Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

Многопрофильный колледж

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ПРАКТИЧЕСКИХ ЗАНЯТИЙ УЧЕБНОЙ ДИСЦИПЛИНЫ

ЕН.02 ДИСКРЕТНАЯ МАТЕМАТИКА С ЭЛЕМЕНТАМИ МАТЕМАТИЧЕСКОЙ ЛОГИКИ

для обучающихся специальности

специальности 09.02.07 Информационные системы и программирование

ОДОБРЕНО

Предметно-цикловой комиссией «Информатики и вычислительной техники» Председатель Т.Б. Ремез Протокол №5 от «31» января 2024

Методической комиссией МпК

Протокол № 3 от «21»февраля 2024

Разработчики:

преподаватель отделения №2 «Информационных технологий и транспорта» Многопрофильного колледжа ФГБОУ ВО «МГТУ им. Г.И. Носова»

Елена Александровна Васильева

преподаватель отделения №2 «Информационных технологий и транспорта»

Многопрофильного колледжа ФГБОУ ВО «МГТУ им. Г.И. Носова»

Светлана Владимировна Меркулова

Методические указания по выполнению практических работ разработаны на основе рабочей программы учебной дисциплины «Дискретная математика с элементами математической логики».

Содержание практических работ ориентировано на подготовку обучающихся к освоению профессиональных модулей программы подготовки специалистов среднего звена по специальности 09.02.07 Информационные системы и программирование и овладению общими компетенциями.

СОДЕРЖАНИЕ

1 ВВЕДЕНИЕ4
2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ5
Практическое занятие № 1Формулы логики. Упрощение формул логики с помощью
равносильных преобразований5
Практическое занятие № 2 Приведение формул логики к ДНФ, КНФ с помощью
равносильных преобразований
Практическое занятие № 3 Представление булевой функции в виде СДНФ и СКНФ,
минимальной ДНФ и КНФ9
Практическое занятие № 4 Проверка булевой функции на принадлежность к
классам T0, T1, S, L, M. Полнота множеств
Практическое занятие № 5 Множества и основные операции над ними. Графическое
изображение множеств на диаграммах Эйлера-Венна
Практическое занятие № 6 Исследование свойств бинарных отношений17
Практическое занятие № 7 Теория отображений и алгебра подстановок19
Практическое занятие № 8 Нахождение области определения и истинности
предиката. Построение отрицаний к предикатам, содержащим кванторные операции 22
Практическое занятие № 9 Исследование отображений и свойств бинарных
отношений с помощью графов
Практическое занятие № 10 Работа машины Тьюринга29

1 ВВЕДЕНИЕ

Важную часть теоретической и профессиональной практической подготовки обучающихся составляют практические занятия.

Состав и содержание практических занятий направлены на реализацию Федерального государственного образовательного стандарта среднего профессионального образования.

Ведущей дидактической целью практических занятий является формирование профессиональных практических умений.

В соответствии с рабочей программой учебной дисциплины «ЕН.02 Дискретная математика с элементами математической логики» предусмотрено проведение практических занятий.

В результате их выполнения, обучающийся должен:

уметь:

- У.1 Применять логические операции, формулы логики, законы алгебры логики.
- У.2 Формулировать задачи логического характера и применять средства математической логики для их решения.

Содержание практических ориентировано формирование общих компетенций:

- ОК 1 Выбирать способы решения задач профессиональной деятельности, применительно к различным контекстам
- ОК 2 Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности
 - ОК 4 Эффективно взаимодействовать и работать в коллективе и команде
- OК 5 Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста
- ОК 9 Пользоваться профессиональной документацией на государственном и иностранном языке.

Выполнение обучающихся практических работ по учебной дисциплине «ЕН.02 Дискретная математика с элементами математической логики» направлено на:

- обобщение, систематизацию, углубление, закрепление, развитие и детализацию полученных теоретических знаний по конкретным темам учебной дисциплины;
- формирование умений применять полученные знания на практике, реализацию единства интеллектуальной и практической деятельности;

Практические занятия проводятся после соответствующей темы, которая обеспечивает наличие знаний, необходимых для ее выполнения.

2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Тема 1.1. Алгебра высказываний

Практическое занятие № 1Формулы логики. Упрощение формул логики с помощью равносильных преобразований

Цель работы: формирование умений упрощать логические выражения с помощью законов алгебры логики.

Выполнив работу, Вы будете:

уметь:

- Применять логические операции, формулы логики, законы алгебры логики.
- Формулировать задачи логического характера и применять средства математической логики для их решения.
- анализировать задачу и/или проблему и выделять её составные части;
- Зопределять этапы решения задачи;
- составлять план действия;
- учитывать временные ограничения и сроки при решении профессиональных задач;
- владеть актуальными методами работы в профессиональной и смежных сферах;).
- определять задачи поиска информации;
- определять необходимые источники информации;
- планировать процесс поиска; структурировать получаемую информацию;
- выделять наиболее значимое в перечне информации;
- оценивать практическую значимость результатов поиска;
- взаимодействовать с коллегами, руководством, клиентами в ходе профессиональной деятельности
- применять техники и приемы эффективного общения в профессиональной деятельности
- понимать общий смысл четко произнесенных высказываний на известные темы (профессиональные и бытовые), понимать тексты на базовые профессиональные темы.

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор.

Задания:

Какое тождество записано неверно:

- a) $x \vee \overline{x} = 1$;
- $\delta) \qquad x \lor x \lor x \lor x \lor x \lor x = 1;$
- B) x & x & x & x & x = 1.

Выразите данные логические функции через элементарные операции: a) F = (A|B)C; б) $F = (A \downarrow B) \downarrow C$.

Упростите логические выражения: a) $A \lor (\overline{A} \& B)$; б) $(A \lor B) \& (\overline{B} \lor A) \& (\overline{C} \lor B)$.

4. Решите задачу. Компьютер вышел из строя (нет изображения на экране монитора), однако неизвестно какое устройство не работает (монитор, видеокарта или оперативная память). Можно предположить следующее:

- 1) если монитор исправен или видеокарта неисправна, то оперативная память неисправна;
 - 2) если монитор исправен, то оперативная память исправна.

Исправен ли монитор?

Порядок выполнения работы:

- 1. Решить задания в тетради.
- 2. Получить у преподавателя задания для самостоятельной работы и решить их в тетради.

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

- «5» Практическое занятие выполнена полностью, задачи решены верно, теоретический материал записан в тетрадь, студент отвечает на все вопросы преподавателя по теме работы.
- «4» Практическое занятие выполнена на 80%-90%, задачи решены верно или с небольшими недочетами, теоретический материал записан в тетрадь, студент отвечает на вопросы преподавателя по теме работы.
- «3» Практическое занятие выполнена на 70% и более, теоретический материал записан в тетрадь не в полном объеме, студент отвечает не на все вопросы преподавателя по теме работы.
 - «2» Практическое занятие выполнена мене 70%.

Тема 1.2. Булевы функции

Практическое занятие № 2 Приведение формул логики к ДНФ, КНФ с помощью равносильных преобразований

Цель работы: формирование умений представлять функции в СДНФ и СКНФ с минимальным числом членов и минимальным числом переменных в членах.

Выполнив работу, Вы будете:

уметь:

- Применять логические операции, формулы логики, законы алгебры логики.
- Формулировать задачи логического характера и применять средства математической логики для их решения.
- анализировать задачу и/или проблему и выделять её составные части;
- Зопределять этапы решения задачи;
- составлять план действия;
- учитывать временные ограничения и сроки при решении профессиональных задач;
- владеть актуальными методами работы в профессиональной и смежных сферах;).
- определять задачи поиска информации;
- определять необходимые источники информации;
- планировать процесс поиска; структурировать получаемую информацию;
- выделять наиболее значимое в перечне информации;
- оценивать практическую значимость результатов поиска;
- взаимодействовать с коллегами, руководством, клиентами в ходе профессиональной деятельности
- применять техники и приемы эффективного общения в профессиональной деятельности
- понимать общий смысл четко произнесенных высказываний на известные темы (профессиональные и бытовые), понимать тексты на базовые профессиональные темы.

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор.

Задания:

- 1. Осуществить переход от ДНФ к СДНФ для следующей функции $f(x_1, x_2, x_3) = x_1 x_2 \sqrt{x_2} x_3$.
- 2. Осуществить переход от КНФ к СКНФ для следующей функции: $f(x_1, x_2, x_3) = x_1(\overline{x_2} \vee x_3)$.
- 3. Записать СДНФ и СКНФ для следующей функции, заданной таблично:

x_1				
x_2				
<i>X</i> ₃				
$f(x)$ 1, x_2 , x_3)				
$_{1}, x_{2}, x_{3})$				

4. Сколько наборов будет участвовать в СКНФ для функции заданной таблично:

	$(a \rightarrow$
	1
	0
	1

	0
	1
	1
	1
	0

5. Для функции, заданной таблицей истинности, найти МДНФ методом Квайна:

x_1								
x_2								
<i>x</i> ₃								
χ_4								
$f(x_1, x_2, x_3, x_4)$								
$x_{2,} x_{3,} x_{4}$								

Порядок выполнения работы:

- 1. Решить задания в тетради.
- 2. Получить у преподавателя задания для самостоятельной работы и решить их в тетради.

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

- «5» Практическое занятие выполнена полностью, задачи решены верно, теоретический материал записан в тетрадь, студент отвечает на все вопросы преподавателя по теме работы.
- «4» Практическое занятие выполнена на 80%-90%, задачи решены верно или с небольшими недочетами, теоретический материал записан в тетрадь, студент отвечает на вопросы преподавателя по теме работы.
- «3» Практическое занятие выполнена на 70% и более, теоретический материал записан в тетрадь не в полном объеме, студент отвечает не на все вопросы преподавателя по теме работы.
 - «2» Практическое занятие выполнена мене 70%.

Тема 1.2. Булевы функции

Практическое занятие № 3 Представление булевой функции в виде СДНФ и СКНФ, минимальной ДНФ и КНФ

Цель работы: формирование умений представлять функции в СДНФ и СКНФ с минимальным числом членов и минимальным числом переменных в членах.

Выполнив работу, Вы будете:

уметь:

- Применять логические операции, формулы логики, законы алгебры логики.
- Формулировать задачи логического характера и применять средства математической логики для их решения.
- анализировать задачу и/или проблему и выделять её составные части;
- Зопределять этапы решения задачи;
- составлять план действия;
- учитывать временные ограничения и сроки при решении профессиональных задач;
- владеть актуальными методами работы в профессиональной и смежных сферах;).
- определять задачи поиска информации;
- определять необходимые источники информации;
- планировать процесс поиска; структурировать получаемую информацию;
- выделять наиболее значимое в перечне информации;
- оценивать практическую значимость результатов поиска;
- взаимодействовать с коллегами, руководством, клиентами в ходе профессиональной деятельности
- применять техники и приемы эффективного общения в профессиональной деятельности
- понимать общий смысл четко произнесенных высказываний на известные темы (профессиональные и бытовые), понимать тексты на базовые профессиональные темы.

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор.

Задания:

1. Записать СДНФ и СКНФ для следующей функции, заданной таблично:

x_1				
x_2				
Х3				
f(x				
$_{1}, x_{2}, x_{3})$				

2. Для функции, заданной таблицей истинности, найти МДНФ методом Квайна:

x_1								
x_2								
<i>X</i> ₃								
χ_4								
$f(x_{I,})$								

Теоретический материал

Метод Квайна относится к числу таких методов минимизации функций алгебры логики, которые позволяют представлять функции в ДНФ или КНФ с минимальным числом членов и минимальным числом букв в членах. Этот метод содержит два этапа преобразования выражения функции: на первом этапе осуществляется переход от канонической формы (СДНФ или СКНФ) к так называемой сокращенной форме, на втором этапе — переход от сокращенной формы логического выражения к минимальной форме.

Первый этап (получение сокращенной формы). Пусть заданная функция f представлена в СДНФ.

Переход к сокращенной форме основан на последовательном применении двух операций: *операции склеивания* и *операции поглощения*.

Для выполнения операции склеивания выявляются в выражении пары членов вида $\omega \cdot x$ и $\omega \cdot \overline{x}$, различающихся лишь тем, что один из аргументов в одном из членов представлен без инверсии, в другом — с инверсией. Затем проводится склеивание таких пар членов: $\omega \cdot x \vee \omega \cdot \overline{x} = \omega \cdot (x \vee \overline{x}) = \omega$, и результаты склеивания ω вводятся в выражение функции в качестве дополнительных членов. Далее проводится операция поглощения. Она основана на равенстве $\omega \vee \omega \cdot z = \omega \cdot (1 \vee z) = \omega$ (член ω поглощает член $\omega \cdot z$). При проведении этой операции из логического выражения вычеркиваются все члены, поглощаемые членами, которые введены в результате проведения операции склеивания.

Операции склеивания и поглощения проводятся последовательно до тех пор, пока их выполнение оказывается возможным.

Покажем выполнение этих операций применительно к функции, заданной таблицей истинности.

x_1				
x_2				
x_3				
f(x				
$f(x)$ 1, x_2 , x_3)				

Записываем СДНФ функции

$$f(x_1, x_2, x_3) = \overline{x_1} x_2 \overline{x_3} \vee x_1 \overline{x_2} x_3 \vee x_1 \overline{x_2} x_3 \vee x_1 \overline{x_2} x_3 \vee x_1 x_2 \overline{x_3} \vee x_1 x_2 x_3 \cdot x_1 x_2 x_3 \vee x_1 x_2 x_1 x_2 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_2 x_1 x_2 x_2 x_1 x_2 x_1 x_2$$

Попарным сравнением членов (каждого из членов со всеми последующими) выявляем склеивающиеся пары членов:

первый и четвертый члены (результат склеивания $x_2\overline{x_3}$);

второй и третий члены (результат склеивания $\bar{x_1x_2}$);

второй и четвертый члены (результат склеивания x_1x_3);

третий и пятый члены (результат склеивания x_1x_3);

четвертый и пятый члены (результат склеивания x_1x_2).

Член $x_2\overline{x_3}$ поглощает те члены исходного выражения, которые содержат $x_2\overline{x_3}$, т. е. первый и четвертый. Эти члены вычеркиваются. Член $x_1\overline{x_2}$ поглощает второй и третий, а член x_1x_3 —пятый член исходного выражения.

Получаем следующее выражение:

$$f(x_1, x_2, x_3) = x_2 \overline{x_3} \vee x_1 \overline{x_2} \vee x_1 \overline{x_3} \vee x_1 x_3 \vee x_1 x_2$$

Повторяем операции склеивания и поглощения. Здесь склеивается лишь пара членов $x_1\overline{x_2}$ и x_1x_2 (склеивание пары членов $x_1\overline{x_3}$ и x_1x_3 приводит к тому же результату), результат склеивания x_I поглощает второй, третий, четвертый и пятый члены выражения.

Дальнейшее проведение операций склеивания и поглощения оказывается невозможным, сокращенная форма выражения заданной функции (в данном примере она совпадает с минимальной формой): $f(x_1, x_2, x_3) = x_2 \overline{x_3} \vee x_1$.

Члены сокращенной формы (в рассмотренном примере такими членами служат $x_2 \overline{x_3}$ и x_I) называются *простыми импликантами* функции.

Как видим, получено выражение существенно более простое по сравнению с СДНФ функции.

Второй этап (получение минимальной формы). Сокращенная форма может содержать лишние члены, исключение которых из выражения функции не повлияет на значение функции.

Таким образом, дальнейшее упрощение логического выражения достигается исключением из выражения лишних членов. В этом и заключается содержание второго этапа минимизации. Покажем этот этап минимизации логического выражения на примере построения логического устройства для функции, заданной следующей таблицей истинности.

x_1								
x_2								
<i>X</i> ₃								
<i>X</i> ₄								
$f(x_1, x_2, x_3, x_4)$								
$x_2, x_3, x_4)$								

Совершенная ДНФ данной функции

$$f(x_1, x_2, x_3, x_4) = \overline{x_1 x_2 x_3 x_4} \vee x_1 x_2 x_3 \overline{x_4} \vee x_1 x_2 x_3 x_4 \vee x_1$$

Для получения сокращенной формы проводим операции склеивания и поглощения. В результате имеем:

$$f(x_1, x_2, x_3, x_4) = \overline{x_1 x_2 x_3} \vee \overline{x_1 x_2 x_4} \vee \overline{x_1 x_3 x_4} \vee x_2 x_3 \overline{x_4} \vee x_1 x_2 x_3$$

Полученное выражение представляет собой сокращенную форму логического выражения заданной функции, а члены его — *простые импликанты* функции. Переход от сокращенной формы к минимальной осуществляется с помощью *импликантной матрицы*, приведенной ниже.

В столбцы импликантной матрицы вписываются члены СДНФ заданной функции, в строки — простые импликанты функции, т. е. члены сокращенной формы логического выражения функции.

Отмечаются (например, крестиками) столбцы членов СДН Φ , поглощаемых отдельными простыми импликантами.

Прости			Чле	ны СДНФ		
Простые импликанты	$\overline{x_1}\overline{x_2}\overline{x_3}$	$\overline{x_1}\overline{x_2}\overline{x_3}$.	$\overline{x_1}\overline{x_2}x_3$	$ x_1x_2x_3x_4$	$X_1X_2X_3$.	$x_1x_2x_3$

$\overline{x_1}\overline{x_2}\overline{x_3}$	X	X				
$\overline{x_1}\overline{x_2}\overline{x_4}$	X		X			
$\overline{x_1}x_3\overline{x_4}$			X	X		
$x_2x_3\overline{x_4}$				X	X	
$x_1 x_2 x_3$					X	X

В таблице простая импликанта $\overline{x_1x_2}x_3$ поглощает члены $\overline{x_1}\overline{x_2}x_3x_4$, $\overline{x_1}\overline{x_2}x_3x_4$, и в первом и во втором столбцах первой строки поставлены крестики; вторая импликанта поглощает первый и третий члены СДНФ, и поставлены крестики в первом и третьем столбцах второй строки и т. д. Импликанты, которые не могут быть лишними и, следовательно, не могут быть исключены из сокращенной формы, составляют *ядро*. Входящие в ядро импликанты легко определяются по импликантной матрице. Для каждой из них имеется хотя бы один столбец, перекрываемый только данной импликантой.

В рассматриваемом примере ядро составляют импликанты $\overline{x_1}\overline{x_2}\overline{x_3}$ и $x_1x_2x_3$ (только ими перекрываются второй и шестой столбцы матрицы). Исключение из сокращенной формы одновременно всех импликант, не входящих в ядро, невозможно, так как исключение одной из импликант может превратить другую уже в нелишний член.

Для получения минимальной формы достаточно выбрать из импликант, не входящих в ядро, такое минимальное их число с минимальным количеством букв в каждой из этих импликант, которое обеспечит перекрытие всех столбцов импликантной матрицы, не перекрытых членами ядра. В рассматриваемом примере необходимо импликантами, не входящими в ядро, перекрыть третий и четвертый столбцы матрицы. Это может быть достигнуто различными способами, но так как необходимо выбирать минимальное число импликант, то, очевидно, для перекрытия этих столбцов следует выбрать импликанту $\overline{x_1}x_3\overline{x_4}$. *Минимальная дизьюнктивная нормальная форма (МДНФ)* заданной функции $f(x_1, x_2, x_3, x_4) = \overline{x_1}\overline{x_2}\overline{x_3} \vee \overline{x_1}x_3\overline{x_4} \vee x_1x_2x_3$.

Порядок выполнения работы:

- 1. Решить задания в тетради.
- 2. Получить у преподавателя задания для самостоятельной работы и решить их в тетради.

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

- «5» Практическое занятие выполнена полностью, задачи решены верно, теоретический материал записан в тетрадь, студент отвечает на все вопросы преподавателя по теме работы.
- «4» Практическое занятие выполнена на 80%-90%, задачи решены верно или с небольшими недочетами, теоретический материал записан в тетрадь, студент отвечает на вопросы преподавателя по теме работы.
- «3» Практическое занятие выполнена на 70% и более, теоретический материал записан в тетрадь не в полном объеме, студент отвечает не на все вопросы преподавателя по теме работы.
 - «2» Практическое занятие выполнена мене 70%.

Тема 1.2. Булевы функции

Практическое занятие № 4 Проверка булевой функции на принадлежность к классам Т0, Т1, S, L, М. Полнота множеств

Цель работы: формирование умений определять принадлежность логических функций к классам T_0 , T_1 , S, L, M.

Выполнив работу, Вы будете:

уметь:

- Применять логические операции, формулы логики, законы алгебры логики.
- Формулировать задачи логического характера и применять средства математической логики для их решения.
- анализировать задачу и/или проблему и выделять её составные части;
- Зопределять этапы решения задачи;
- составлять план действия;
- учитывать временные ограничения и сроки при решении профессиональных задач;
- владеть актуальными методами работы в профессиональной и смежных сферах;).
- определять задачи поиска информации;
- определять необходимые источники информации;
- планировать процесс поиска; структурировать получаемую информацию;
- выделять наиболее значимое в перечне информации;
- оценивать практическую значимость результатов поиска;
- взаимодействовать с коллегами, руководством, клиентами в ходе профессиональной деятельности
- применять техники и приемы эффективного общения в профессиональной деятельности
- понимать общий смысл четко произнесенных высказываний на известные темы (профессиональные и бытовые), понимать тексты на базовые профессиональные темы.

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор.

Задания:

1. Заполните недостающие столбцы в таблицах проверки принадлежности к классам для систем $\{\rightarrow,\oplus\}$ и $\{\rightarrow,1\}$:

a).
$$\{\rightarrow,\oplus\}$$

	T_0	T_1	S	M	L
\rightarrow				-	-
\oplus				-	+
{→,⊕}					-

$$\delta$$
). $\{\rightarrow,1\}$

	T_0	T_1	S	M	L
\rightarrow				-	-
1	-				+

$f \times 11$			
[[→ ,1}			-

2. Определите принадлежность логических функций к пяти замкнутым классам. Ответы внесите в таблицу.

zavoni v z iwomiąj.							
F (A, B)	A 0011	T_0	T_1	M	S	L	
	B 0101						Название
O (A, B)	0000						Константа нуля
A&B	0001						Конъюнкция
AVB							Дизъюнкция
$A \oplus B$							Сумма Жегалкина
A↓B							Стрелка Пирса
AIB							Штрих Шеффера
A~B							Эквивалентность

Порядок выполнения работы:

- 1. Решить задания в тетради.
- 2. Получить у преподавателя задания для самостоятельной работы и решить их в тетради.

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

- «5» Практическое занятие выполнена полностью, задачи решены верно, теоретический материал записан в тетрадь, студент отвечает на все вопросы преподавателя по теме работы.
- «4» Практическое занятие выполнена на 80%-90%, задачи решены верно или с небольшими недочетами, теоретический материал записан в тетрадь, студент отвечает на вопросы преподавателя по теме работы.
- «3» Практическое занятие выполнена на 70% и более, теоретический материал записан в тетрадь не в полном объеме, студент отвечает не на все вопросы преподавателя по теме работы.
 - «2» Практическое занятие выполнена мене 70%.

Тема 2.1. Основы теории множеств

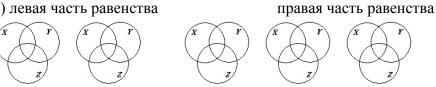
Практическое занятие № 5 Множества и основные операции над ними. Графическое изображение множеств на диаграммах Эйлера-Венна.

Цель работы: формирование умений выполнять операции над множествами. Выполнив работу, Вы будете:

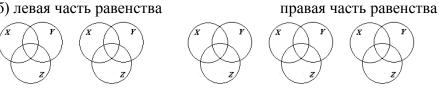
уметь:

- Применять логические операции, формулы логики, законы алгебры логики.
- Формулировать задачи логического характера и применять средства математической логики для их решения.
- анализировать задачу и/или проблему и выделять её составные части;
- Зопределять этапы решения задачи;
- составлять план действия;
- учитывать временные ограничения и сроки при решении профессиональных задач;
- владеть актуальными методами работы в профессиональной и смежных сферах;).
- определять задачи поиска информации;
- определять необходимые источники информации;
- планировать процесс поиска; структурировать получаемую информацию;
- выделять наиболее значимое в перечне информации;
- оценивать практическую значимость результатов поиска;
- взаимодействовать с коллегами, руководством, клиентами в ходе профессиональной деятельности
- применять техники и приемы эффективного общения в профессиональной деятельности
- понимать общий смысл четко произнесенных высказываний на известные темы (профессиональные и бытовые), понимать тексты на базовые профессиональные темы.

Материальное обеспечение:


Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор.


Задания:

- Пусть даны множества $A = \{-3, -2, -1, 0, 1, 2, 3, 7\}$, $B = \{5, 3, 2, 1, 0, -2, -3\}$, $C = \{-4, -3, -2, -2, -1, 0, -2, -3\}$ 1;0;1;2;3;4}. Найдите множества $A \cup B$, $A \cap B$, $A \cup C$, $B \cup C$ $A \setminus B$, $B \setminus A$.
- Докажите следующие тождества: a) $(X \cap Y) \cup Z = (X \cup Z) \cap (Y \cup Z)$; б) $(X \setminus Y) \cup Z = (X \setminus Y) \cap (Y \setminus Z)$.

б) левая часть равенства

3. Пусть N- множество натуральных чисел, Z- множество целых чисел, а множества A, B, и C определены в задании 1. Найдите $A \cup N$, $A \cap N$, $Z \cup C$, $(A \cap B) \cap N$, $A \setminus Z$.

- 4. Пусть A множество параллелограммов, B множество прямоугольников, C множество ромбов, D множество квадратов. Запишите результат операций: $A \cap B$, $B \cap C$, $A \cup B \cup C \cup D$.
- 5. Укажите пустые множества среди следующих: а) множество целых корней уравнения $x^2 16 = 0$; б) множество целых корней уравнения $x^2 + 16 = 0$.
- 6. Изобразите с помощью диаграмм Эйлера- Венна множества A, B, C, если: a) $A \subset B$, $B \subset C$;
- $6) \ A \subset B, \ B \subset C, \ A \setminus B = \varnothing; \ B) \ A \cup B, \ B \cap C, \ A \subset B; \ \Gamma) \ A \cap B \neq \varnothing, \ A \cap C \neq \varnothing, \ B \cap C \neq \varnothing, \ A \cap B \cap C \neq \varnothing.$
- 7. Даны множества $A = \{x \in R \mid x^2 + 4 = y\}$, $B = \{x \in R \mid x^2 + y^2 \le 9\}$, $C = \{x \in R \mid x + 2 \le y\}$. Найдите $A \cup B$, $A \cap B$, $A \cup C$, $A \cap C$, $B \cap C$, $A \setminus C$, $B \setminus A$.
- 8. Из цифр 1,2,3,4,5 составьте все двузначные числа. Как связано получившееся множество с декартовым произведением $A \times A$, $A = \{1,2,3,4,5\}$.

Порядок выполнения работы:

- 1. Решить задания в тетради.
- 2. Получить у преподавателя задания для самостоятельной работы и решить их в тетради.

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

- «5» Практическое занятие выполнена полностью, задачи решены верно, теоретический материал записан в тетрадь, студент отвечает на все вопросы преподавателя по теме работы.
- «4» Практическое занятие выполнена на 80%-90%, задачи решены верно или с небольшими недочетами, теоретический материал записан в тетрадь, студент отвечает на вопросы преподавателя по теме работы.
- «3» Практическое занятие выполнена на 70% и более, теоретический материал записан в тетрадь не в полном объеме, студент отвечает не на все вопросы преподавателя по теме работы.
 - «2» Практическое занятие выполнена мене 70%.

Тема 2.1. Основы теории множеств

Практическое занятие № 6 Исследование свойств бинарных отношений

Цель работы: Научиться решать задачи на исследование свойств бинарных отношений **Выполнив работу, Вы будете:**

уметь:

- Применять логические операции, формулы логики, законы алгебры логики.
- Формулировать задачи логического характера и применять средства математической логики для их решения.
- анализировать задачу и/или проблему и выделять её составные части;
- Зопределять этапы решения задачи;
- составлять план действия;
- учитывать временные ограничения и сроки при решении профессиональных задач;
- владеть актуальными методами работы в профессиональной и смежных сферах;).
- определять задачи поиска информации;
- определять необходимые источники информации;
- планировать процесс поиска; структурировать получаемую информацию;
- выделять наиболее значимое в перечне информации;
- оценивать практическую значимость результатов поиска;
- взаимодействовать с коллегами, руководством, клиентами в ходе профессиональной деятельности
- применять техники и приемы эффективного общения в профессиональной деятельности
- понимать общий смысл четко произнесенных высказываний на известные темы (профессиональные и бытовые), понимать тексты на базовые профессиональные темы.

свойств бинарных отношений.

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор.

Задания:

Задача 1. Определите свойства следующих отношений:

- 1. «прямая х пересекает прямую у» (на множестве прямых)
- 2. «число х больше числа у на 2» (на множестве натуральных чисел)
- 3. «число х делится на число у без остатка» (на множестве натуральных чисел)
- 4. «х сестра у» (на множестве людей).

Задача 2. Проверить, является ли отношением эквивалентности на множестве всех прямых на плоскости отношение «непересекающихся прямых».

Задача 3. Найти область определения, область значений отношения Р. Является ли отношение Р рефлексивным, симметричным, антисимметричным, транзитивным.

Задача 4. Дано множество $A=\{>,<,\geq,\leq\}A=\{>,<,\geq,\leq\}$. Записать декартовое произведение $A\times AA\times A$. Задать 2 бинарных отношения R1R1 и R2R2, мощность которых равна 3 и 4 соответственно. Найдите соответствующие замыкания обоих отношений. Изобразите ориентированные графы и запишите матрицы для отношений R1R1 и R2R2 и

соответствующих замыканий. Вычислите R-11R1-1, R-12R2-1, R2·R1R2·R1. Изобразите соответствующие ориентированные графы и запишите соответствующие матрицы.

Задача 5. Отношение RR на множестве $X = \{a,b,c,d\}X = \{a,b,c,d\}$ задано матрицей.

Каковы свойства отношения RR? Как выглядят матрицы отношений R-1R-1, R·RR·R?

Задача 6. Дано множество $A = \{1,2,3,4,5\}A = \{1,2,3,4,5\}$ и бинарное отношение $R \subset A \times AR \subset A \times A$:

Проверить, является ли RR отношением эквивалентности. Добавить минимальное возможное число пар, чтобы RR стало отношением эквивалентности. Найти разбиение PP.

Задача 7. Доказать, что для любых бинарных отношений

$$(P1 \circ P2) - 1 = P - 12 \circ P - 11$$

- **Задача 8.** Доказать истинность следующего утверждения: если PP и SS антисимметричны, то $P \cap SP \cap S$ антисимметрично.
- **Задача 9.** Для заданных на множестве $A=\{1,2,3,4,5\}A=\{1,2,3,4,5\}$ бинарных отношений рр и $\tau\tau$:
 - а) записать матрицы и построить графики;
 - б) найти композицию ротрот;
- в) исследовать свойства отношений $\rho \rho$, $\tau \tau$ и $\rho \circ \tau \rho \circ \tau$ (рефлексивность, иррефлексивность, симметричность, антисимметричность, транзитивность).
- **Задача 10.** На множестве вещественных чисел RR задано бинарное отношение арbарь \Leftrightarrow a2+a=b2+b \Leftrightarrow a2+a=b2+b. Докажите, что рр отношение эквивалентности. Сколько элементов в классе эквивалентности?
- **Задача 11.** Для бинарного отношения рр между элементами множеств $A=\{1,2,3,4,5\}A=\{1,2,3,4,5\},$ $B=\{\{1\},\{1,2\},\{2,5\},\{3\}\}B=\{\{1\},\{1,2\},\{2,5\},\{3\}\},$ ар $X\Leftrightarrow$ а \notin X найдите область определения DpDp и область значений RpRp?

Порядок выполнения работы:

- 1. Решить задания в тетради.
- 2. Получить у преподавателя задания для самостоятельной работы и решить их в тетради.

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

- «5» Практическое занятие выполнена полностью, задачи решены верно, теоретический материал записан в тетрадь, студент отвечает на все вопросы преподавателя по теме работы.
- «4» Практическое занятие выполнена на 80%-90%, задачи решены верно или с небольшими недочетами, теоретический материал записан в тетрадь, студент отвечает на вопросы преподавателя по теме работы.
- «3» Практическое занятие выполнена на 70% и более, теоретический материал записан в тетрадь не в полном объеме, студент отвечает не на все вопросы преподавателя по теме работы.
 - «2» Практическое занятие выполнена мене 70%.

Тема 2.1. Основы теории множеств

Практическое занятие № 7 Теория отображений и алгебра подстановок

Цель работы: Научиться решать задачи алгебры подстановок **Выполнив работу, Вы будете:**

уметь:

- Применять логические операции, формулы логики, законы алгебры логики.
- Формулировать задачи логического характера и применять средства математической логики для их решения.
- анализировать задачу и/или проблему и выделять её составные части;
- Зопределять этапы решения задачи;
- составлять план действия;
- учитывать временные ограничения и сроки при решении профессиональных задач;
- владеть актуальными методами работы в профессиональной и смежных сферах;).
- определять задачи поиска информации;
- определять необходимые источники информации;
- планировать процесс поиска; структурировать получаемую информацию;
- выделять наиболее значимое в перечне информации;
- оценивать практическую значимость результатов поиска;
- взаимодействовать с коллегами, руководством, клиентами в ходе профессиональной деятельности
- применять техники и приемы эффективного общения в профессиональной деятельности
- понимать общий смысл четко произнесенных высказываний на известные темы (профессиональные и бытовые), понимать тексты на базовые профессиональные темы.

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор.

Задания:

1. Пусть A множество натуральных чисел, A=N. Рассмотрим операцию "+" и "-". Являются ли они бинарными?

<u>Решение:</u> (5,7) →12, т. е. 5+7=12, $12 \in \mathbb{N}$. Известно, что при сложении двух натуральных чисел получим натуральное число, следовательно операция бинарная. Операция "-" не является бинарной операцией на множестве $A=\mathbb{N}$, т. к. 5-7=-2, а $-2 \notin \mathbb{N}$.

2. Рассмотрим множество $M=\{1,2,3\}$. Сколько на этом множестве можно задать биективных функций, отображающих M в M.

<u>Решение:</u> Это множество всех подстановок третьего порядка S_3 .

$$S_3 = \{$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \}.$$

3. Даны две подстановки: σ_1 и σ_2 . Приведите подстановки к канонической записи и найдите их композицию $\sigma_1 \circ \sigma_2$ и $\sigma_2 \circ \sigma_1$.

$$\sigma_1 = \begin{pmatrix} 1 & 5 & 4 & 3 & 2 \\ 3 & 5 & 2 & 4 & 1 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 3 & 1 \end{pmatrix}.$$

<u>Решение</u>: Вторая подстановка записана в каноническом виде, а первая- нет. Поэтому в верхней строке запишем числа от 1 до 5, а в нижней $\sigma_1(1) = 3$, $\sigma_1(2)$

= 1,
$$\sigma_1(3)$$
=4, $\sigma_1(4)$ =2, $\sigma_1(5)$ = 5. Итак, $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 4 & 2 & 5 \end{pmatrix}$

Найдем $\sigma_2 \circ \sigma_1$. Сначала выполняется первая подстановка $\sigma_1(1) = 3$, а затем

вторая
$$\sigma_2(3)$$
=4 и т. д. Получим следующую матрицу: σ_2 о $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 2 & 3 & 5 & 1 \end{pmatrix}$.

Аналогично найдем $\sigma_1 \circ \sigma_2$: $\sigma_2(1) = 2$, а $\sigma_1(2) = 1$, и т. д. В итоге получим

$$\sigma_1 \circ \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 2 & 4 & 3 \end{pmatrix} \neq \sigma_2 \circ \sigma_1.$$

4. Найдите число инверсий и четность подстановки $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 3 & 1 & 2 & 5 \end{pmatrix}$

Решение:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 3 & 1 & 2 & 5 \end{pmatrix} \xrightarrow{1} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 1 & 3 & 2 & 5 \end{pmatrix} \xrightarrow{2} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 4 & 3 & 2 & 5 \end{pmatrix} \xrightarrow{3} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 4 & 3 & 2 & 5 \end{pmatrix} \xrightarrow{4} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 4 & 2 & 3 & 5 \end{pmatrix} \xrightarrow{5} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 2 & 4 & 3 & 5 \end{pmatrix} \xrightarrow{6} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 6 & 4 & 3 & 5 \end{pmatrix} \xrightarrow{7} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 6 & 3 & 4 & 5 \end{pmatrix} \xrightarrow{8} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} \xrightarrow{10} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} \xrightarrow{10} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}.$$

Получили n=10, поэтому $\varepsilon(\sigma)$ =(-1)¹⁰=1, т.е. подстановка четная.

Задачи для самостоятельного решения

Найдите σ_1^{-1} , σ_2^{-2} , $\sigma_1^{\circ}\sigma_2$ и $\sigma_2^{\circ}\sigma_1$, σ_1^{3} , σ_2^{4} , σ_1^{55} , σ_2^{-99} , порядок, число инверсий и четность каждой из подстановок:

a)
$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 5 & 4 \end{pmatrix}$$
, $\sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}$; d) $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 5 & 4 \end{pmatrix}$, $\sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 2 & 5 & 3 \end{pmatrix}$; b) $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix}$, $\sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix}$; e) $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 5 & 4 & 3 \end{pmatrix}$, $\sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$; c) $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 5 & 3 \end{pmatrix}$, $\sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 4 & 3 & 5 \end{pmatrix}$; f) $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 5 & 2 & 4 \end{pmatrix}$, $\sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 2 & 3 & 1 \end{pmatrix}$;

Порядок выполнения работы:

- 1. Решить задания в тетради.
- 2. Получить у преподавателя задания для самостоятельной работы и решить их в тетради.

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

- «5» Практическое занятие выполнена полностью, задачи решены верно, теоретический материал записан в тетрадь, студент отвечает на все вопросы преподавателя по теме работы.
- «4» Практическое занятие выполнена на 80%-90%, задачи решены верно или с небольшими недочетами, теоретический материал записан в тетрадь, студент отвечает на вопросы преподавателя по теме работы.
- «3» Практическое занятие выполнена на 70% и более, теоретический материал записан в тетрадь не в полном объеме, студент отвечает не на все вопросы преподавателя по теме работы.
 - «2» Практическое занятие выполнена мене 70%.

Тема 3.1. Предикаты

Практическое занятие № 8 Нахождение области определения и истинности предиката. Построение отрицаний к предикатам, содержащим кванторные операции

Цель работы: формирование умений определять логические значения высказываний, содержащих предикаты.

Выполнив работу, Вы будете:

уметь:

- Применять логические операции, формулы логики, законы алгебры логики.
- Формулировать задачи логического характера и применять средства математической логики для их решения.
- анализировать задачу и/или проблему и выделять её составные части;
- Зопределять этапы решения задачи;
- составлять план действия;
- учитывать временные ограничения и сроки при решении профессиональных задач;
- владеть актуальными методами работы в профессиональной и смежных сферах;).
- определять задачи поиска информации;
- определять необходимые источники информации;
- планировать процесс поиска; структурировать получаемую информацию;
- выделять наиболее значимое в перечне информации;
- оценивать практическую значимость результатов поиска;
- взаимодействовать с коллегами, руководством, клиентами в ходе профессиональной деятельности
- применять техники и приемы эффективного общения в профессиональной деятельности
- понимать общий смысл четко произнесенных высказываний на известные темы (профессиональные и бытовые), понимать тексты на базовые профессиональные темы.

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

компьютер с лицензионным программным Технические средства обучения: обеспечением и мультимедиа проектор.

Теоретический материал:

В исчислении высказываний нет предметных переменных, то есть переменных, которые могут принимать нелогические значения, например, числовые. Для того чтобы в логические исчисления могли быть включены нелогические константы и переменные, вводится понятие предиката.

Определение. N-местным предикатом на множестве X называется n-местная функция из множества X^n во множество $\{0,1\}$.

Примеры. 1. Предикат $A(x)="x\leq 2"$ на множестве X=R – одноместный. 2. Предикат B(x,y)="xy>0" на множестве $X=R^2$ – двуместный.

 $X = \{0,1\}$, то n -местный предикат представляет собой n -местную булеву функцию.

Нульместный предикат представляет собой высказывание.

Для каждого предиката A областью истинности называется $Y = \left\{x \in X \middle| A(x) = 1\right\}$, на котором предикат принимает значение 1.

Примеры. 1. Для предиката $A(x) = "x \le 2"$ на множестве X = R область истинности $Y = \{x \in R | x \le 2\}$.

2. Для предиката
$$B(x,y)="xy>0"$$
 на множестве $X=R^2$ область истинности $Y=\left\{(x,y)\in R^2\big|xy>0\right\}$.

Поскольку множество значений любого предиката лежит во множестве $\{0,1\}$, то с предикатами можно производить все операции алгебры логики, и все известные свойства логических операций обобщаются для предикатов. Рассмотрим эти свойства (для удобства в свойствах записываются одноместные предикаты):

3. Коммутативность:

$$P(x) \lor Q(x) = Q(x) \lor P(x) \quad P(x) \land Q(x) = Q(x) \land P(x)$$

2. Ассоциативность:

$$P(x) \lor (Q(x) \lor R(x)) = (P(x) \lor Q(x)) \lor R(x)$$

$$P(x) \wedge (Q(x) \wedge R(x)) = (P(x) \wedge Q(x)) \wedge R(x)$$

3. Дистрибутивность:

$$P(x) \lor (Q(x) \land R(x)) = (P(x) \lor Q(x)) \land (P(x) \lor R(x))$$

$$P(x) \land (Q(x) \lor R(x)) = (P(x) \land Q(x)) \lor (P(x) \land R(x))$$

- 4. Идемпотентность: $P(x) \lor P(x) = P(x)$, $P(x) \land P(x) = P(x)$
- 5. Закон двойного отрицания: $\neg \neg P(x) = P(x)$
- 6. Закон исключения третьего: $P(x) \lor \neg P(x) = 1$
- 7. Закон противоречия: $P(x) \land \neg P(x) = 0$
- 8. Законы де Моргана:

$$\neg (P(x) \lor Q(x)) = \neg P(x) \land \neg Q(x)$$

$$\neg (P(x) \land Q(x)) = \neg P(x) \lor \neg Q(x)$$

9. Свойства операций с логическими константами:

$$P(x) \lor 1 = 1$$
 $P(x) \lor 0 = P(x)$ $P(x) \land 1 = P(x)$ $P(x) \land 0 = 0$

Здесь
$$P(x)$$
, $Q(x)$ и $R(x)$ – любые предикаты.

В то же время, для предикатов определены операции специального вида, которые называются Кванторами.

Символ ∀ называется Квантором Всеобщности (Общности).

Символ \exists называется Квантором существования.

Пусть дана запись $\forall xA$ (или $\exists xA$). Переменная x называется Переменной в кванторе, а A –Областью действия квантора.

Имеют место эквивалентности:

$$\exists x_i A = \neg \forall x \qquad \forall x_i A = \neg \exists x$$
$$\neg \exists x_i A = \forall x \qquad \neg \forall x_i A = \exists x$$

Предикат называется Тождественно истинным (Тождественно ложным), если при всех возможных значениях переменных он принимает значение 1(0).

Справедливы эквивалентности:

$$\forall x \forall y P(x, y) = \forall y \forall x P(x, y) \mid \exists x \exists y P(x, y) = \exists y \exists x P(x, y)$$

Разноименные кванторы можно переставлять только следующим образом:

$$\exists x \forall y P(x,y) \to \forall y \exists x P(x,y) \ \exists y \forall x P(x,y) \to \forall x \exists y P(x,y)$$

Обратные формулы неверны.

Пример. Очевидно, что высказывание $\forall x \exists y (x + y = 0)$ (X = R) истинно. Поменяем кванторы местами. Получим высказывание $\exists y \forall x (x + y = 0)$, которое является ложным.

Выражения с кванторами можно преобразовывать следующим образом:

$$\forall x (P(x) \land Q(x)) = \forall x P(x) \land \forall x Q(x) \exists x (P(x) \lor Q(x)) = \exists x P(x) \lor \exists x Q(x)$$

Справедливы эквивалентности:

$$\forall x P(x) \lor \forall x Q(x) = \forall x P(x) \lor \forall y Q(y) = \forall x (P(x) \lor \forall y Q(y)) =$$

$$= \forall x \forall y (P(x) \lor Q(y)).$$

$$\exists x P(x) \land \exists x Q(x) = \exists x P(x) \land \exists y Q(y) = \exists x (P(x) \land \exists y Q(y)) =$$

$$= \exists x \exists y (P(x) \land Q(y))$$

Имеют место формулы:

$$\forall x (P(x) \land C) = \forall x P(x) \land C, \exists x (P(x) \lor C) = \exists x P(x) \lor C,$$
$$\forall x (P(x) \lor C) = \forall x P(x) \lor C, \exists x (P(x) \land C) = \exists x P(x) \land C.$$

Задания:

Задание 1

Определите, какие из следующих предложений истинные, а какие ложные, считая предметной областью множество действительных чисел R :

```
\begin{array}{l} 1. \forall x \exists y (x \cdot + \cdot y \cdot = \cdot 9); \P \\ 2. \exists x \exists y (x \cdot + \cdot y \cdot = \cdot 9); \P \\ 3. \exists x \forall y (x \cdot + \cdot y \cdot = \cdot 9); \P \\ 4. \forall x \forall y (x \cdot + \cdot y \cdot = \cdot 9); \P \\ 5. \forall x (((x \cdot > \cdot 1) \cdot \lor \cdot (x \cdot < \cdot 2)) \cdot \Leftrightarrow \cdot (x \cdot = \cdot x)); \P \\ 6. \forall x ((x^2 \cdot > \cdot x) \cdot \Leftrightarrow \cdot ((x \cdot > \cdot 1) \cdot \lor \cdot (x \cdot < \cdot 0))); \P \\ 7. \forall a ((\exists x (ax \cdot = \cdot 1)) \cdot \Leftrightarrow \cdot (a \cdot = \cdot 0)); \P \\ 8. \forall a \exists b \forall x (x^2 \cdot + \cdot ax \cdot + \cdot b \cdot > \cdot 0); \P \\ 9. \exists b \forall a \exists x (x^2 \cdot + \cdot ax \cdot + \cdot b \cdot = \cdot 0); \P \\ 10. \forall b \exists a \forall x (x^2 \cdot + \cdot ax \cdot + \cdot b \cdot = \cdot 0). \P \\ \Pi \\ 11. \exists a \forall b \exists x (x^2 \cdot + \cdot ax \cdot + \cdot b \cdot = \cdot 0). \P \\ \Pi \\ 12. \end{array}
```

Задание 2

Из следующих предикатов с помощью кванторов постройте всевозможные предложения (как первые четыре предложения предыдущей задачи) и определите их истинностные значения, считая предметной областью множество R :

$$x2 + y = 16;$$

 $(x2 + 1 = 0) \Rightarrow (x = 1);$
 $x < y;$
 $x2 = 25.$

Задание 3

Определите и изобразите на R множества истинности следующих одноместных предикатов:

```
|x + 4| < 3;

(x > 1) \land (x < 1);

\cos(x) > 1;

(x > 1) \lor (x < 1);

x2 + 9 > 0;

(x > 1) \Rightarrow (x < 1);

(x2 > 9) \Leftrightarrow (x > 3);

(x > 1) \Leftrightarrow x < 1).
```

Порядок выполнения работы:

- 1. Решить задания в тетради.
- 2. Получить у преподавателя задания для самостоятельной работы и решить их в тетради.

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

- «5» Практическое занятие выполнена полностью, задачи решены верно, теоретический материал записан в тетрадь, студент отвечает на все вопросы преподавателя по теме работы.
- «4» Практическое занятие выполнена на 80%-90%, задачи решены верно или с небольшими недочетами, теоретический материал записан в тетрадь, студент отвечает на вопросы преподавателя по теме работы.
- «3» Практическое занятие выполнена на 70% и более, теоретический материал записан в тетрадь не в полном объеме, студент отвечает не на все вопросы преподавателя по теме работы.
 - «2» Практическое занятие выполнена мене 70%.

Тема 4.1. Основы теории графов

Практическое занятие № 9 Исследование отображений и свойств бинарных отношений с помощью графов

Цель работы: формирование умений построения графов.

Выполнив работу, Вы будете:

уметь:

- Применять логические операции, формулы логики, законы алгебры логики.
- Формулировать задачи логического характера и применять средства математической логики для их решения.
- анализировать задачу и/или проблему и выделять её составные части;
- Зопределять этапы решения задачи;
- составлять план действия;
- учитывать временные ограничения и сроки при решении профессиональных задач;
- владеть актуальными методами работы в профессиональной и смежных сферах;).
- определять задачи поиска информации;
- определять необходимые источники информации;
- планировать процесс поиска; структурировать получаемую информацию;
- выделять наиболее значимое в перечне информации;
- оценивать практическую значимость результатов поиска;
- взаимодействовать с коллегами, руководством, клиентами в ходе профессиональной деятельности
- применять техники и приемы эффективного общения в профессиональной деятельности
- понимать общий смысл четко произнесенных высказываний на известные темы (профессиональные и бытовые), понимать тексты на базовые профессиональные темы.

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор.

Задания:

- 1. Граф G задан диаграммой (рис. 1).
 - 1. Составьте для него матрицу смежности.
 - 2. Постройте матрицу инцидентности.
 - 3. Укажите степени вершин графа.
- 4. Найдите длину пути из вершины V_2 в вершину V_5 , составьте маршруты длины 5, цепь и простую цепь, соединяющие вершину V_2 и вершину V_5 .
 - 5. Постройте простой цикл, содержащий вершину V_4 .
 - 6. Найдите цикломатическое число графа G.
 - 7. Определите вид заданного графа.

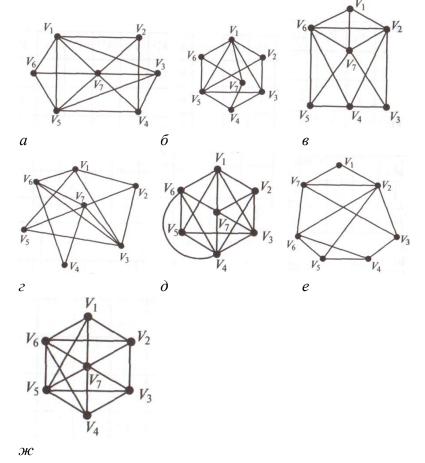
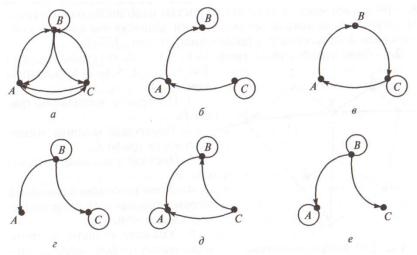



Рис. 1. Задание графа G к упр. 1 (a-ж – варианты)

2. Постройте матрицу смежности и матрицу инцидентности для отношений, заданных графом G. Найдите число степеней входа и выхода этого графа, дайте ему характеристику (рис. 2.).

Порядок выполнения работы:

1. Решить задания в тетради.

Рис. 2.

2. Получить у преподавателя задания для самостоятельной работы и решить их в тетради.

Задание графа G к упр. 2 (a-e-варианты)

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

- «5» Практическое занятие выполнена полностью, задачи решены верно, теоретический материал записан в тетрадь, студент отвечает на все вопросы преподавателя по теме работы.
- «4» Практическое занятие выполнена на 80%-90%, задачи решены верно или с небольшими недочетами, теоретический материал записан в тетрадь, студент отвечает на вопросы преподавателя по теме работы.
- «3» Практическое занятие выполнена на 70% и более, теоретический материал записан в тетрадь не в полном объеме, студент отвечает не на все вопросы преподавателя по теме работы.
 - «2» Практическое занятие выполнена мене 70%.

Тема 5.1.Элементы теории алгоритмов

Практическое занятие № 10 Работа машины Тьюринга

Цель работы: формирование умений строить автоматы, распознающие заданные свойства слова.

Выполнив работу, Вы будете:

уметь:

- Применять логические операции, формулы логики, законы алгебры логики.
- Формулировать задачи логического характера и применять средства математической логики для их решения.
- анализировать задачу и/или проблему и выделять её составные части;
- Зопределять этапы решения задачи;
- составлять план действия;
- учитывать временные ограничения и сроки при решении профессиональных задач;
- владеть актуальными методами работы в профессиональной и смежных сферах;).
- определять задачи поиска информации;
- определять необходимые источники информации;
- планировать процесс поиска; структурировать получаемую информацию;
- выделять наиболее значимое в перечне информации;
- оценивать практическую значимость результатов поиска;
- взаимодействовать с коллегами, руководством, клиентами в ходе профессиональной деятельности
- применять техники и приемы эффективного общения в профессиональной деятельности
- понимать общий смысл четко произнесенных высказываний на известные темы (профессиональные и бытовые), понимать тексты на базовые профессиональные темы.

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор.

Задания:

1. Построить таблицу состояний для автомата изображенного на рисунке 1

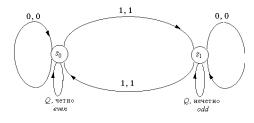


Рис. 1

2. Построить диаграмму состояний для автоматов заданных в виде таблиц состояний.

Текущее	Следующее состояние						
состояние							
	Bxo	Д		Выход			
		1	0		1	1	
s_0		S 0	S ₁		0	1	

s_I		S ₁	<i>s</i> ₂		1	0	
s_2		s_0	<i>s</i> ₂		1	0	
Текущее	Сле,	дующее состояние					
состояние	состояние						
	Bxo,	Д		Выход			
					1	0	
<i>S</i> ₀		s_1	S_0		1	0	
<i>S</i> ₁		<i>s</i> ₂	S_1		1	0	
<i>S</i> ₂		s_0	S_2		1	0	

3. Опишите, используя обозначение Тьюринга, следующую машину:

 $v : (s_0, 1)$ a $s_1 ζ : (s_0, 0)$ a 0 δ : $(s_0, 0)$ a Π

 $(s_0, 0)$ a $s_2(s_0, 1)$ a 1 $(s_0, 1)$ a Π

 $(s_1, 0)$ a $s_1(s_1, 0)$ a $0(s_1, 0)$ a Π

 $(s_1, 0)$ a $s_2(s_1, 1)$ a 1 $(s_1, 1)$ a Π

 $(s_2, 0)$ a $s_2(s_2, 0)$ a $0(s_2, 0)$ a Π

 $(s_2, 1)$ a $s_1(s_2, 1)$ a 1 $(s_2, 1)$ a Π

 $(s_0,\#)$ а $s_0(s_0,\#)$ а $\#(s_0,\#)$ а Π

 $(s_1,\#)$ a $s_1(s_1,\#)$ a $\Psi(s_1,\#)$ a OCTAHOB

 $(s_2,\#)$ a $s_2(s_2,\#)$ a H $(s_2,\#)$ a OCTAHOB

Порядок выполнения работы:

- 1. Решить задания в тетради.
- 2. Получить у преподавателя задания для самостоятельной работы и решить их в тетради.

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

- «5» Практическое занятие выполнена полностью, задачи решены верно, теоретический материал записан в тетрадь, студент отвечает на все вопросы преподавателя по теме работы.
- «4» Практическое занятие выполнена на 80%-90%, задачи решены верно или с небольшими недочетами, теоретический материал записан в тетрадь, студент отвечает на вопросы преподавателя по теме работы.
- «3» Практическое занятие выполнена на 70% и более, теоретический материал записан в тетрадь не в полном объеме, студент отвечает не на все вопросы преподавателя по теме работы.
 - «2» Практическое занятие выполнена мене 70%.