессрочно; MS Office 2007, лицензия 42373644, бессрочно; Adobe Reader 9 свободно распространяемое ПО бессрочно; 7 Zip свободно распространяемое ПО бессрочно.

Задание:

- 1. Снять зависимость коэффициента теплоотдачи от скорости воздушного потока при постоянной мощности нагрева.
 - 2. Определить температурные поля на поверхности пластины.
 - 3. Рассчитать средний коэффициент теплоотдачи.

4. Сравнить экспериментальные значения с расчётными по критериальным уравнениям.

Методические указания

1. Теоретическая часть:

При вынужденном продольном обтекании пластины коэффициент теплоотдачи зависит от:

- Скорости потока воздуха w
- Длины пластины L
- Физических свойств воздуха
- Режима течения (ламинарный/турбулентный)

2. Методика эксперимента:

- 1. Измерить длину и ширину пластины
- 2. Установить скорость потока w = 2 м/c
- 3. Включить нагрев на заданную мощность
- 4. Дождаться стационарного режима
- 5. Зафиксировать температуры поверхности и мощность
- 6. Повторить для скоростей 4, 6, 8, 10 м/c

3. Обработка результатов:

Средний коэффициент теплоотдачи: $\alpha = Q / (F * \Delta t)$ где:

- Q мощность нагрева, Вт
- F площадь поверхности теплообмена, м²
- $\Delta t = t_c t_b t$

4. Сравнение с теорией:

Рассчитать число Нуссельта по критериальному уравнению:

- Для ламинарного течения ($Re < 5.10^5$): $Nu = 0.664 \cdot Re^0.5 \cdot Pr^0.33$
- Для турбулентного течения ($Re > 5 \cdot 10^5$): $Nu = 0.037 \cdot Re^0.8 \cdot Pr^0.33$

Форма предоставления работы

Отчёт должен содержать:

- 1. Цель работы
- 2. Схему экспериментальной установки
- 3. Таблицы измеренных данных
- 4. Расчётные формулы
- 5. Графики зависимостей
- 6. Анализ результатов
- 7. Выводы

Критерии оценки:

- «5» (отлично): выполнены все задания, студент четко и без ошибок ответил на все контрольные вопросы.
- «4» (хорошо): выполнены все задания; студент ответил на все контрольные вопросы с замечаниями.
- «3» (удовлетворительно): выполнены все работы с замечаниями; студент ответил на все контрольные вопросы с замечаниями.
- «2» (неудовлетворительно): студент не выполнил или выполнил неправильно задания; студент ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы.

Тема 1.3 Теплообмен излучением Лабораторное занятие № 4

Изучение процессов конвективной теплоотдачи при вынужденном движении воздуха в пучке труб

Цель: Экспериментально исследовать теплоотдачу в пучке труб при поперечном обтекании воздухом. Сравнить эффективность теплообмена при коридорном и шахматном расположении труб. Определить влияние скорости потока и геометрии пучка на коэффициент теплоотдачи.

Выполнив работу, вы будете уметь:

Уд 1 анализировать данные контрольно-измерительных приборов для оценки текущего состояния тепловых сетей;

Уд 2 выявлять и устранять дефекты теплотехнического оборудования и систем тепло- и топливоснабжения;

Уо 01.09 владеть актуальными методами работы в профессиональной и смежных сферах;

Уо 02.04 структурировать получаемую информацию; выделять наиболее значимое в перечне информации.

Выполнение практической работы способствует формированию:

ОК 01 выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;

OК 02 планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по правовой и финансовой грамотности в различных жизненных ситуациях;

ПК 1.3 осуществлять мероприятия по предупреждению, локализации и ликвидации аварий теплотехнического оборудования и систем тепло- и теплоснабжения;

ПК 2.1 выполнять дефектацию теплотехнического оборудования и систем тепло- и топливоснабжения.

Материальное обеспечение:

Помещение для проведения лабораторных работ; для групповых и индивидуальных консультаций; для текущего контроля, и промежуточной аттестации: рабочее место преподавателя, рабочие места обучающихся, доска, Ноутбук: Lenovo 15.6", AMD A4 9120 2.2ГГц, 2-ядерный, /RAM 4ГБ DDR4, /HDD 500ГБ, проектор Epson EHTW650; экран настенный;

Программное обеспечение; MS Windows 7, лицензия №47818300, бессрочно; MS Office 2007, лицензия 42373644, бессрочно; Adobe Reader 9 свободно распространяемое ПО бессрочно; 7 Zip свободно распространяемое ПО бессрочно.

Задание:

- 1. Провести эксперименты для пучков с разным расположением труб.
- 2. Снять зависимость коэффициента теплоотдачи от скорости воздуха (2-10 м/с).
- 3. Определить температурные поля в пучке.
- 4. Рассчитать числа Нуссельта и Рейнольдса.
- 5. Сравнить результаты для разных конфигураций пучков.

Ход работы:

- 1. Подготовка:
- Установить выбранный пучок труб в рабочем участке.
- Измерить геометрические параметры: диаметр труб d, шаги s₁, s₂.
- Проверить измерительные приборы.
- 2. Проведение эксперимента:
- Для каждой скорости потока (2, 4, 6, 8, 10 м/с):
- о Установить скорость воздуха

- о Включить нагрев на постоянную мощность
- о Дождаться стационарного режима
- о Зафиксировать температуры труб и воздуха
- о Записать мощность нагрева
- 3. Обработка результатов:
- Рассчитать средний коэффициент теплоотдачи: $\alpha = Q / (F * \Delta t)$
- Определить скорость в узком сечении пучка
- Вычислить числа подобия: $Re = (w * d) / v Nu = (\alpha * d) / \lambda$
- 4. Анализ:
- Построить графики Nu = f(Re) для обоих пучков
- Сравнить с критериальными уравнениями:
- Для коридорного пучка: Nu = C * Re^n * Pr^0.36
- \circ Для шахматного пучка: Nu = C * Re^n * Pr^0.36

Форма представления результатов

Отчёт включает:

- 1. Схемы испытуемых пучков
- 2. Таблицы измеренных и расчётных данных
- 3. Графики зависимостей:
- $\circ \alpha = f(w)$
- \circ Nu = f(Re)
- 4. Сравнительный анализ эффективности пучков
- 5. Оценку погрешностей

Критерии оценки:

- «5» (отлично): выполнены все задания, студент четко и без ошибок ответил на все контрольные вопросы.
- «4» (хорошо): выполнены все задания; студент ответил на все контрольные вопросы с замечаниями.
- «3» (удовлетворительно): выполнены все работы с замечаниями; студент ответил на все контрольные вопросы с замечаниями.
- «2» (неудовлетворительно): студент не выполнил или выполнил неправильно задания; студент ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы.

Тема 2.1. Основы теплового расчета Лабораторное занятие №5.

Определение коэффициента теплопередачи пароводяного теплообменного аппарата

Цель: Экспериментально определить коэффициент теплопередачи пароводяного теплообменника. Исследовать влияние расхода теплоносителей на интенсивность теплопередачи. Сравнить экспериментальные данные с расчётными значениями.

Выполнив работу, вы будете уметь:

- Уд 1 анализировать данные контрольно-измерительных приборов для оценки текущего состояния тепловых сетей:
- Уд 2 выявлять и устранять дефекты теплотехнического оборудования и систем тепло- и топливоснабжения;
 - Уо 01.09 владеть актуальными методами работы в профессиональной и смежных сферах;
- Уо 02.04 структурировать получаемую информацию; выделять наиболее значимое в перечне информации.

Выполнение практической работы способствует формированию:

ОК 01 выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;

OK 02 планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по правовой и финансовой грамотности в различных жизненных ситуациях;

- ПК 1.3 осуществлять мероприятия по предупреждению, локализации и ликвидации аварий теплотехнического оборудования и систем тепло- и теплоснабжения;
- ПК 2.1 выполнять дефектацию теплотехнического оборудования и систем тепло- и топливоснабжения.

Материальное обеспечение:

Помещение для проведения лабораторных работ; для групповых и индивидуальных консультаций; для текущего контроля, и промежуточной аттестации: рабочее место преподавателя, рабочие места обучающихся, доска, Ноутбук: Lenovo 15.6", AMD A4 9120 2.2ГГц, 2-ядерный, /RAM 4ГБ DDR4, /HDD 500ГБ, проектор Epson EHTW650; экран настенный;

Программное обеспечение; MS Windows 7, лицензия №47818300, бессрочно; MS Office 2007, лицензия 42373644, бессрочно; Adobe Reader 9 свободно распространяемое ПО бессрочно; 7 Zip свободно распространяемое ПО бессрочно.

Задание:

- 1. Провести эксперименты при различных расходах охлаждающей воды.
- 2. Измерить температуры теплоносителей на входе и выходе.
- 3. Определить давление пара.
- 4. Рассчитать коэффициент теплопередачи.
- 5. Построить зависимость коэффициента теплопередачи от расхода воды.

Ход работы:

- 1. Подготовка:
- Проверить герметичность системы.
- Установить давление пара (например, 0.2 МПа).
- Задать начальный расход воды.
- 2. Проведение эксперимента:
- Для каждого расхода воды:
- о Дождаться стационарного режима.
- о Измерить:
- Температуру пара t_п
- Температуру воды на входе t вх и выходе t вых
- Расход воды G (объёмным методом)
- Давление пара Р п
- 3. Обработка результатов:
- Тепловая мощность: $Q = G * c_p * (t_вых t_вx)$
- Средний температурный напор (для противотока): Δt ср = $(\Delta t$ б Δt м) / $ln(\Delta t$ б / Δt м)
- Коэффициент теплопередачи: $k = Q / (F * \Delta t \ cp)$
- 4. Анализ:
- Построить график k = f(G)
- Сравнить с теоретическим расчётом: $k = 1 / (1/\alpha + \delta/\lambda + 1/\alpha + 2)$

Форма представления результатов

Отчёт включает:

- 1. Схему экспериментальной установки
- 2. Таблицы измеренных и расчётных данных

- 3. График зависимости k = f(G)
- 4. Сравнение с теоретическим расчётом
- 5. Анализ погрешностей

Критерии оценки:

- «5» (отлично): выполнены все задания, студент четко и без ошибок ответил на все контрольные вопросы.
- «4» (хорошо): выполнены все задания; студент ответил на все контрольные вопросы с замечаниями.
- «3» (удовлетворительно): выполнены все работы с замечаниями; студент ответил на все контрольные вопросы с замечаниями.
- «2» (неудовлетворительно): студент не выполнил или выполнил неправильно задания; студент ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы.