Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

Многопрофильный колледж

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ПРАКТИЧЕСКИХ ЗАНЯТИЙ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОП.01 ЭЛЕМЕНТЫ ВЫСШЕЙ МАТЕМАТИКИ

для обучающихся специальности 09.02.01 Компьютерные системы и комплексы

Магнитогорск, 2024

СОДЕРЖАНИЕ

1 Введение	71

2. Методические указания	72c.
Практическое занятие 1	72 c.
Практическое занятие2	74 c.
Практическое занятие3	74c.
Практическое занятие4	77 c.
Практическое занятие5	78 c.
Практическое занятие6	81 c.
Практическое занятие7	82 c.
Практическое занятие8	85 c.
Практическое занятие9	87 c.
Практическое занятие10	89 c.
Практическое занятие11	91 c.
Практическое занятие12	93 c.
Практическое занятие13	95 c.
Практическое занятие14	97 c.
Практическое занятие15	99 c.
Практическое занятие16	101 c
Практическое занятие17	105 c
Практическое занятие18	108 c
Практическое занятие19	110 c
Практическое занятие20	113 c
Практическое занятие21	116 c
Практическое занятие22	117 c.
Практическое занятие23	120 c
Практическое занятие24	121 c.

1 ВВЕДЕНИЕ

Важную часть теоретической и профессиональной практической подготовки обучающихся составляют практические занятия.

Состав и содержание практических занятий направлены на реализацию Федерального государственного образовательного стандарта среднего профессионального образования.

Ведущей дидактической целью практических занятий является формирование профессиональных практических умений (умений выполнять определенные действия, операции, необходимые в последующем в профессиональной деятельности) или учебных практических умений (умений решать задачи по математике), необходимых в последующей учебной деятельности.

В соответствии с рабочей программой учебной дисциплины «Элементы высшей математики» предусмотрено проведение практических занятий.

В результате их выполнения, обучающийся должен:

уметь:

- выполнять операции над матрицами и решать системы линейных уравнений;
- применять методы дифференциального и интегрального исчисления;
- решать дифференциальные уравнения.

Содержание практических занятий ориентировано на подготовку обучающихся к освоению профессионального модуля программы подготовки специалистов среднего звена по специальности и овладению *профессиональными компетенциями*:

- ПК 1.1. Анализировать требования технического задания на проектирование цифровых систем.
- ПК 1.2. Разрабатывать схемы электронных устройств на основе интегральных схем разной степени интеграции в соответствии с техническим заданием.
- ПК 2.1. Проектировать, разрабатывать и отлаживать программный код модулей управляющих программ.

А также формированию общих компетенций:

- OК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- OК 02 Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности.

Выполнение обучающихся практических работ по учебной дисциплине «Элементы высшей математики» направлено на:

- обобщение, систематизацию, углубление, закрепление, развитие и детализацию полученных теоретических знаний по конкретным темам учебной дисциплины;
- формирование умений применять полученные знания на практике, реализацию единства интеллектуальной и практической деятельности;
- формирование и развитие умений: наблюдать, сравнивать, сопоставлять, анализировать, делать выводы и обобщение, самостоятельно вести исследования, пользоваться различными приемами измерений, оформлять результаты в виде таблиц, схем, графиков;
- выработку при решении поставленных задач профессионально значимых качеств, таких как самостоятельность, ответственность, точность, творческая инициатива.

Практические занятия проводятся после соответствующей темы, которая обеспечивает наличие знаний, необходимых для ее выполнения.

2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Тема 1.1. Матрицы и определители

Практическое занятие № 1 Вычисление определителей

Цель: формирование умений вычислять определители.

Выполнив работу, Вы будете:

уметь:

- Выполнять операции над матрицами и решать системы линейных уравнений;
- анализировать задачу и/или проблему и выделять её составные части;
- определять этапы решения задачи;

Выполнение практической работы способствует формированию:

- OК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ПК 1.2. Разрабатывать схемы электронных устройств на основе интегральных схем разной степени интеграции в соответствии с техническим заданием

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

Задание:

- 1.Вычислить определитель второго порядка |-42 13|
- 2. Найти значение переменной величины |-42x 13| = -6
- 3. Вычислить определитель третьего порядка методом разложения по первой строке $|1 3 \ 2 \ 0 \ 4 2 \ 3 \ 1 \ 4|$.
- 4. Вычислить определитель третьего порядка методом треугольника

$$|1 - 3204 - 2314|$$

5. Выполнить действия:

A)
$$3*|1 - 3204 - 2314|$$

$$[5]$$
 $[1 - 3204 - 2314] + [43 - 21 - 42304]$

B)
$$|1 - 3204 - 2314| \cdot |43 - 21 - 42304|$$

Порядок выполнения работы:

Задания решаются в любом порядке

Ход работы:

- 1. Получить у преподавателя задания.
- 2. Оформить решение в тетради для практических работ.

Таблица вида $\Delta = |a| + c + k$ называется определителем второго порядка и вычисляется по формуле |a| + c + k - k

Таблица вида $\Delta = |a_1 \ a_2 \ a_3 \ b_1 \ b_2 \ b_3 \ c_1 \ c_2 \ c_3|$ называется определителем третьего порядка и вычисляется двумя способами: методом разложения по первой строке и методом треугольника. *Метод треугольника*

$$\Delta = |a_1 \ a_2 \ a_3 \ b_1 \ b_2 \ b_3 \ c_1 \ c_2 \ c_3|$$

$$= (a_1 \cdot b_2 \cdot c_3 + a_2 \cdot b_3 \cdot c_1 + a_3 \cdot b_1 \cdot c_2) - (a_3 \cdot b_2 \cdot c_1 + a_2 \cdot b_1 \cdot c_3 + a_1 \cdot b_3 \cdot c_2)$$

$$\Delta = |a_1 a_2 a_3 b_1 b_2 b_3 c_1 c_2 c_3| = a_1 \cdot |b_2 b_3 c_2 c_3| - a_2 \cdot |b_1 b_3 c_1 c_3| + a_3 \cdot |b_1 b_2 c_1 c_2|$$

Определители любого порядка обладают следующими свойствами:

1. Общий множитель в строке можно выносить за знак определителя.

$$\left| \begin{array}{cc} 2 & 4 \\ -3 & 8 \end{array} \right| = 2 \cdot \left| \begin{array}{cc} 1 & 2 \\ -3 & 8 \end{array} \right|$$

2. Если каждый элемент в какой-то строке определителя равен сумме двух слагаемых, то исходный определитель равен сумме двух определителей, в которых вместо этой строки стоят первые и вторые слагаемые соответственно, а остальные строки совпадают с исходным определителем.

$$\begin{vmatrix} b_{11} + c_{11} & b_{12} + c_{12} & b_{13} + c_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} b_{11} & b_{12} & b_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} c_{11} & c_{12} & c_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

3. Если две строки определителя поменять местами, то определитель поменяет знак.

$$\begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = - \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix}$$

4. Определитель с двумя равными строками равен нулю

$$\begin{vmatrix} 1 & 2 & 3 \\ 1 & 0 & -7 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

5. Определитель с двумя пропорциональными строками равен нулю

$$\begin{vmatrix} 1 & 2 & 3 \\ -1 & 2 & 2 \\ 2 & 4 & 6 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 \\ -1 & 2 & 2 \\ 2 \cdot 1 & 2 \cdot 2 & 2 \cdot 3 \end{vmatrix} = 0$$

6. Определитель, содержащий нулевую строку, равен нулю

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 2 & 3 & 1 \end{bmatrix} = 0$$

7. Определитель не изменится, если к какой-то его строке прибавить другую строку, умноженную на некоторое число

Пусть задан определитель третьего порядка $\begin{bmatrix} 1 & 0 & -1 \\ 2 & 3 & 1 \end{bmatrix}$. Ко второй строке прибавим третью значение определителя не измениться

$$\begin{vmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ 2 & 3 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -1 & 0 \\ 1+2 & 0+3 & -1+1 \\ 2 & 3 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -1 & 0 \\ 3 & 3 & 0 \\ 2 & 3 & 1 \end{vmatrix}$$

8. Определитель верхней (нижней) треугольной матрицы равен произведению его диагональных элементов.

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

5

Критерии оценки:

За каждый правильный ответ -1 балл. За неправильный ответ -0 баллов. $90 \div 100$ отлично; $80 \div 89$ - хорошо; $70 \div 79$ -удовлетворительно; менее 70-не удовлетворительно.

Тема 1.1. Матрицы и определители

Практическое занятие № 2Операции над матрицами. Практическое занятие №3 Нахождение обратной матрицы

Цель: формирование умений выполнять операции над матрицами.

Выполнив работу, Вы будете:

уметь:

- Выполнять операции над матрицами и решать системы линейных уравнений;
- анализировать задачу и/или проблему и выделять её составные части;
- определять этапы решения задачи;

Выполнение практической работы способствует формированию:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ПК 1.2. Разрабатывать схемы электронных устройств на основе интегральных схем разной степени интеграции в соответствии с техническим заданием

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

Задание:

Найти значение функции $f(x) = 4x^2 - 5x + 2$. Если x = (3 - 21 - 1)

Найти значение функции $f(x) = -2x^2 + 3x - 6$. Если $x = (1 \ 2 \ 3 \ 0 \ 4 \ - 1 \ 5 \ 1 \ - 3)$

Найти матрицу, обратную данной

A)
$$A = (-314 - 1)$$
; B) $B = (12334 - 150 - 3)$; B)
$$\begin{pmatrix} 6 & 5 & 1 & 2 \\ 11 & 10 & 8 & 9 \\ 9 & 8 & 5 & 6 \\ 4 & 3 & -2 & -2 \end{pmatrix}$$

Порядок выполнения работы:

Задания решаются в любом порядке

Ход работы:

- 1. Получить у преподавателя задания.
- 2. Оформить решение в тетради для практических работ.

Пусть дана квадратная матрица An-го порядка.

Mинором M_{ij} элемента a_{ij} матрицы n-го порядка называется определитель матрицы (n-1)-го порядка, полученной из матрицы A вычеркиванием i-й строки и j-го столбца.

6

Например, минором элемента a_{12} матрицы A третьего порядка будет:

$$M_{12} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} = a_{21} \cdot a_{33} - a_{31} \cdot a_{23}.$$

Каждая матрица n-го порядка имеет n^2 миноров (n-1)-го порядка.

Алгебраическим дополнением A_{ii} элемента a_{ii} матрицы n-го порядка называется его минор, взятый со знаком $(-1)^{i+j}$:

 $A_{ij} = (-1)^{i+j} M_{ij}$, т.е. алгебраическое дополнение совпадает с минором, когда сумма номеров строки и столбца (i+j)- четное число, и отличается от минора знаком, когда (i+j)-нечетное число.

 $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$ Решение.

$$A_{11} \!\!=\!\! (-1)^{1+1} \!\cdot\! \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} \!\!=\!\! 1; \ A_{12} \!\!=\!\! (-1)^{1+2} \!\cdot\! \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} \!\!=\!\! -3; \ A_{13} \!\!=\!\! (-1)^{1+3} \!\cdot\! \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} \!\!=\!\! 1;$$

$$A_{21} = (-1)^{2+1} \cdot \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} = 3; \ A_{22} = (-1)^{2+2} \cdot \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1; \ A_{23} = (-1)^{2+3} \cdot \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = -2;$$

$$A_{31} = (-1)^{3+1} \cdot \begin{vmatrix} -1 & 1 \\ 1 & 1 \end{vmatrix} = -2; \quad A_{32} = (-1)^{3+2} \cdot \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = 1; \quad A_{33} = (-1)^{3+3} \cdot \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} = 3.$$

Алгоритм вычисления обратной матрицы

- 1. Находим определитель исходной матрицы. Если |A| = 0, то матрица A вырожденная и обратной матрицы A^{-1} не существует. Если $/A/\neq 0$, то матрица A – невырожденная и обратная матрица существует.
 - 2. Находим матрицу A^{T} , транспонированную к A.
- 3. Находим алгебраические дополнения элементов транспонированной матрицы и составляем из них присоединенную матрицу A^* .
 - 4. Вычисляем обратную матрицу по формуле: $A^{-1} = \frac{1}{|A|} \cdot A^*$
- 5. Проверяем правильность вычисления обратной матрицы A^{-1} , исходя из ее определения A^{-1} ${}^{1}A = AA^{-1} = E$.

<u>Пример</u>. Найти матрицу, обратную к данной: $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$.

Решение.

- 1. Определитель матрицы |A| = 5 \overline{O} , т.е. матрица A невырожденная и обратная матрица A^{-1} существует.
- 2. Находим матрицу A^T , транспонированную к A: $A^T = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$.

3. Находим алгебраические дополнения элементов матрицы A^T и составляем из них присоединенную матрицу A^* :

$$A^{T}_{11} = (-1)^{1+1} \cdot \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1; \ A^{T}_{12} = (-1)^{1+2} \cdot \begin{vmatrix} -1 & 1 \\ 1 & 2 \end{vmatrix} = 3; \ A^{T}_{13} = (-1)^{1+3} \cdot \begin{vmatrix} -1 & 1 \\ 1 & 1 \end{vmatrix} = -2;$$

$$A^{T}_{21} = (-1)^{2+1} \cdot \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = -3; \ A^{T}_{22} = (-1)^{2+2} \cdot \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1; \ A^{T}_{23} = (-1)^{2+3} \cdot \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = 1;$$

$$A^{T}_{31} = (-1)^{3+1} \cdot \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = 1; \ A^{T}_{32} = (-1)^{3+2} \cdot \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = -2; \ A^{T}_{33} = (-1)^{3+3} \cdot \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} = 3,$$

$$A^* = \begin{pmatrix} 1 & 3 & -2 \\ -3 & 1 & 1 \\ 1 & -2 & 3 \end{pmatrix}.$$

4. Вычисляем обратную матрицу по формуле
$$A^{-1} = \frac{1}{|A|} \cdot A^*$$

$$A^{-1} = \begin{bmatrix} 1 & 3 & -2 \\ -3 & 1 & 1 \\ 1 & -2 & 3 \end{bmatrix} = \begin{bmatrix} 1/5 & 3/5 & -2/5 \\ -3/5 & 1/5 & 1/5 \\ 1/5 & -2/5 & 3/5 \end{bmatrix}.$$

5. Проверяем правильность вычисления обратной матрицы по формулам $A^{-1}A = AA^{-1} = E$:

$$A^{-1}A = \begin{pmatrix} 1/5 & 3/5 & -2/5 \\ -3/5 & 1/5 & 1/5 \\ 1/5 & -2/5 & 3/5 \end{pmatrix} \bigoplus \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} = \\ \begin{pmatrix} \frac{1}{5} \cdot 1 + \frac{3}{5} \cdot 2 + \left(-\frac{2}{5}\right) \cdot 1 & \frac{1}{5} \cdot (-1) + \frac{3}{5} \cdot 1 + \left(-\frac{2}{5}\right) \cdot 1 & \frac{1}{5} \cdot 1 + \frac{3}{5} \cdot 1 + \left(-\frac{2}{5}\right) \cdot 2 \\ \left(-\frac{3}{5}\right) \cdot 1 + \frac{1}{5} \cdot 2 + \frac{1}{5} \cdot 1 & \left(-\frac{3}{5}\right) \cdot (-1) + \frac{1}{5} \cdot 1 + \frac{1}{5} \cdot 1 & \left(-\frac{3}{5}\right) \cdot 1 + \frac{1}{5} \cdot 1 + \frac{1}{5} \cdot 2 \\ = \left(\frac{1}{5} \cdot 1 + \left(-\frac{2}{5}\right) \cdot 2 + \frac{3}{5} \cdot 1 & \frac{1}{5} \cdot (-1) + \left(-\frac{2}{5}\right) \cdot 1 + \frac{3}{5} \cdot 1 & \frac{1}{5} \cdot 1 + \left(-\frac{2}{5}\right) \cdot 1 + \frac{3}{5} \cdot 2 \\ = \left(\frac{1}{5} \cdot 1 + \left(-\frac{2}{5}\right) \cdot 2 + \frac{3}{5} \cdot 1 & \frac{1}{5} \cdot (-1) + \left(-\frac{2}{5}\right) \cdot 1 + \frac{3}{5} \cdot 1 & \frac{1}{5} \cdot 1 + \left(-\frac{2}{5}\right) \cdot 1 + \frac{3}{5} \cdot 2 \\ = \left(\frac{1}{5} \cdot 1 + \left(-\frac{2}{5}\right) \cdot 2 + \frac{3}{5} \cdot 1 & \frac{1}{5} \cdot (-1) + \left(-\frac{2}{5}\right) \cdot 1 + \frac{3}{5} \cdot 1 & \frac{1}{5} \cdot 1 + \left(-\frac{2}{5}\right) \cdot 1 + \frac{3}{5} \cdot 2 \\ = \left(\frac{1}{5} \cdot 1 + \left(-\frac{2}{5}\right) \cdot 2 + \frac{3}{5} \cdot 1 & \frac{1}{5} \cdot (-1) + \left(-\frac{2}{5}\right) \cdot 1 + \frac{3}{5} \cdot 1 & \frac{1}{5} \cdot 1 + \left(-\frac{2}{5}\right) \cdot 1 + \frac{3}{5} \cdot 2 \\ = \left(\frac{1}{5} \cdot 1 + \left(-\frac{2}{5}\right) \cdot 2 + \frac{3}{5} \cdot 1 & \frac{1}{5} \cdot (-1) + \left(-\frac{2}{5}\right) \cdot 1 + \frac{3}{5} \cdot 1 & \frac{1}{5} \cdot 1 + \left(-\frac{2}{5}\right) \cdot 1 + \frac{3}{5} \cdot 2 \\ = \left(\frac{1}{5} \cdot 1 + \left(-\frac{2}{5}\right) \cdot 2 + \frac{3}{5} \cdot 1 & \frac{1}{5} \cdot (-1) + \left(-\frac{2}{5}\right) \cdot 1 + \frac{3}{5} \cdot 1 & \frac{1}{5} \cdot 1 + \left(-\frac{2}{5}\right) \cdot 1 + \frac{3}{5} \cdot 2 \\ = \left(\frac{1}{5} \cdot 1 + \left(-\frac{2}{5}\right) \cdot 2 + \frac{3}{5} \cdot 1 & \frac{1}{5} \cdot (-1) + \frac{2}{5} \cdot 1 + \frac{3}{5} \cdot 1 & \frac{1}{5} \cdot 1 + \left(-\frac{2}{5}\right) \cdot 1 + \frac{3}{5} \cdot 2 \\ = \left(\frac{1}{5} \cdot 1 + \left(-\frac{2}{5}\right) \cdot 2 + \frac{3}{5} \cdot 1 & \frac{1}{5} \cdot (-1) + \frac{2}{5} \cdot 1 + \frac{3}{5} \cdot 1 & \frac{1}{5} \cdot 1 + \left(-\frac{2}{5}\right) \cdot 1 + \frac{3}{5} \cdot 2 \\ = \left(\frac{1}{5} \cdot 1 + \frac{3}{5} \cdot 1 +$$

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

Критерии оценки:

3а каждый правильный ответ -1 балл. 3а неправильный ответ -0 баллов. $90\div100$ отлично; 80 ÷ 89- хорошо; 70 ÷ 79-удовлетворительно; менее 70-не удовлетворительно.

Тема 1.2. Системы линейных уравнений

Практическое занятие № 4 Решение системы линейных уравнений по правилу Крамера

Цель: формирование умений решать системы линейных уравнений по правилу Крамера. Выполнив работу, Вы будете:

- Выполнять операции над матрицами и решать системы линейных уравнений;

- анализировать задачу и/или проблему и выделять её составные части;
- определять этапы решения задачи;

Выполнение практической работы способствует формированию:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ПК 1.2. Разрабатывать схемы электронных устройств на основе интегральных схем разной степени интеграции в соответствии с техническим заданием

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

Задание:

Решить системы линейных уравнений с двумя неизвестными по правилу Крамера

a)
$$\{x + 2y = -2 \ 3x - y = 8 \ ; \ b)\{4x - 3y = -1 \ x - 5y = 4 \ ; \ c)\{7x + 3y = 1 \ 2x - 6y = -10 \ \}$$

Решить системы линейных уравнений с тремя неизвестными по правилу Крамера

a)
$$\begin{cases} x_1 + x_2 - 2x_3 = 6, \\ 2x_1 + 3x_2 - 7x_3 = 16, \\ 5x_1 + 2x_2 + x_3 = 16; \end{cases} \begin{cases} 5x_1 + 8x_2 + x_3 = 2, \\ 3x_1 - 2x_2 + 6x_3 = -7, \\ 2x_1 + x_2 - x_3 = -5; \end{cases}$$
B)
$$\begin{cases} 2x_1 - 3x_2 + x_3 = -7, \\ x_1 + 4x_2 + 2x_3 = -1, \\ x_1 - 4x_2 = -5; \end{cases}$$

Решить системы линейных уравнений с четырьмя неизвестными по правилу Крамера

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 10, \\ x_1 + x_2 - x_3 - x_4 = -4, \\ x_1 - x_2 + x_3 - x_4 = -2; \mathbf{d} \end{cases} \begin{cases} x_1 + 3x_2 + 4x_3 - 2x_4 = 2, \\ -3x_1 - 7x_2 - 8x_3 + 2x_4 = -4, \\ 2x_1 - x_2 + 3x_3 = 4, \\ 2x_1 + 4x_2 + 4x_3 = 3. \end{cases}$$

Порядок выполнения работы:

Задания решаются в любом порядке

Ход работы:

- 1. Получить у преподавателя задания.
- 2. Оформить решение в тетради для практических работ.

Метод Крамера

Теорема Крамера. Пусть Δ — определитель матрицы системы A, а Δ_j — определитель матрицы, получаемой из матрицы A заменой j—го столбца столбцом свободных членов. Тогда, если Δ ≠0, то система имеет единственное решение, определяемое по формулам:

$$x_j = \frac{\Delta_j}{\Delta}$$
 (j=1,2...n.).

Формула получила название формулы Крамера.

Алгоритм решения системы линейных уравнений методом Крамера.

- 1). Вычислить определитель матрицы A, составленной из коэффициентов системы линейных уравнений.
- 2). Составить матрицы A_1 , A_2 , ..., A_n , путем замены соответствующих столбцов столбцом свободных членов, и вычислить их определители.

$$x_1 = \frac{|A_1|}{|A|}, x_2 = \frac{|A_2|}{|A|}, K, x_n = \frac{|A_n|}{|A|}$$

3). Вычислить значения переменных по формулам Крамера: $x_1 = \frac{|A_1|}{|A|}, x_2 = \frac{|A_2|}{|A|}, K, x_n = \frac{|A_n|}{|A|}$ $\frac{x_1-x_2+x_3=3,}{2x_1+x_2+x_3=11,}$ <u>Пример.</u>Решить систему уравнений методом Крамера: $\begin{cases} x_1-x_2+x_3=3,\\ 2x_1+x_2+x_3=11,\\ x_1+x_2+x_3=8. \end{cases}$

Решение. Составим матрицу из коэффициентов системы уравнений и вычислим ее

определитель: $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$, $|A| = 5 \neq 0$. Так как $\Delta \neq 0$, то по теореме Крамера

система имеет единственное решение.

Вычислим определители матриц A_1 , A_2 , A_3 , полученных из матрицы A, заменой соответственно первого, второго и третьего столбцов столбцом свободных членов:

$$A_{1} = \begin{vmatrix} 3 & -1 & 1 \\ 11 & 1 & 1 \\ 8 & 1 & 2 \end{vmatrix} = 20; A_{2} = \begin{vmatrix} 1 & 3 & 1 \\ 2 & 11 & 1 \\ 1 & 8 & 2 \end{vmatrix} = 10; A_{3} = \begin{vmatrix} 1 & -1 & 3 \\ 2 & 1 & 11 \\ 1 & 1 & 8 \end{vmatrix} = 5$$

Теперь по формулам Крамера найдем значения переменных:

$$x_1 = \frac{|A_1|}{|A|} = \frac{20}{5} = 4$$
, $x_2 = \frac{|A_2|}{|A|} = \frac{10}{5} = 2$, $x_3 = \frac{|A_3|}{|A|} = \frac{5}{5} = 1$

Ответ: (4; 2; 1).

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

Критерии оценки:

За каждый правильный ответ -1 балл. За неправильный ответ -0 баллов. $90 \div 100$ отлично; $80 \div 89$ - хорошо; $70 \div 79$ -удовлетворительно; менее 70-не удовлетворительно.

Тема 1.2. Системы линейных уравнений

Практическое занятие № 5 Решение системы линейных уравнений по правилу Гаусса

Цель: формирование умений решать системы линейных уравнений по правилу Гаусса. Выполнив работу, Вы будете:

уметь:

- Выполнять операции над матрицами и решать системы линейных уравнений;
- анализировать задачу и/или проблему и выделять её составные части;
- определять этапы решения задачи;

Выполнение практической работы способствует формированию:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ПК 1.2. Разрабатывать схемы электронных устройств на основе интегральных схем разной степени интеграции в соответствии с техническим заданием

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

Задание:

Решить системы линейных уравнений с двумя неизвестными по правилу Гаусса

a)
$$\{x + 2y = -2 \ 3x - y = 8 \ ; b)\{4x - 3y = -1 \ x - 5y = 4 \ ; c)\{7x + 3y = 1 \ 2x - 6y = -10 \ \}$$

Решить системы линейных уравнений с тремя неизвестными по правилу Гаусса

$$\begin{cases} x_1 + x_2 - 2x_3 = 6, \\ 2x_1 + 3x_2 - 7x_3 = 16, \\ 5x_1 + 2x_2 + x_3 = 16; \end{cases} \begin{cases} 5x_1 + 8x_2 + x_3 = 2, \\ 3x_1 - 2x_2 + 6x_3 = -7, \\ 2x_1 + x_2 - x_3 = -5; \end{cases} \\ b \end{cases} \begin{cases} 2x_1 - 3x_2 + x_3 = -7, \\ x_1 + 4x_2 + 2x_3 = -1, \\ x_1 - 4x_2 = -5; \end{cases}$$

Решить системы линейных уравнений с четырьмя неизвестными по правилу Гаусса

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 10, \\ x_1 + x_2 - x_3 - x_4 = -4, \\ x_1 - x_2 + x_3 - x_4 = -2; \mathbf{d} \end{cases} \begin{cases} x_1 + 3x_2 + 4x_3 - 2x_4 = 2, \\ -3x_1 - 7x_2 - 8x_3 + 2x_4 = -4, \\ 2x_1 - x_2 + 3x_3 = 4, \\ 2x_1 + 4x_2 + 4x_3 = 3. \end{cases}$$

Порядок выполнения работы:

Задания решаются в любом порядке

Ход работы:

- 1. Получить у преподавателя задания.
- 2. Оформить решение в тетради для практических работ.

Метод Гаусса (метод исключения неизвестных)

Метод Гаусса является наиболее общим точным методом решения и исследования систем линейных уравнений. Сущность его состоит в том, что посредством элементарных преобразований система приводится к ступенчатому виду, из которого все решения системы могут быть найдены непосредственно.

Элементарными преобразованиями системы являются:

- перестановка любых двух уравнений системы;
- умножение любого уравнения системы на число \ ≠0;
- вычеркивание уравнения, у которого все коэффициенты и свободный член равны нулю;
- сложение двух уравнений системы.

Любое элементарное преобразование системы не меняет множество ее решений.

Чаще всего преобразования выполняются не с самой системой, а с ее расширенной матрицей, при этом элементарные преобразования системы легко превращаются в элементарные преобразования матрицы.

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 6, \\ 2x_1 + 3x_2 - x_3 = 4, \\ 3x_1 + x_2 - 4x_3 = 0. \end{cases}$$

<u>Пример.</u> Решить систему уравнений методом Гаусса: $3x_1 + x_2 - 4x_3 = 0$. Решение.

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 6, \\ 2x_1 + 3x_2 - x_3 = 4, \\ 3x_1 + x_2 - 4x_3 = 0; \end{cases} \begin{cases} x_1 + 2x_2 + 3x_3 = 6, \\ -x_2 - 7x_3 = -8, \\ -5x_2 - 13x_3 = -18; \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 6, \\ -x_2 - 7x_3 = -8, \\ 22x_3 = 22; \end{cases} \begin{cases} x_1 = 6 - 2x_2 - 3x_3, \\ x_2 = \frac{-8 + 7x_3}{-1}, \\ x_3 = 1; \end{cases} \begin{cases} x_1 = 1, \\ x_2 = 1, \\ x_3 = 1. \end{cases}$$
Other: (1; 1; 1).

$$\begin{cases} 2x_1 + x_2 - x_3 = 5, \\ x_1 - 2x_2 + 2x_3 = -5, \end{cases}$$

 $\frac{2x_1 + x_2 - x_3 = 5,}{x_1 - 2x_2 + 2x_3 = -5,}$ Решение. Выполним преобразования с поможения с

Решение. Выполним преобразования с помощью расширенной матрицы:

$$\begin{pmatrix}
2 & 1 & -1 & 5 \\
1 & -2 & 2 & -5 \\
7 & -1 & -1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 & -1 & 5 \\
0 & 5 & -5 & 15 \\
0 & 5 & -5 & 35
\end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 & -1 & 5 \\
0 & 5 & -5 & 35
\end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 & -1 & 5 \\
0 & 5 & -5 & 35
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 5 & -5 & 15 \\
0 & 0 & -20 & -40
\end{pmatrix}$$

 $\begin{cases} 2x_1 + x_2 - x_3 = 5, \\ 5x_2 - 5x_3 = 15, \\ -20x_3 = -40, \end{cases}$ Полученной матрице соответствует система

 $\begin{cases} x_1 = 1, \\ x_2 = 5, \\ x_3 = 2. \end{cases}$ решение

Ответ: (1; 5; 2).

Если система несовместна (т.е. составляющие её уравнения противоречивы и система не имеет решения), то в результате приведения к ступенчатому виду получается абсурдное равенство типа l=0. Обратно: если мы получили равенство l=0 (вместо единицы в левой части может стоять любое число, не равное нулю), то система несовместна.

 $\frac{1}{2} \frac{2x_1 - x_2 + x_3 - x_4 = 3}{4x_1 - 2x_2 - 2x_3 + 3x_4 = 2},$ Решение Выполиче трасбеть Решение. Выполним преобразования с помощью расширенной матрицы:

$$\begin{pmatrix}
2 & -1 & 1 & -1 & | & 3 \\
4 & -2 & -2 & 3 & | & 2 \\
2 & -1 & 5 & -6 & | & 1
\end{pmatrix}$$

$$\begin{pmatrix}
2 & -1 & 1 & -1 & | & 3 \\
0 & 0 & -4 & 5 & | & -4 \\
0 & 0 & -4 & 5 & | & -4 \\
0 & 0 & 0 & 0 & | & -6
\end{pmatrix}$$

$$\begin{pmatrix}
2 & -1 & 1 & -1 & | & 3 \\
0 & 0 & -4 & 5 & | & -4 \\
0 & 0 & 0 & 0 & | & -6
\end{pmatrix}$$

 $\begin{cases} 2x_1 - x_2 + x_3 - x_4 = 3, \\ -4x_3 + 5x_4 = -4, \\ 0x_4 = -6. \end{cases}$ Третье уравнение системы не Полученной матрице соответствует система

имеет решений, следовательно, система решений не имеет.

Ответ: система несовместна.

$$\begin{cases} 2x_1 + 7x_2 + 3x_3 + x_4 = 5, \\ x_1 + 3x_2 + 5x_3 - 2x_4 = 3, \\ x_1 + 5x_2 - 9x_3 + 8x_4 = 1, \end{cases}$$

 $\begin{cases} 2x_1 + 7x_2 + 3x_3 + x_4 = 5, \\ x_1 + 3x_2 + 5x_3 - 2x_4 = 3, \\ x_1 + 5x_2 - 9x_3 + 8x_4 = 1, \\ 5x_1 + 18x_2 + 4x_3 + 5x_4 = 12. \end{cases}$ Решение Запишем возучивание.

Решение. Запишем расширенную матрицу и выполним первый шаг гауссовых исключений:

$$\begin{pmatrix} 2 & 7 & 3 & 1 & 5 \\ 1 & 3 & 5 & -2 & 3 \\ 1 & 5 & -9 & 8 & 1 \\ 5 & 18 & 4 & 5 & 12 \end{pmatrix} _{\widehat{\mathbb{R}}} \begin{pmatrix} 2 & 7 & 3 & 1 & 5 \\ 0 & -1 & 7 & -5 & 1 \\ 0 & 3 & -21 & 15 & -3 \\ 0 & 1 & -7 & 5 & -1 \end{pmatrix} .$$

Разделим третью строку на 3 и выполним второй ход гауссовых исключений:

$$\begin{pmatrix} 2 & 7 & 3 & 1 & | & 5 \\ 0 & -1 & 7 & -5 & | & 1 \\ 0 & 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}_{ \textstyle \textcircled{R} } \begin{pmatrix} 2 & 7 & 3 & 1 & | & 5 \\ 0 & -1 & 7 & -5 & | & 1 \end{pmatrix}.$$

Последней матрице соответствует система уравнений: $\begin{cases} 2x_1 + 7x_2 + 3x_3 + x_4 = 5, \\ -x_2 + 7x_3 - 5x_4 = 1. \end{cases}$

Из второго уравнения находим: $x_2 = -1 + 7x_3 - 5x_4$ и, подставив в первое уравнение, получим: $x_1 = 6 - 26x_3 + 17x_4$.

Итак, $x_1 = 6 - 26x_3 + 17x_4$, $x_2 = -1 + 7x_3 - 5x_4$, x_3 , x_4 – любые числа.

Ответ: система неопределенная и имеет бесконечное множество решений.

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

Критерии оценки:

За каждый правильный ответ -1 балл. За неправильный ответ -0 баллов. $90 \div 100$ отлично; $80 \div 89$ - хорошо; $70 \div 79$ -удовлетворительно; менее 70-не удовлетворительно.

Тема 1.2. Системы линейных уравнений

Практическое занятие № 6 Решение системы линейных уравнений матричным методом

Цель: формирование умений решать системы линейных уравнений матричным методом. **Выполнив работу, Вы будете:** уметь:

- Выполнять операции над матрицами и решать системы линейных уравнений;
- анализировать задачу и/или проблему и выделять её составные части;
- определять этапы решения задачи;

Выполнение практической работы способствует формированию:

- OК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ПК 1.2. Разрабатывать схемы электронных устройств на основе интегральных схем разной степени интеграции в соответствии с техническим заданием

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

Задание:

Решить системы линейных уравнений с двумя неизвестными по правилу Крамера

a)
$$\{x + 2y = -2 \ 3x - y = 8 \ ; b)\{4x - 3y = -1 \ x - 5y = 4 \ ; c)\{7x + 3y = 1 \ 2x - 6y = -10 \]$$

Решить системы линейных уравнений с тремя неизвестными по правилу Крамера

a)
$$\begin{cases} x_1 + x_2 - 2x_3 = 6, \\ 2x_1 + 3x_2 - 7x_3 = 16, \\ 5x_1 + 2x_2 + x_3 = 16; \end{cases} \begin{cases} 5x_1 + 8x_2 + x_3 = 2, \\ 3x_1 - 2x_2 + 6x_3 = -7, \\ 2x_1 + x_2 - x_3 = -5; \end{cases}$$
B)
$$\begin{cases} 2x_1 - 3x_2 + x_3 = -7, \\ x_1 + 4x_2 + 2x_3 = -1, \\ x_1 - 4x_2 = -5; \end{cases}$$

Решить системы линейных уравнений с четырьмя неизвестными по правилу Крамера

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 10, \\ x_1 + x_2 - x_3 - x_4 = -4, \\ x_1 - x_2 + x_3 - x_4 = -2; \mathbf{d} \end{cases} \begin{cases} x_1 + 3x_2 + 4x_3 - 2x_4 = 2, \\ -3x_1 - 7x_2 - 8x_3 + 2x_4 = -4, \\ 2x_1 - x_2 + 3x_3 = 4, \\ 2x_1 + 4x_2 + 4x_3 = 3. \end{cases}$$

Порядок выполнения работы:

Задания решаются в любом порядке

Ход работы:

- 1. Получить у преподавателя задания.
- 2. Оформить решение в тетради для практических работ.

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

Критерии оценки:

За каждый правильный ответ – 1 балл. За неправильный ответ – 0 баллов. 90 ÷ 100отлично; 80 ÷ 89- хорошо; 70 ÷ 79-удовлетворительно; менее 70-не удовлетворительно.

Тема 1.3. Комплексные числа

Практическое занятие №7 Действия с комплексными числами

Цель: формирование умений выполнения действий с комплексными числами в алгебраической и тригонометрических формах.

Выполнив работу, Вы будете:

уметь:

- Выполнять операции над матрицами и решать системы линейных уравнений;
- анализировать задачу и/или проблему и выделять её составные части;
- определять этапы решения задачи;

Выполнение практической работы способствует формированию:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ПК 1.2. Разрабатывать схемы электронных устройств на основе интегральных схем разной степени интеграции в соответствии с техническим заданием

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

Задание:

- 1. Даны комплексные числа: $z_1 = (7;1)$, $z_2 = (-1,5;1,5)$, $z_3 = (4;-3)$. Записать эти числа в алгебраической форме.
- 2. Вычислить:
 - 1) $z_1 + z_2$;
 - 2) $z_2 z_3$; 3) $\frac{z_1}{z_3}$; 4) $z_2 \cdot z_3$;

5)
$$z_1^5$$

- 5) z_1^5 ; 3. Вычислить: $\frac{1+3i}{i-3} + \frac{4-5i}{1+3i} i^8$
- 4. Даны комплексные числа: z_1 =(-3;-5), z_2 =(-7,2;7,2), z_3 =(2;6). Записать эти числа в тригонометрической форме.
 - 5. Вычислите: $z_2 \cdot z_3; \frac{z_1}{z_2}; z_1^5; \sqrt{z_2}$.

6. Выполните действия и запишите результат в алгебраической форме: a)
$$(3 \cdot (\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4}))^2 (3 \cdot (\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4}))^2 \frac{24(\cos 75^0 + i \sin 75^0)24(\cos 75^0 + i \sin 75^0)}{3(\cos 30^0 + i \sin 30^0)3(\cos 30^0 + i \sin 30^0)}$$

Краткие теоретические сведения:

Комплексным числом называется выражение вида a + bi, где a и b – действительные числа, а символ i удовлетворяет условию $i^2 = -1$.

Комплексные числа $z_1 = a + bi$ и $z_2 = c + di$ называются равными, если a = c и b = d.

Комплексные числа z = a + bi и $\bar{z} = a - bi$ называются сопряженными. Числа a + bi и -a - biназываются противоположными.

Модулем комплексного числа называется длина радиус-вектора соответствующей точки комплексной плоскости. Обозначается $|z| = \sqrt{a^2 + b^2} = r$.

Запись комплексного числа z в виде a + bi, где a и $b \in \mathbb{R}$, называется алгебраической формой комплексного числа.

- 1. Сумма двух чисел $z_1=a+bi$ и $z_2=c+di$ равна $z_1+z_2=(a+bi)+(c+di)=(a+c)+(b+d)i$.
- 2. Разность двух чисел $z_1 = a + bi$ и $z_2 = c + di$ равна $z_1 z_2 = (a + bi) (c + di) = (a c) + (b c)$ d)i.
- 3. **Произведением** комплексных чисел $z_1 = a + bi$ и $z_2 = c + di$ называется комплексное число $z_1.z_2 = (ac - bd) + (ad + bc)i.$
- 4. **Частным** комплексных чисел $z_1 = a + bi$ и $z_2 = c + di \neq 0$ называется комплексное число $z = \frac{z_1}{z_2} = \frac{ac + bd}{c^2 + d^2} + \frac{bc - ad}{c^2 + d^2}.$
- 5. Возведение комплексного числа в степень n∈N рассматривается как частный случай умножения комплексного числа п раз.

Степени числа i:

$$\mathbf{i^n} = \begin{cases} i, \text{ если } n = 4k + 1 \\ -1, \text{ если } n = 4k + 2 \\ -i, \text{ если } n = 4k + 3 \\ 1, \text{ если } n = 4k \end{cases}$$

Тригонометрической формой комплексных чисел называется запись их в виде:

$$z = r \cdot (\cos\varphi + i\sin\varphi)_Z = r(\cos\varphi + i \cdot \sin\varphi).$$

При выполнении действий над комплексными числами в тригонометрической форме используются следующие формулы:

15

$$\begin{split} z_1 \cdot z_2 &= r_1 \cdot r_2 (\cos \left(\varphi_1 + \varphi_2\right) + i sin \left(\varphi_1 + \varphi_2\right)) \\ \frac{z_1}{z_2} &= \frac{r_1}{r_2} (\cos \left(\varphi_1 - \varphi_2\right) + i sin \left(\varphi_1 - \varphi_2\right)) \\ z^n &= r^n (cosn\varphi + i sin n\varphi) \end{split}$$

Для извлечения корня n-й степени из комплексного числа в тригонометрической форме $z = r \cdot (cos\varphi + isin\varphi)_Z = r(cos\varphi + i \cdot sin\varphi)$ используется формула :

$$\omega_k = \sqrt[n]{r} \cdot (\cos\frac{\varphi+2\pi k}{n} + i\sin\frac{\varphi+2\pi k}{n})\omega_k = \sqrt[n]{r} \cdot (\cos\frac{\varphi+2\pi k}{n} + i\sin\frac{\varphi+2\pi k}{n}),$$
 где $\sqrt[n]{r}$ - арифметический корень, k=0, 1, 2, ..., n-1.

Алгоритм перехода от алгебраической формы к тригонометрической:

Пусть комплексное число задано в алгебраической форме z = a + biz = a + bi

- 1) Модульr=/z/ однозначно определяется по формуле $r=\sqrt{a^2+b^2}r=\sqrt{a^2+b^2}$
- 2) Аргумент φ определяется из φ формул $\cos \varphi = \frac{a}{r}$, $\sin \varphi = \frac{b}{r}$.

Значения аргумента комплексного числа можно находить и так:

- Определить, в какой четверти находится вектор (использовать геометрическую интерпретацию числа) z = a + biz = a + bi
- Решив уравнение $tg\varphi=\frac{b}{a}tg\varphi=\frac{b}{a}$, получаем, что $arg\ z=\varphi=arctg\ \frac{b}{a}$ для внутренних точек 1 и 4 четвертей, $arg\ z=\varphi=arctg\ \frac{b}{a}+\pi arg\ z=\varphi=arctg\ \frac{b}{a}+\pi$ для внутренних точек 2 четверти, $arg\ z=\varphi=arctg\ \frac{b}{a}-\pi arg\ z=\varphi=arctg\ \frac{b}{a}-\pi$ для внутренних точек 3 четверти.

Если точка z лежит на действительной или мнимой оси, то arg z можно найти непосредственно.

3) Найдя модуль и аргумент комплексного числа, его можно записать в тригонометрической или показательной форме $z = r(\cos\varphi + i \sin\varphi)z = r(\cos\varphi + i \sin\varphi)$ или $z = re^{i\varphi}z = re^{i\varphi}$.

Порядок выполнения работы:

- 1. Запишите комплексные числа в алгебраической форме z = a + biz = a + bi
- 2. Выполните действия над комплексными числами в алгебраической форме, используя формулы:

$$\begin{split} z_1 + z_2 &= (a_1 + a_2) + (b_1 + b_2)iz_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i, \\ z_1 - z_2 &= (a_1 - a_2) + (b_1 - b_2)i \ z_1 - z_2 = (a_1 - a_2) + (b_1 - b_2)i, \\ z_1 \cdot z_2 &= (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i \\ &= \frac{z_1}{z_2} = \frac{a_1 a_2 + b_1 b_2}{a_2^2 + b_2^2} + \frac{a_2 b_1 - a_1 b_2}{a_2^2 + b_2^2}i \frac{z_1}{z_2} = \frac{a_1 a_2 + b_1 b_2}{a_2^2 + b_2^2} i \frac{z_1}{a_2^2 + b_2^2}i \frac{z_2}{a_2^2 + b_2^2} \end{split}$$

Ход работы:

1. Получить у преподавателя задания.

2. Оформить решение в тетради для практических работ.

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

Критерии оценки:

За каждый правильный ответ -1 балл. За неправильный ответ -0 баллов. $90 \div 100$ отлично; $80 \div 89$ - хорошо; $70 \div 79$ -удовлетворительно; менее 70-не удовлетворительно.

Тема2.1. Алгебра векторов. Практическое занятие № 8 Операции над векторами. Решение задач

Цель: формирование умений решать задачи по теории алгебры векторов.

Выполнив работу, Вы будете:

уметь:

- Выполнять операции над матрицами и решать системы линейных уравнений;
- анализировать задачу и/или проблему и выделять её составные части;
- определять этапы решения задачи;

Выполнение практической работы способствует формированию:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ПК 1.2. Разрабатывать схемы электронных устройств на основе интегральных схем разной степени интеграции в соответствии с техническим заданием

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

Задание:

- 1. Даны векторы $\bar{a}=4\bar{i}+4\bar{k}, \bar{b}=-\bar{i}+3\bar{j}+2\bar{k}, \bar{c}=3\bar{i}+5\bar{j}$. Выполните следующие действия: а) вычислите смешанное произведение векторов \bar{a} , \bar{b} , $5\bar{c}$; б) найдите модуль векторного произведения $3\bar{c}$ u \bar{b} ; в) вычислите скалярное произведение векторов \bar{a} и $3\bar{b}$; г) проверьте, будут ли коллинеарны или ортогональны векторы \bar{a} и \bar{b} ; д) проверьте, будут ли компланарны векторы \bar{a} , \bar{b} , \bar{c} .
- 2. Вершины пирамиды находятся в точках A(2, 3, 4), B(4, 7, 3), C(1, 2, 2), D(-2, 0, -1). Вычислить: а) площадь грани ABC; б) объем пирамиды ABCD.

Порядок выполнения работы:

Задания решаются в любом порядке

Ход работы:

- 1. Получить у преподавателя задания.
- 2. Оформить решение в тетради для практических работ.

Тройка векторов \bar{a} , \bar{b} , \bar{c} с общим началом в точке O называется правой, если кратчайший поворот оси вектора \bar{a} к вектору \bar{b} со стороны вектора \bar{c} осуществляется против часовой стрелки (рис. а). В противном случае тройка векторов называется левой (рис. б).

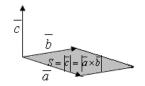
Векторным произведением векторов \bar{a} и \bar{b} называется вектор \bar{c} , обозначаемый $\bar{c} = \bar{a} \times \bar{b}$, который удовлетворяет трем условиям:

- 1) $\left| \vec{c} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \sin \left(\vec{a}, \vec{b} \right)$;
- 2) $\bar{c} \perp \bar{a}, \ \bar{c} \perp \bar{b}$;
- 3) \bar{a} , \bar{b} , \bar{c} правая тройка векторов.

Из определения векторного произведения следует, что $\bar{a} \times \bar{a} = \bar{0}$, $\bar{a} \times \bar{b} = -\bar{b} \times \bar{a}$.

Если известны координаты векторов $\bar{a} = (x_1, y_1, z_1)$ и $\bar{b} = (x_2, y_2, z_2)$, то координаты их векторного произведения вычисляются по формуле

$$\overline{c} = \overline{a} \times \overline{b} = \begin{pmatrix} \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix}, -\begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix}, \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \end{pmatrix}$$



Смешанным произведением трех векторов \bar{b} , \bar{b} , \bar{c} называется число, которое получается, если векторы \bar{b} и \bar{b} умножить векторно, а затем результат умножить на вектор \bar{c} скалярно. Обозначается смешанное произведение $\bar{a}\bar{b}\bar{c}$. Итак, по определению $\bar{a}\bar{b}\bar{c}=(\bar{a}\times\bar{b})\bar{c}$.

Пусть известны координаты векторов $\bar{a}=(x_1,y_1,z_1)$, $\bar{b}=(x_2,y_2,z_2)$ и $\bar{c}=(x_3,y_3,z_3)$. Тогда

$$\overline{abc} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}$$

 $\it Условие компланарности трех векторов <math>\bar{b}$, \bar{b} , \bar{c} имеет вид:

Геометрический смысл смешанного произведения состоит в следующем. Смешанное произведение трех векторов \bar{b} , \bar{b} , \bar{c} равно объему V параллелепипеда, построенного на этих векторах, если \bar{b} , \bar{b} , \bar{c} — правая тройка. Если же эта тройка левая, то смешанное произведение отрицательно и равно объему параллелепипеда с противоположным знаком:

$$\overline{abc} = \begin{cases} V, \ \overline{a}, \overline{b}, \overline{c} - \textit{правая тройка}; \\ -V, \ \overline{a}, \overline{b}, \overline{c} - \textit{левая тройка}. \end{cases}$$

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

Критерии оценки:

За каждый правильный ответ -1 балл. За неправильный ответ -0 баллов. $90 \div 100$ -отлично; $80 \div 89$ - хорошо; $70 \div 79$ -удовлетворительно; менее 70-не удовлетворительно

Тема 2.2. Уравнение прямой на плоскости и в пространстве

Практическое занятие № 9Составление уравнений прямых и решение задач

Цель: формирование умений составлять уравнения прямых.

Выполнив работу, Вы будете:

уметь:

- Выполнять операции над матрицами и решать системы линейных уравнений;
- анализировать задачу и/или проблему и выделять её составные части;
- определять этапы решения задачи;

Выполнение практической работы способствует формированию:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ПК 1.2. Разрабатывать схемы электронных устройств на основе интегральных схем разной степени интеграции в соответствии с техническим заданием

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

Задание:

- 1. Даны вершины A(3, 1), B(-13, -11), C(-6, 13) треугольника ABC. Составить уравнения сторон треугольника ABC и найти угол между прямыми AB и BC.
- 2. Найти точку пересечения прямых, заданных уравнениями: a) 2x-y+3=0 и 4x+8y+17=0; б) 2x-y+3=0 и 4x-8y-11=0.
- 3. Даны вершины A(4, 3), B(-3, -3), C(2, 7) треугольника ABC. Найти: а) уравнение стороны AB; б) уравнение высоты CH; в) уравнение медианы AM; г) точку N пересечения медианы AM и высоты CH; д) уравнение прямой, проходящей через вершину C параллельно стороне AB; е) расстояние от точки C до прямой AB.

Порядок выполнения работы:

Задания решаются в любом порядке

Ход работы:

- 1. Получить у преподавателя задания.
- 2. Оформить решение в тетради для практических работ.

В декартовой прямоугольной системе координат Oxy на плоскости любая прямая может быть задана уравнением первой степени

Ax + By + C = 0, где A, B, C — определенные числа, $A^2 + B^2 \neq 0$. И обратно, всякое уравнение вида Ax + By + C = 0 определяет прямую на плоскости.

Данное уравнение называется *общим уравнением прямой* на плоскости, коэффициенты уравнения A, B определяют координаты вектора h, перпендикулярного этой прямой. Этот вектор называется *нормальным вектором* прямой.

Укажем основные способы задания прямой на плоскости и соответствующие уравнения.

- 1. Прямая проходит через точку $M_0(x_0,y_0)$ перпендикулярно вектору h=(A,B). В этом случае прямая описывается общим уравнением $A(x-x_0)+B(y-y_0)=0$.
- 2. Прямая проходит через точку $M_0(x_0,y_0)$ параллельно вектору S=(m,n). В этом случае прямая задается *каноническим уравнением*

$$\frac{x - x_0}{m} = \frac{y - y_0}{n}$$

или параметрическими уравнениями

$$\begin{cases} x = x_0 + mt, \\ y = y_0 + nt, \end{cases}$$

где t — параметр, принимающий любые числовые значения.

3. Прямая проходит через точку $M_0(x_0, y_0)$ с заданным углом наклона α , определяемым угловым коэффициентом $k = tg \alpha$ (рис. 1). В этом случае уравнение прямой имеет вил $y - y_0 = k(x - x_0)$.

Рис. 1.

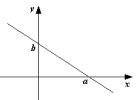


Рис 2

- 4. Прямая отсекает на координатных осях заданные отрезки (рис. 2). В этом случае используют уравнение прямой в отрезках $\frac{x}{a} + \frac{y}{b} = 1$.
- 5. Прямая задана углом наклона α , определяемым угловым коэффициентом $k = tg \alpha$, и отрезком b, отсекаемым на оси Oy. В этом случае используют уравнение прямой c угловым коэффициентом y = kx + b.

 $Paccmoяние dom \quad mочки M_1\big(x_1,y_1\big) \quad \text{до} \quad \text{прямой} \quad Ax+By+C=0 \quad \text{вычисляется} \quad \text{по} \quad \text{формуле}$ $d=\frac{\left|Ax_1+By_1+C\right|}{\sqrt{A^2+B^2}} \ .$

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

Критерии оценки:

За каждый правильный ответ -1 балл. За неправильный ответ -0 баллов. $90 \div 100$ -отлично; $80 \div 89$ - хорошо; $70 \div 79$ -удовлетворительно; менее 70-не удовлетворительно

Тема 2.2. Уравнение прямой на плоскости и в пространстве

Практическое занятие № 10 Составление уравнений кривых второго порядкаи поверхностей

Цель: формирование умений составлять уравнения кривых и поверхностей 2-го порядка.

Выполнив работу, Вы будете:

уметь:

- Выполнять операции над матрицами и решать системы линейных уравнений;
- анализировать задачу и/или проблему и выделять её составные части;
- определять этапы решения задачи;

Выполнение практической работы способствует формированию:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ПК 1.2. Разрабатывать схемы электронных устройств на основе интегральных схем разной степени интеграции в соответствии с техническим заданием

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

Задание:

- 1. Определить координаты центра и радиус окружности $x^2 + y^2 4x + 3y = 0$.
- 2. Составить уравнение окружности, проходящей через точку A(6,-1) с центром в точке пересечения прямых 3x-4y-5=0 и 4x+3y-15=0.
 - 3. Найти полуоси, координаты фокусов и эксцентриситет эллипса $4x^2 + 25y^2 100 = 0$.
- 4. Определить вид и расположение кривой (полуоси, координаты фокусов и эксцентриситет) $5x^2 + 16y^2 + 10x 96y + 69 = 0$.
- 5. Парабола с вершиной в начале координат проходит через точку A(1,-3) и симметрична относительно оси Ox. Найти фокус и уравнения параболы и ее директрисы.

Парабола с вершиной в точке O(2,1) проходит через точку A(6,3). Составить уравнение параболы

Порядок выполнения работы:

Задания решаются в любом порядке

Ход работы:

- 1. Получить у преподавателя задания.
- 2. Оформить решение в тетради для практических работ.

Общее уравнение кривых второго порядка имеет вид

 $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, в котором A, B и C не равны нулю одновременно, т.е. $A^2 + B^2 + C^2 \neq 0$.

Эллипс и окружность

Эллипсом называется геометрическое место точек плоскости, сумма расстояний от которых до двух данных точек F_1 и F_2 , называемых фокусами, есть величина постоянная, равная 2a, причем эта величина больше расстояния 2c между фокусами.

Если за ось Ox принять прямую, проходящую через фокусы F_1 и F_2 , а за ось Oy — перпендикуляр к оси Ox, проходящий через середину отрезка F_1F_2 (рис. 1), то уравнение эллипса примет вид $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Это уравнение называют *каноническим уравнением эллипса*. При этом a — большая полуось эллипса, b— его малая полуось, $c = \sqrt{a^2 - b^2}$, $F_1(-c,0)$ и $F_2(c,0)$ — фокусы эллипса.

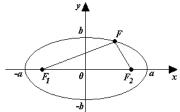


Рис. 1.

Отношение $\varepsilon = \frac{c}{a} < 1$ называется эксцентриситетом эллипса.

При a < b уравнение также задает эллипс, но у такого эллипса фокусы расположены на оси Oy, параметр b задает большую полуось, а a — малую полуось. Параметр c, равный половине расстояния между фокусами, можно найти по формуле $c = \sqrt{b^2 - a^2}$, а эксцентриситет — по формуле $\varepsilon = \frac{c}{b}$.

При a=b уравнение задает окружность с центром в начале координат и радиусом a.

Окружность радиуса R с центром в точке $C(x_0,y_0)$ задается уравнением $(x-x_0)^2+(y-y_0)^2=R^2$.

Гипербола

Гиперболой называется геометрическое место точек плоскости, модуль разности расстояний от которых до двух данных точек F_1 и F_2 , называемых фокусами, есть величина постоянная, равная 2a, причем эта величина меньше расстояния 2c между фокусами.

Если за ось Ox принять прямую, проходящую через фокусы F_1 и F_2 , а за ось Oy перпендикуляр к оси Ox, проходящий через середину отрезка F_1F_2 (рис. 2), то уравнение гиперболы примет вид $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

Это уравнение называют *каноническим уравнением гиперболы*. При этом a – действительная полуось гиперболы, b– его мнимая полуось, $c = \sqrt{a^2 + b^2}$, $F_1(-c,0)$ и $F_2(c,0)$ – фокусы эллипса.

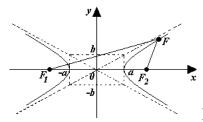


Рис. 2.

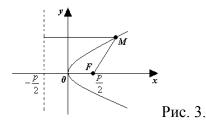
Отношение $\varepsilon = \frac{c}{a} > 1$ называется эксцентриситетом гиперболы. Прямые $y = \pm \frac{b}{a} x$, к которым гипербола неограниченно приближается на бесконечности, представляют собой асимптоты гиперболы.

Уравнение $-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, определяет гиперболу, но у этой гиперболы фокусы расположены на оси Oy, параметр b есть действительная полуось, параметр a — мнимая полуось, а эксцентриситет вычисляется по формуле $\varepsilon = \frac{c}{b}$.

Парабола

Параболой называется геометрическое место точек плоскости, равноудаленных от данной точки, называемой фокусом, и данной прямой, называемой директрисой.

Если за ось Ox принять прямую, проходящую через фокус перпендикулярно директрисе, а за ось Oy — прямую, проходящую через середину перпендикуляра, опущенного из фокуса на директрису (рис. 3), то уравнение параболы примет вид $y^2 = 2px$, где p — расстояние от фокуса до директрисы. Это уравнение называют *каноническим уравнением параболы*. При этом $x = -\frac{p}{2}$ — уравнение директрисы, а фокус $F\left(\frac{p}{2},0\right)$.



Уравнение $x^2=2py$ задает параболу, симметричную относительно оси Oy. В этом случае директриса параболы $y=-\frac{p}{2}$, а фокус $F\left(0,\frac{p}{2}\right)$.

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

Критерии оценки:

За каждый правильный ответ -1 балл. За неправильный ответ -0 баллов. $90 \div 100$ -отлично; $80 \div 89$ - хорошо; $70 \div 79$ -удовлетворительно; менее 70-не удовлетворительно

Тема 3.1. Предел и непрерывность функции

Практическое занятие № 11Вычисление пределов функций.

Цель: формирование умений вычислять пределы функций.

Выполнив работу, Вы будете:

уметь:

- Применять методы дифференциального и интегрального исчисления;
- анализировать задачу и/или проблему и выделять её составные части;

Выполнение практической работы способствует формированию:

- OК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ПК 1.1. Анализировать требования технического задания на проектирование цифровых систем

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

Задание:

Вычислить пределы функций уйдя от неопределенности
$$(\frac{0}{0})$$
 а) $\frac{10x^2-5x}{x^2-0.25}$; б) $\frac{2x^2+x-15}{3x^2+7x-6}$; в) $\frac{x^3+x+2}{x^3+1}$; г) $\frac{2x^3-54x}{x^2+x+1}$; д) $\frac{\sqrt{x+1}-1}{x}$.

Вычислить пределы функций уйдя от неопределенности $(\frac{\infty}{\infty})$

$$a)_{\overline{5x^3+x-2}}^{x^3-3x+7}; \, б) \,\, \frac{x^2+x^3}{x^4+x^5}; \, \mathbf{B}) \, \frac{x^4+x^5}{x^2+x^3}; \, \mathbf{\Gamma}) \, \frac{12x^5-3x^3+2x}{x^3+3x^2-1} \,. \,\, \mathbf{Д}) \,\, \lim_{x\to\infty} x \cdot \bigg(\sqrt{x^2+1}-x\bigg);$$

Порядок выполнения работы:

Задания решаются в любом порядке

Ход работы:

- 1. Получить у преподавателя задания.
- 2. Оформить решение в тетради для практических работ.

Раскрытие неопределенностей различных типов

Для того чтобы найти предел элементарной функции, когда аргумент стремится к значению, принадлежащему области определения этой функции, нужно в выражение функции вместо аргумента подставить его предельное значение.

Далеко не всякая подстановка предельного значения в функцию вместо независимой переменной может сразу привести к нахождению предела. Случаи, в которых подстановка предельного значения в функцию не дает значения предела, называют неопределенностями; к

ним относятся неопределенности видов $\left(\frac{\infty}{\infty}\right)$, $\left(\frac{0}{0}\right)$, $\left(0\cdot\infty\right)$, $\left(\infty-\infty\right)$, $\left(1^{\infty}\right)$, $\left(0^{0}\right)$. Рассмотрим несколько типов примеров, классифицируя их по виду неопределенности и предельному значению x.

1-й тип. Рассмотрим примеры вида $\lim_{x\to\infty} \frac{f(x)}{\varphi(x)}$ с неопределенностью вида $\left(\frac{\infty}{\infty}\right)^{\left(\frac{\infty}{\infty}\right)}$, где f(x)

и $\varphi(x)$ в общем случае — сложные степенные или показательные функции. В случае степенных функций необходимо выносить за скобку в числителе и в знаменателе дроби x с наибольшим показателем степени среди всех слагаемых дроби; в случае показательных функций за скобку выносится наиболее быстро возрастающее слагаемое среди всех слагаемых дроби. После сокращения дроби неопределенность устраняется.

Полезно запомнить правило:

$$\lim_{x \to \infty} \frac{a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n}{b_0 x^m + b_1 x^{m-1} + \ldots + b_{m-1} x + b_m} = \left(\frac{\infty}{\infty}\right) = \begin{cases} 0, \text{ если } n < m, \\ \frac{a_0}{\infty}, \text{ если } n = m, \\ \frac{b_0}{\infty}, \text{ если } n > m. \end{cases}$$

2-й тип. Рассмотрим примеры вида $\lim_{x \to x_0} \frac{f(x)}{\varphi(x)}$ с неопределенностью вида $\binom{0}{0} \binom{0}{0}$. В этом случае необходимо разложить на множители и числитель, и знаменатель дроби или домножить и числитель, и знаменатель дроби на одно и то же выражение, приводящее к формулам сокращенного умножения. После сокращения дроби неопределенность устраняется.

3-й тип. Рассмотрим примеры с неопределенностью вида $(\infty - \infty)^{(\infty - \infty)}$. Если функция, стоящая под знаком предела, представляет собой алгебраическую сумму дробей, то неопределенность устраняется или приводится ко 2-му типу после приведения дробей к общему знаменателю. Если упомянутая функция представляет собой алгебраическую сумму иррациональных выражений, то неопределенность устраняется или приводится к 1-му типу путем домножения и деления функции на одно и то же (сопряженное) выражение, приводящее к формулам сокращенного умножения.

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

Критерии оценки:

За каждый правильный ответ -1 балл. За неправильный ответ -0 баллов. $90 \div 100$ -отлично; $80 \div 89$ - хорошо; $70 \div 79$ -удовлетворительно; менее 70-не удовлетворительно

Тема 3.1. Предел и непрерывность функции

Практическое занятие № 12 Вычисление пределов с помощью замечательных пределов, раскрытие неопределенностей.

Цель: формирование умений вычислять пределы функций.

Выполнив работу, Вы будете:

уметь:

- Применять методы дифференциального и интегрального исчисления;
- анализировать задачу и/или проблему и выделять её составные части;

Выполнение практической работы способствует формированию:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ПК 1.1. Анализировать требования технического задания на проектирование цифровых систем

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

Задание:

Вычислить пределы функций применяяпервый замечательный предел или свойство эквивалентно малых величин

a)
$$\frac{4\sin 2x}{\sin 3x}$$
; b) $\frac{\sin 3x}{\sin^2 2x}$; c) $\frac{4\sin x^3}{1-\cos^2 x}$; d) $\frac{5\arcsin 2x}{\operatorname{arctg} 4x}$

Вычислить пределы функций применяв торой замечательный предел

a)
$$\left(1 + \frac{3}{n}\right)^{2n}$$
; b) $\left(1 - \frac{4}{n}\right)^{6n}$; c) $\left(1 + \frac{3}{4n}\right)^{n^2}$; d) $\left(\frac{5+3n}{4-2n}\right)^n$

Порядок выполнения работы:

Задания решаются в любом порядке

Ход работы:

- 1. Получить у преподавателя задания.
- 2. Оформить решение в тетради для практических работ.

Замечательные пределы.

Первый замечательный предел: $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

Второй замечательный предел (число e): $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$ или $\lim_{y \to 0} (1 + y)^{\frac{1}{y}} = e$.

Для того что бы избавиться от неопределенности вида $(1^{\infty})^{\binom{1}{\omega}}$. необходимо выделить целую дроби (которая должна быть равна 1) в выражении, стоящем под знаком предела,которое представляет собой степенно-показательную функцию. Неопределенность устраняется при помощи выделения второго замечательного предела.

Например

$$\lim_{x \to \infty} \left(1 + \frac{k}{x} \right)^x = \lim_{x \to \infty} (1 + 0)^\infty = (1^\infty) = \lim_{x \to \infty} \left(1 + \frac{1}{\left(\frac{x}{k}\right)} \right)^{k * \frac{k}{x}} = \lim_{x \to \infty} \left(1 + \frac{1}{y} \right)^{ky} = \left[\lim_{x \to \infty} \left(1 + \frac{1}{y} \right)^y \right]^k = l^k;$$

$$\lim_{n\to\infty} \frac{3+0}{4} = l^{\frac{3}{4}}$$

3) $\lim_{x\to\infty} \left(\frac{x+3}{x-2}\right)^x$; Данный предел можно вычислить двумя способами:

1 способ:

Разделим числитель на знаменатель, выделив целую часть:

$$\frac{-x+3x-2\left|\frac{x-2}{1}\right|}{5} = > \frac{x+3}{x-2} = 1 + \frac{5}{x-2};$$

$$\left(\frac{x+3}{x-2}\right)^{x} = \left(1 + \frac{5}{x-2}\right)^{x} = \left[\left(1 + \frac{5}{x-2}\right)^{\frac{x-2}{5}}\right]^{\frac{5}{x-2} \times x} = l^{\frac{5x}{x-2}} = l^{\frac{5x}{\frac{x}{2}}} = l^{\frac{5}{1-0}} = l^{5};$$

2 способ:

Поделив числитель и знаменатель дроби на х, сведем данный предел к частному пределов:

$$\left(\frac{x+3}{x-2}\right)^x = \left(\frac{\frac{x}{x} + \frac{3}{x}}{\frac{x}{x} - \frac{2}{x}}\right)^x = \left(\frac{1 + \frac{3}{x}}{1 - \frac{2}{x}}\right)^x = \frac{\left(1 + \frac{3}{x}\right)^x}{\left(1 - \frac{2}{x}\right)^x} = \frac{l^3}{l^{-2}} = l^5.$$

Пределы от некоторых тригонометрических функций необходимо решать применяя первый замечательный предел или закон эквивалентных величин при условии $x \to 0$.

Эквивалентными называются бесконечно малые величины, предел от понятия которых равен единице.

В курсе математического анализа доказывается, что при отыскании предела отношений двух бесконечно малых величин можно заменить на предел эквивалентных им величинам.

$$\left(\text{PPF } \sin x \sim x; \ \sin^2 \frac{x}{3} \sim \left(\frac{x}{3} \right)^2; \ x \sim x \dots \right)$$

1) $\sum_{x\to 0}^{\sin^2\frac{x}{2}}$; так как $\sum \sin x$ их при $x\to 0$ эквивалентные бесконечно малые величины, поэтому в данном выражении можно $\sum \sin \frac{x}{2}$ заменить его аргументом $\frac{x}{2}$. Тогда решение выглядит следующим образом:

$$\lim_{x \to 0} \frac{\sin^2 \frac{x}{2}}{x^2} = \lim_{x \to 0} \frac{\left(\frac{x}{2}\right)^2}{x^2} = \lim_{x \to 0} \frac{\frac{x^2}{4}}{x^2} = \lim_{x \to 0} \left(\frac{x^2}{4x^2}\right) = \lim_{x \to 0} \frac{1}{4} = \frac{1}{4}$$

2)
$$\lim_{x \to 0} \frac{\sin \sin ax}{\cos bx} = |\sin \sin ax - ax| \quad |\cos bx| = \lim_{x \to 0} \frac{ax}{bx} = \lim_{x \to 0} \frac{a}{b} = \frac{a}{b};$$

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

Критерии оценки:

За каждый правильный ответ -1 балл. За неправильный ответ -0 баллов. $90 \div 100$ -отлично; $80 \div 89$ - хорошо; $70 \div 79$ -удовлетворительно; менее 70-не удовлетворительно

Тема 3.1. Предел и непрерывность функции

Практическое занятие № 13 Вычисление односторонних пределов, классификация точек разрыва

Цель: формирование умений вычислять односторонние пределы и классифицировать точки разрыва.

Выполнив работу, Вы будете:

уметь:

- Применять методы дифференциального и интегрального исчисления;
- анализировать задачу и/или проблему и выделять её составные части;

Выполнение практической работы способствует формированию:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ПК 1.1. Анализировать требования технического задания на проектирование цифровых систем

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

Задание:

1. Исследовать на непрерывность и построить график функции:

$$y(x) = \begin{cases} x, & x \le 0, \\ 1-x, & 0 < x \le 1, \\ 1-x, & 0 < x \le 1, \end{cases}$$
боты:

Порядок выполнения работы:

Задания решаются в любом порядке

Ход работы:

- 1. Получить у преподавателя задания.
- 2. Оформить решение в тетради для практических работ.

Непрерывность функции определяется в точках, принадлежащих области определения функции. Пусть функция f(x) определена в окрестности точки x_0 . Эта функция называется непрерывной в точке x_0 , если:

- 1) существует предел $\lim_{x\to x_0} f(x)$ функции f(x) в точке x_0 ;
- 2) этот предел равен значению функции в точке x_0 .

Иначе говоря,
$$f$$
непрерывна в точке $x_0 \stackrel{def}{\Leftrightarrow} \lim_{x \to x_0} f(x) = f(x_0) \times def \iff f(x_0)$. (1)

Непрерывность функции f(x) в точке x_0 означает, что в этой точке существуют односторонние пределы, равные значению функции в этой точке, т.е.

$$\lim_{x \to x_0 + 0} f(x) = \lim_{x \to x_0 - 0} f(x) = f(x_0),$$
(2)

 $\lim_{x \to x_0 + 0} f(x) = f(x_0 + 0)$ — правосторонний предел функции f в точке x_0 ; $\lim_{x \to x_0 - 0} f(x) = f(x_0 - 0)$ — левосторонний предел функции f в точке x_0 ; $f(x_0)$ — значение функции f в точке x_0 .

Если условия (1) или (2) в точке x_0 не выполняются, то точка x_0 называется *точкой разрыва*функции f(x).

Если существуют конечные односторонние пределы $f(x_0+0)$, $f(x_0-0)$, причем не все три числа $f(x_0+0)$, $f(x_0-0)$, $f(x_0)$ равны между собой, то x_0 называют точкой разрыва первого рода.

Если в точке разрыва x_0 хотя бы один из односторонних пределов $f(x_0+0)$, $f(x_0-0)$ не существует или бесконечен, то x_0 называют *точкой разрыва второго рода*.

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

Критерии оценки:

За каждый правильный ответ — 1 балл. За неправильный ответ — 0 баллов. $90 \div 100$ -отлично; $80 \div 89$ - хорошо; $70 \div 79$ -удовлетворительно; менее 70-не удовлетворительно

3.2. Дифференциальное исчисление функции одной действительной переменной

Практическое занятие № 14Вычисление производных элементарных функций. Правила дифференцирования

Цель: формирование умений вычислять производные элементарных функций с использованием правил дифференцирования.

Выполнив работу, Вы будете:

уметь:

- Применять методы дифференциального и интегрального исчисления;
- определять этапы решения задачи;
- определять задачи для поиска информации.

Выполнение практической работы способствует формированию:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ОК 02. Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности.
- ПК 1.1. Анализировать требования технического задания на проектирование цифровых систем

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

Задание:

Задание 1: Найти производные функций используя правила вычисления и таблицу производных элементарных функций.

1)
$$y = 7x^4 - 4x^3 + 5x^2 - 2$$
;

2)
$$y = 5\sqrt{x} - \frac{2\sqrt{x}}{x^3} + \frac{x^4}{\sqrt{x}}$$
;

$$3) \quad y = 3ctgx + 5lnx - 3^x;$$

4)
$$y = (9 + x^2)(2x - 1);$$

5)
$$y = \frac{x^3}{3x+5}$$
;

Задание 2: Вычислить производную функции в точке.

6)
$$f(t) = 0.5t + 0.6t^2 + 0.8t + 8$$
; $f'(1)$ -?

7)
$$f(x) = ctgx - tgx$$
; $f'(\frac{\pi}{4}) - ?$
8) $f(x) = 2 \cdot 5^x + 3 \cdot e^x$; $f'(0) - ?$

8)
$$f(x) = 2 \cdot 5^x + 3 \cdot e^x$$
; $f'(0)$ -?

9)
$$f(x) = cosx \cdot (1 + sinx);$$
 $f'\left(\frac{\pi}{6}\right) - ?$

10)
$$f(x) = \frac{e^{x}+1}{e^{x}-1}; \quad f'(1)-?$$

Порядок выполнения работы:

Задания решаются в любом порядке

Ход работы:

- 1. Получить у преподавателя задания.
- 2. Оформить решение в тетради для практических работ.

Дана функция y = f(x) которая определена в некоторой окрестности точки х.Пусть x_1 и x_2 – Значение аргумента, а $y_1 = f(x_1)$ и $y_2 = f(x_2)$ –соответствующие значение функции.

Разность $\Delta x = x_2 - x_1$ — называется приращением аргумента, а разность $\Delta y = y_2 - y_1 = f(x_2) - f(x_1)$ — приращение функции на $[x_1; x_2]$.

Дf: производной функции y = f(x) по аргументу x называют конечный предел отношения приращения функции k приращению аргумента, когда последний стремится k нулю

$$y' = \lim_{\Delta x \longrightarrow 0} \frac{\Delta x}{\Delta y} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{dy}{dx};$$

Операция нахождения производной называется дифференцированием. Геометрическая производная представляет собой угловой коэффициент касательной к графику функции

$$y = f(x)$$
; r.e. $y' = f'(x) = k = tg \alpha$.

Физический смысл производной может быть определен через мгновенную скорость:

Для выполнения данной работы необходима таблица

Таблица производных основных элементарных функций.

	$(x^n)' = nx^{n-1}$	$(e^x)' = e^x$	$(a^x)' = a^x \ln a$	$(\ln x)' \frac{1}{x}$	$(\log_a x)' = \frac{1}{x \ln a}$	
	$(\sin x)' = \cos x$	$(\cos x)' = -\sin x$	$(tgx)' = \frac{1}{\cos^2 x}$	$(tgx)' = \frac{1}{\cos^2 x}$	$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$	
,	c' = 0, c - const;	x'=1;		$(CU)' = C \cdot \ell$	IJ'	_
($(u\pm v)'=u'\pm v'$	$(u \cdot v)' = u'v + uv'$ $(uvw)' = u'vw + uv'w + uv$	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}, \left(\frac{c}{v}\right)' = -\frac{cv'}{v^2}, v(x) \neq 0$			

Решение типовых задач:

Задание 1: Найти производные функций используя правила вычисления и таблицу производных элементарных функций.

1.
$$y = 6x^4 - 8x^3 + 2x^2 - 4$$

 $y' = (6x^4 - 8x^3 + 2x^2 - 4)' = 24x^3 - 24x^2 + 4x;$
2. $y = (5x - 4)*(x + 2)$

$$y' = ((5x-4)(x+2))' = \begin{vmatrix} u = 5x - 4; & u' = 5 \\ v = x + 2; & v' = 1 \\ (u*v)' = u'v + uv' \end{vmatrix} =$$

$$= 5(x+2) + 1(5x-4) = 5x + 10 + 5x - 4 = 10x + 6$$

$$y = \frac{x+1}{x}$$

$$y' = \left(\frac{x+1}{2x}\right)' = \begin{vmatrix} u = x+1; & u' = 5 \\ v = 2x; & v' = 2 \\ \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2} \end{vmatrix} = \frac{1 \cdot 2x - 2(x+1)}{(2x)^2} = \frac{2x - 2x - 2}{4x^2} = \frac{1}{2x^2} = \frac{1}{2$$

Задание 2: Вычислить производную функции в точке.

1)
$$y = 3x^5 - 8x^4 + 9x^2 - 4$$

 $y'(-1) = 3 \cdot (-1)^5 - 8 \cdot (-1)^4 + 9(-1)^2 - 4 = -3 - 8 + 9 - 4 = -6.$
2) $y = 5\sin x \cos x$
 $y'\left(\frac{\mathbb{P}}{2}\right) = 5((\sin x)' \cdot \cos x + \sin x(\cos x)') = 5(\cos^2 x - \sin^2 x) = 5(\cos 2x) = 5(\cos 2\frac{\pi}{2}) = 5\cos \pi = 5 \cdot (-1) = -5$

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

Критерии оценки:

За каждый правильный ответ -1 балл. За неправильный ответ -0 баллов. $90 \div 100$ -отлично; $80 \div 89$ - хорошо; $70 \div 79$ -удовлетворительно; менее 70-не удовлетворительно

Тема 3.2. Дифференциальное исчисление функции одной действительной переменной

Практическое занятие № 15 Вычисление производных сложных функций

Цель: формирование умений вычислять производные сложных функций.

Выполнив работу, Вы будете:

уметь:

- Применять методы дифференциального и интегрального исчисления;
- определять этапы решения задачи;
- определять задачи для поиска информации.

Выполнение практической работы способствует формированию:

ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам

OК 02. Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности.

ПК 1.1. Анализировать требования технического задания на проектирование цифровых систем

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

Задание:

Задание 1: Найти производные функций, используя правила вычисления и таблицу производных сложных функций.

Задание 2: Вычислить производную функции в точке.

«Варианты заданий»

Задание№1	Задание№2
$1)y = (mx^k + 4)^p$	2) $y = m * \cos(px^{k} - m)$; $y'(1) = ?$
$3)y = (e^{px^m} + kx)$	4) $y = ktg(mx^p)$; $y'(-1) = ?$
$5) y = 12^{px^m - mx}$	6) $y = ctg(px^k - mx)$; $y'(2) = ?$
$7)y = \ln(x^k + px^m)$	8) $y = \sqrt{mp^x + kx}$; $y'(-2) = ?$
$9)y = \log_7(mx + k)$	10) $y = (e^{px+k}) * \sqrt{x^p + mx}; y'(3) = ?$
$11)y = p * \sin(kx + m)$	12) $y = \frac{\ln(px^n)}{k * \cos mx}$; $y'(-3) = ?$

Где р – число букв в имени; м – число букв в фамилии; к – число букв отчества.

Порядок выполнения работы:

Задания решаются в любом порядке

Ход работы:

- 1. Получить у преподавателя задания.
- 2. Оформить решение в тетради для практических работ.

Пусть y=f(u) и u=u(x) — дифференцируемые функции и определена сложная функция y=f(u(x)). Тогда сложная функция дифференцируема и равна произведению производной функции y=f(u) в точке u=u(x) и производной функции u=u(x) в точке x, т.е. $y'=f'(u)\cdot u'$.

Если y=f(x) — дифференцируемая и строго монотонная функция на промежутке X, то функция, обратная к данной $x=\varphi(y)$, также дифференцируема и ее производная определяется

$$x'_{y} = \frac{1}{y'_{x}}, \quad y'_{x} \neq 0$$
.

Для выполнения данной работы необходима таблица дифференцирования сложных функций

Формулы дифференцирования

№	Сложные функции		
1	$(u^n)' = nu^{n-1}u'$	6	$(\sin u)' = \cos uu'$
2	$(e^u)' = e^u u'$	7	$(\cos u)' = -\sin u \cdot u'$
3	$(a^u)' = a^u \ln au'$	8	$(tgu)' = \frac{1}{\cos^2 x} u' = \frac{u'}{\cos^2 u}$
4	$(\ln u)' = \frac{1}{u}u' = \frac{u'}{u}$	9	$(ctgu)' = -\frac{1}{\sin^2 u}u' = -\frac{u'}{\ln^2 u}$
5	$(\log_a u)' = \frac{1}{u \ln a} u' = \frac{u'}{u \ln a}$	10	$(\sqrt{u})' = \frac{1}{2\sqrt{u}}u' = \frac{u'}{2\sqrt{u}}$

Решение типовых задач

Найдите производную следующих функций:

1)
$$y = (2x^3 - 4x)^7$$
;
2) $y = \sqrt{x^2 - 1}$;

3)
$$y = \sin(2x - x^2)$$
;

4)
$$y = 6 \ln 5x$$
.

1) Для решения используем формулу № 1
$$y' = ((2x^3 - 4x)^7) = 7(2x^3 - 4x)^6 \cdot (2x^3 - 4x)' =$$
$$= 7(2x^3 - 4x)^6 \cdot (6x^2 - 4) = (42x^2 - 28)(2x^3 - 4x)^6.$$

2) Решение проведём по формуле №10

$$y' = (\sqrt{x^2 - 1})' = \frac{1}{2\sqrt{x^2 - 1}} \cdot (x^2 - 1)' = \frac{2x}{2\sqrt{x^2 - 1}}$$

3) Применим формулу № 6: $y'(\sin(2x-x^2))' = \cos(2x-x^2) \cdot (2x-x^2)' = (2x-x) \cdot \cos(2x-x^2).$

4) Воспользуемся формулой №4:

$$y' = (6 \ln 5x)' = 6(\ln 5x)' = 6 \cdot \frac{1}{5x} \cdot (5x)' = \frac{6 \cdot 5}{5x} = \frac{6}{x}.$$

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

Критерии оценки:

За каждый правильный ответ -1 балл. За неправильный ответ -0 баллов. $90 \div 100$ -отлично; $80 \div 89$ - хорошо; $70 \div 79$ -удовлетворительно; менее 70-не удовлетворительно

Тема 3.2. Дифференциальное исчисление функции одной действительной переменной

Практическое занятие № 16Производные и дифференциалы высших порядков. Правило Лопиталя

Цель: формирование умений вычислять производные функций высших порядков.

Выполнив работу, Вы будете:

уметь:

- Применять методы дифференциального и интегрального исчисления;
- определять этапы решения задачи;
- определять задачи для поиска информации.

Выполнение практической работы способствует формированию:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- OК 02. Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности.
- ПК 1.1. Анализировать требования технического задания на проектирование цифровых систем

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

Задание:

1. Найдите y''' от следующих функций

$1)y = (mx^k + 4)^p$	$2)y = m * \cos(px^k - m)$
$3)y = (e^{px^m} + kx)$	$4)y = ktg(mx^p)$
$5)y = 12^{px^m - mx}$	$6) y = ctg (px^k - mx)$
$7) y = \ln(x^k + px^m)$	$8)y = \sqrt{mp^x + kx}$
$9)y = \log_7(mx + k)$	$10)y = (e^{px+k}) * \sqrt{x^p + mx}$
$11)y = p * \sin(kx + m)$	$12)y = \frac{\ln(px^n)}{k * \cos mx}$

где р – число букв в имени

т – число букв в фамилии

k – число букв отчества

2. Найти пределы, используя правило Лопиталя: a)
$$\lim_{x\to 0} \frac{\sqrt{1+x} + \ln(1+x)}{x}$$
; б) $\lim_{x\to 0} \frac{e^x + e^{-x} - 2}{x^2}$; в) $\lim_{x\to \infty} \frac{x^2}{\ln(e^{x^2} + 1)}$.

3. Вычислить приближенно a) $\sqrt{1,1}$; б) $e^{-0,1}$.

Порядок выполнения работы:

Задания решаются в любом порядке

Ход работы:

- 1. Получить у преподавателя задания.
- 2. Оформить решение в тетради для практических работ.

Производной второго порядка (второй производной) функции

y = f(x)называют производную от ее производной. Вторую производную обозначают так:

$$y''$$
, или $\frac{d^2y}{dx^2}$, или $f''(x)$. Если $S=f(t)$ — закон прямолинейного движения точки, то вторая d^2S

производная пути по времени $\overline{dt^2}$ есть ускорение этого движения.

Производная третьего порядка функции y=f(x) есть производная от производной второго порядка:

$$y''' = (y'')'$$
.

Вообще, производной n-го порядка функции y = f(x) называют производную от производной

(n-1)-го порядка: $y^{(n)}$ -Обозначают n-го производную так: $y^{(n)}$, или $\frac{d^ny}{dx^n}$, или $f^{(n)}(x)$. Производные высших порядков вычисляют последовательным дифференцированием данной функции.

Решение типовых задач:

Вычислите производную третьего порядка от следующих функций:

1)
$$y = 6x^4 - 8x^3 + 2x^2 - 4$$
;

2)
$$y = (5x-4)*(x+2)$$
;

$$3) \quad y = \frac{x+1}{x};$$

1)
$$y' = (6x^4 - 8x^3 + 2x^2 - 4)' = 24x^3 - 24x^2 + 4x;$$

$$y'' = (24x^3 - 24x^2 + 4x)' = 72x^2 - 48x + 4; \ y''' = (72x^2 - 48x + 4)' = 144x - 48.$$

2)
$$y' = ((5x-4)(x+2))' = \begin{vmatrix} u = 5x-4; & u' = 5 \\ v = x+2; & v' = 1 \\ (u*v)' = u'v + uv' \end{vmatrix} =$$

$$= 5(x+2) + 1(5x-4) = 5x + 10 + 5x - 4 = 10x + 6.$$

$$y'' = (10x+6)' = 10$$

$$y''' = 10' = 0.$$

$$y' = \left(\frac{x+1}{2x}\right)' = \begin{vmatrix} u = x+1; & u' = 5 \\ v = 2x; & v' = 2 \end{vmatrix} = \frac{1 \cdot 2x - 2(x+1)}{(2x)^2} = \frac{2x - 2x - 2}{4x^2} = \frac{1}{4x^2} = \frac{2x - 2x - 2}{4x^2} = \frac{1}{4x^2} = \frac{1}{2x^2};$$

$$y'' = \left(-\frac{1}{2x^2}\right)' = -\frac{1}{2} \cdot (x^{-2})' = -\frac{1}{2} \cdot (-2) \cdot x^{-3} = x^{-3} = \frac{1}{x^3}$$

$$y''' = \left(\frac{1}{x^3}\right)' = (x^{-3}) = -3x^{-4} = -\frac{3}{x^4};$$

Правило Лопиталя состоит в следующем. Предел отношения двух бесконечно малых или бесконечно больших функций равен пределу отношения их производных (конечному или

бесконечному), если последний существует в указанном смысле: $x \to x_0(\infty)$ $\frac{f(x)}{g(x)} = \lim_{x \to x_0(\infty)} \frac{f'(x)}{g'(x)}$.

Таким образом, правило Лопиталя используется для раскрытия неопределенностей вида

$$\left(\frac{0}{0}\right)_{\text{NJM}}\left(\frac{\infty}{\infty}\right)$$

Понятие дифференциала функции

Пусть функция y=f(x) определена на промежутке X и дифференцируема в некоторой окрестности точки $x \in X$. Тогда существует конечная производная $\frac{\Delta y}{\Delta x \to 0} = f'(x)$. На основании теореми с средст

На основании теоремы о связи бесконечно малых величин с пределами функций можно

записать $\frac{\Delta y}{\Delta x} = f'(x) + \alpha(\Delta x)$, где $\alpha(\Delta x)$ - бесконечно малая величина при $\Delta x \to 0$, откуда $\Delta y = f'(x) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x.$

Таким образом, приращение функции Δy состоит из двух слагаемых: 1) линейного относительно Δx ; 2) нелинейного (представляющего бесконечно малую более высокого порядка, чем Δx).

Дифференциалом функции называется главная, линейная относительно приращения функции, равная произведению производной на приращение независимой переменной: $dy = f'(x) \cdot \Delta x$.

Пример. Найти приращение и дифференциал функции $y = 2x^2 - 3x$ при x = 10 и $\Delta x = 0, 1$. Решение. Приращение функции

$$\Delta y = f(x + \Delta x) - f(x) = [2 \cdot (x + \Delta x)^2 - 3 \cdot (x + \Delta x)] = \Delta x \cdot (4x + 2\Delta x - 3).$$
 Дифференциал функции $dy = f'(x) \cdot \Delta x = (4x - 3) \cdot \Delta x.$

При x=10 и $\Delta x = 0,1$ имеем $\Delta y = 3,72$ и dy=3,70.

 $\Delta u \phi \phi$ ренциал независимой переменной равен приращению этой переменной: $dx = \Delta x$.

Поэтому формулу для дифференцирования функции можно записать в виде $dy = f'(x) \cdot dx$.

Свойства дифференциала в основном аналогичны свойствам производной.

1.
$$dc=0$$
, $c ext{d} c = const$. 4. $d(uv)=v du+u dv$.

$$d\left(\frac{u}{v}\right) = \frac{v \, du - u \, dv}{v^2}$$

2. d(cu)=cdu.

3. $d(u \pm v) = du \pm dv.$

Применение дифференциала в приближенных вычислениях

Из изложенного выше следует, что приращение функции Δy отличается от её дифференциала dy на бесконечно малую величину более высокого порядка, чем $dy = f'(x) \cdot \Delta x$. Поэтому при достаточно малых значениях $\Delta x \Delta y \approx dy$ или $f(x + \Delta x) - f(x) \approx f'(x) \cdot \Delta x$, откуда $f(x + \Delta x) \approx f(x) + f'(x) \cdot \Delta x$.

Чем меньше значение Δx , тем точнее формула.

Данную формулу можно использовать для вычисления приближенных значений некоторых выражений, например: а) вычисление корня n-u степени; б) возведение числа в u-u степень; в) вычисление значения тригонометрической функции, и т.д.

<u>Пример.</u> Вычислить приближенно $\sqrt[4]{16,64}$.

Решение. Рассматривая выше записанную формулу $f(x+\Delta x) \approx f(x) + f'(x) \cdot \Delta x$, в качестве x возьмём число, наиболее близкое к 16,64, но чтобы был известен $\sqrt[4]{x}$, при этом Δx должно быть достаточно малым. Очевидно, следует взять x=16, $\Delta x=0,64$.

Итак,
$$\sqrt[4]{16,64} \approx \sqrt[4]{16} + \frac{\sqrt[4]{16}}{4 \cdot 16} \cdot 0,64 = 2,02$$
.

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

Критерии оценки:

За каждый правильный ответ -1 балл. За неправильный ответ -0 баллов. $90 \div 100$ -отлично; $80 \div 89$ - хорошо; $70 \div 79$ -удовлетворительно; менее 70-не удовлетворительно

Тема 3.2. Дифференциальное исчисление функции одной действительной переменной

Практическое занятие № 17 Полное исследование функции. Построение графиков

Цель: формирование умений исследования функции и построения графиков.

Выполнив работу, Вы будете:

уметь:

- Применять методы дифференциального и интегрального исчисления;
- определять этапы решения задачи;
- определять задачи для поиска информации.

Выполнение практической работы способствует формированию:

OК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам

OК 02. Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности.

ПК 1.1. Анализировать требования технического задания на проектирование цифровых систем

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

Задание:

1) Исследуйте функцию и простройте ее график.

$$f(x) = x^4 - 2x^2 + 2$$
;

2) Проведите полное исследование функций и постройте их графики

$$y = \frac{1}{10}x^5 - \frac{5}{6}x^3 + 2x$$

3) Постройте графики дробно- рациональных функций

$$y = \frac{x-2.5}{x^2-4}$$

Порядок выполнения работы:

Задания решаются в любом порядке

Ход работы:

- 1. Получить у преподавателя задания.
- 2. Оформить решение в тетради для практических работ.

Понятие производной позволяет провести подробное исследование функций с целью более точного построения их графиков.

Рассмотрим расширенный алгоритм исследования функций:

- 1) найти область определения функции;
- 2) исследовать функцию на четность и не четность;
- 3) найти вертикальные асимптоты;
- 4) исследовать поведение функции в бесконечности, найти горизонтальные или наклонные асимптоты;
 - 5) найти экстремумы и интервалы монотонности функции;
 - 6) найти интервалы выпуклости функции и точки перегиба;
- 7) найти точки пересечения с осями координат и, возможно, некоторые дополнительные точки, уточняющие график функции;
 - 8) построить график фикции.
- Если для функции выполняется равенство f(-x) = f(x), то данная функция является четной. Следовательно, график функции симметричен относительно оси (ОУ).
- Если для функции выполняется равенство f(-x) = -f(x),, то дана функция является нечетной. Следовательно график функции симметричен относительно начала координат (0;0)
- Если $f(-x) \neq f(x)$, и $f(-x) \neq -f(x)$,, то данная функция является функцией общего вида и свойством симметричности данная функция не обладает
 - Чтобы найти вертикальные асимптоты нужно:
- а) Найти значение х не принадлежащие области определения, т.е. установить точки разрыва.

$$\lim_{x \to \chi_0^{-0}} \quad u \quad \lim_{x \to \chi_0^{+0}}$$

б) Вычислить (слева) (справа)

и если хотя бы один из них равен $\pm \infty$, то прямая $x = x_0$ — вертикальная асимптота.

• Чтобы найти горизонтальные асимптоты нужно:

а) Вычислить
$$\lim_{x\to\infty} f(x)$$
; Если $\lim_{x\to\infty} f(x) = b$, то

y = b — горизонтальная асимптота.

Чтобы найти наклонные асимптоты нужно:

a) Вычислить
$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$
;

б) Вычислить
$$b = \lim_{x \to \pm \infty} (y - kx)$$

в) Записать уравнение y = kx + b

г) Построить график данной прямой

• Правило Лопиталя:

$$\lim_{\substack{x \to \infty \\ x \to 0}} \frac{f(x)}{g(x)} = \left(\frac{0}{0}\right) u\pi u \left(\frac{\infty}{\infty}\right), \quad mo \lim_{\substack{x \to 0 \\ x \to \infty}} \frac{f(x)}{g(x)} = \lim_{\substack{x \to 0 \\ x \to \infty}} \frac{f'(x)}{g'(x)};$$

Если имеем, что, $x \to 0 = 0$ Решение типовых задач:

1) Исследуйте функцию и постройте её график $y = \frac{x^3}{4 - x^2}$;

1)
$$\coprod$$
 (f) $y = 4 - x^2 \neq 0 \Rightarrow x \neq \pm 2 \Rightarrow x \in (-\infty, -2) \cup (-2, 2) \cup (2, +\infty)$.

$$f(-x) = \frac{(-x)^3}{4 - (-x)^2} = -\frac{x^3}{4 - x^2} = -f(x) \Rightarrow$$
 данная функция нечетная и ее график симметричен

относительно начала координат (0;0).

3) Так как x = 2; x = -2 точки разрыва, то вычислим следующие пределы.

$$\lim_{x\to 2^{+0}}\frac{x^3}{2-x^2}=-\infty; \qquad \lim_{x\to 2^{-0}}\frac{x^3}{4-x^2}=+\infty \\ \text{следовательно, прямая x=2-вертикальная асимптота.}$$

$$\lim_{x \to 2^{+0}} \frac{x^3}{4 - x^2} = +\infty; \qquad \lim_{x \to -2^{-0}} \frac{x^3}{4 - x^2} = -\infty$$
 следовательно, прямая $x = -2$ — вертикальная асимптота

4) Найдем наклонные асимптоты

$$k = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to \infty} \left(\frac{\frac{x^3}{4 - x^2}}{x} \right) = \lim_{x \to \infty} \left(\frac{x^3}{x(4 - x^2)} \right) = \lim_{x \to \infty} \frac{x^2}{4 - x^2} = \lim_{x \to \infty} \frac{\frac{x^2}{x^2}}{\frac{4}{x^2} - \frac{x^2}{x^2}} = \lim_{x \to \infty} \frac{1}{0 - 1} = -1$$

$$b = \lim_{x \to +\infty} (f(x) - kx) = \lim_{x \to \infty} \left(\frac{x^3}{4 - x^2} + x \right) = \lim_{x \to +\infty} \frac{4x}{4 - x^2} = 0$$

Запишем уравнение прямой y=-x+0, т.е. y=-x —наклонная асимптота.

5) Найдем интервалы монотонности и экстремумы функции.

$$f'(x) = \left(\frac{x^3}{4 - x^2}\right)' = \frac{x^2(12 - x^2)}{(4 - x^2)^2} = \frac{x^2(2\sqrt{3} - x)(2\sqrt{3} + x)}{(4 - x^2)^2};$$

Найдем нули функции.

$$\frac{x^2(2\sqrt{3}-x)(2\sqrt{3}+x)}{(4-x^2)^2} = 0 \Rightarrow \begin{cases} x^2(2\sqrt{3}-x)(2\sqrt{3}+x) = 0\\ 4-x^2 \neq 0 \end{cases}$$

X=0 – корень четной кратности, следовательно, x=0 точка перегиба функции.

$$f(2\sqrt{3}) = 3\sqrt{3} \approx -5.2;$$
 $f(-2\sqrt{3}) = 3\sqrt{3} \approx 5.2.$

$$f(-2\sqrt{3}) = 3\sqrt{3} \approx 5.2.$$

Составим таблицу.

Таблица 1

Возрастание, убывание функции

X	$(-\infty; -2\sqrt{3})$	$-2\sqrt{3}$	$(-2\sqrt{3};0)$	0	$(0;2\sqrt{3})$	$2\sqrt{3}$	$(2\sqrt{3};+\infty)$
f'(x)	-	0	+	0	+	0	-
f(x)	Убывает	$3\sqrt{3}$	возрастает	0	возрастает	$-3\sqrt{3}$	убывает

6) Определить интервалы выпуклости.

$$f''(x) = \left(\frac{x^3}{4 - x^2}\right)' = \left(\frac{x^2(12 - x^2)}{(4 - x^2)}\right)' = \frac{8x(12 + x^2)}{(4 - x^2)^3};$$

$$f''(x) = 0; \qquad \frac{8x(12 + x^2)}{(4 - x^2)^3} = 0 \Rightarrow \begin{cases} 8x(12 + x^2 & x = 0 \\ 4 - x^2 \neq 0 & x \neq \pm 2 \end{cases}$$

$$+ \qquad \qquad + \qquad \qquad \downarrow$$

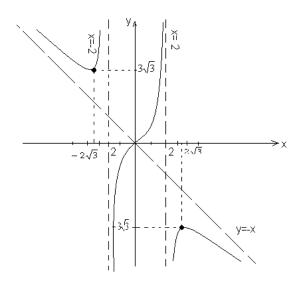
$$-2 \qquad 0 \qquad 2$$

Таблица 2

Выпуклость, вогнутость функции

x	(-∞;-2)	-2	(-2;0)	0	(0;2)	2	(2;+∞)
f'(x)	+	0	+	0	+	0	-
f(x)	Выпукла	Не сущ.	Выпукла	Не сущ.	Выпукла	Не сущ.	Выпукла
	вни3		вверх		вни3		вверх

7) Построим график функции.



Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

Критерии оценки:

За каждый правильный ответ -1 балл. За неправильный ответ -0 баллов. $90 \div 100$ -отлично; $80 \div 89$ - хорошо; $70 \div 79$ -удовлетворительно; менее 70-не удовлетворительно

Тема 3.3. Интегральное исчисление функции одной действительной переменной

Практическое занятие № 18 Интегрирование заменой переменной в неопределенном интеграле

Цель: формирование умений вычислять неопределённые интегралы заменой переменной.

Выполнив работу, Вы будете:

уметь:

- Применять методы дифференциального и интегрального исчисления;
- определять этапы решения задачи;
- определять задачи для поиска информации.

Выполнение практической работы способствует формированию:

- OК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- OК 02. Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности.
- ПК 1.1. Анализировать требования технического задания на проектирование цифровых систем

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

41

Задание:

Вычислить интегралы используя метод подстановки

	Вы телить интегралы используя метод подстановки					
1	$\int (3+5x)^4 dx;$	6	$\int_0^1 \frac{dx}{\sqrt{3x+1}};$			
2	$\int \sqrt{x+2}dx;$	7	$\int_0^1 \sqrt{1-x} dx;$			
3	$\int \frac{dx}{(3x+1)^2};$	8	$\int_0^3 \frac{2xdx}{\sqrt{16+x^2}}$			
4	$\int \frac{3dx}{\sqrt[4]{3x+5}};$	9	$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos \cos x dx}{1 + \sin \sin x};$			
5	$\int \frac{dx}{\cos^{2(1-2x)}};$	10	$\int_0^{\frac{\pi}{3}} e^{\cos\cos x} \operatorname{PP} \sin x dx.$			

Порядок выполнения работы:

Задания решаются в любом порядке

Ход работы:

- 1. Получить у преподавателя задания.
- 2. Оформить решение в тетради для практических работ.

Способ подстановки(замены переменной) заключается в следующем:

- -заменяют новой переменной такую часть подынтегральной функции, дифференцировании, которой получается оставшаяся часть подынтегрального выражения (не считая постоянного множителя);
- -путем введения новой переменной интегрирования удается свести заданный интеграл к сравнительно непосредственным новому интегралу, который легко вычисляется интегрированием;
- -в полученном результате производят обратную замену, т. е. переходят к старой переменной интегрирования.

Решение типовых заданий:

Найти неопределенные интегралы методом подстановки:

- $(3x-2)^4 dx$; 1) \(\)
- 2) ∫
- 3) $\int sin12xdx$; 4) $\int e^{x^2}xdx$;
- 1) [$(3x-2)^4 dx$; Для того чтобы привести этот интеграл к табличному, введем новую переменную: 3x - 2 = t. Продифференцируем обе части равенства d(3x - 2) = dt

$$(3x - 2)'dx = dt$$

$$3dx = dt$$

Выразим дифференциал старой переменной через дифференциал новой переменной: $dx = \frac{dt}{3}$; Решение этого примера оформляется так:

$$\int (3x-2)^4 dx = \left| 3x - 2 = t \, d(3x-2) = dt \, (3x-2)' dx = dt \, 3dx = dt \, dx = \frac{dt}{3} \right| =$$

$$= \int t^4 \frac{dt}{3} = \frac{1}{3} \int t^4 dt = \frac{1}{3} \cdot \frac{t^5}{5} + c = \frac{t^5}{15} + c = \frac{(3x-2)^5}{15} + c.$$

2)
$$\int \frac{5xdx}{x^2+7} = 5 \int \frac{xdx}{x^2+7} = \left| x^2 + 7 \right| = m d(x^2+7) = dm (x^2+7) dx = dm 2xdx = dm xdx = \frac{dm}{2} = 5 \int \frac{\frac{dm}{2}}{m} = 5 \cdot \frac{1}{2} \int \frac{dm}{m} = 2,5 ln|m| + c = 2,5 ln ln |x^2+7| + c;$$

3)
$$\int \sin 12x dx = \left| 12x = t \ d(12x) = dt \ (12x)' dx = dt \ 12 dx = dt \ dx = \frac{dt}{12} \right| = \int \sin \sin t \frac{dt}{12} = \frac{1}{12} \int \sin \sin t dt = \frac{1}{12} \left(-\cos \cos t \right) + c = -\frac{1}{12} \cos \cos (12x) + c;$$

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

Критерии оценки:

За каждый правильный ответ -1 балл. За неправильный ответ -0 баллов. $90 \div 100$ -отлично; $80 \div 89$ - хорошо; $70 \div 79$ -удовлетворительно; менее 70-не удовлетворительно

Тема 3.3. Интегральное исчисление функции одной действительной переменной

Практическое занятие № 19Интегрирование по частям в неопределенном интеграле

Цель: формирование умений вычислять неопределённые интегралы методом интегрирование по частям.

Выполнив работу, Вы будете:

уметь:

- Применять методы дифференциального и интегрального исчисления;
- определять этапы решения задачи;
- определять задачи для поиска информации.

Выполнение практической работы способствует формированию:

- OК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- OК 02. Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности.
- ПК 1.1. Анализировать требования технического задания на проектирование цифровых систем

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

Задание:

Вычислить неопределённые интегралы, используя метод интегрирования по частям

1.	$\int x \sin \sin x dx;$	6	$\int xarctgxdx;$
2.	$\int \frac{2 \ln x dx}{x^2};$	7	$\int x^5 e^{x^2} dx;$
3.	$\int ln^2xdx;$	8	$\int (x+1)e^x dx;$
4.	$\int (2x-1) \cdot e^{3x} dx;$	9	$\int (2x+3)\cos\cos x dx;$
5.	$\int x \cdot 2^x dx;$	10	$\int e^{2x} \cos \cos x dx.$

Порядок выполнения работы:

Задания решаются в любом порядке

Ход работы:

- 1. Получить у преподавателя задания.
- 2. Оформить решение в тетради для практических работ.

Метод интегрирования по частям целесообразно применять в тех случаях, когда под знаком интеграла стоит произведение многочлена на одну из функций sinx; cosx; a^x; lnx; arcsinx; arctgx и т.д. В частности, интегрирование по частям применяют к интегралам вида:

 $\int x^n \cdot e^x dx$; $\int x^n \sin x dx$; $\int x^n \cos x dx$; $\int x^n \ln \ln x dx$; $\int x^n \arctan x dx$ (n=1,2,3,...) или подобным. Также с помощью интегрирования по частям находят интегралы вида:

и подобные им.

Пусть производные функций u(x) и v(x) существуют и непрерывны на заданном интервале. Тогда имеет место равенство:

$$\int uv'dx = uv - \int vu'dx.$$

Метод интегрирования по частям в неопределенном интеграле.

$$\int UdV = UV - \int VdU$$

$$I. \int P_n(x) \cdot \left(e^{l(x)} a^{l(x)} \Box \Box \Box \cos l(x) \Box \Box \Box \sin l(x)\right) dx = \left[U = Pn(x) dU = P_n^i(x) dx dV = () dx V = \int dV\right]$$

Многочлен

$$\begin{array}{ll} II. \int & P_n(x) \cdot \\ (\ln \ln l(x) & \Box \Box \Box \Box \Box \arctan l(x) & \Box \Box \Box \Box \Box \arctan l(x) \ arctgl(x) \ arctgl(x) \ arctgl(x) \) dx = \\ \left[U = (\) \ dU = (U)' dx \ dV = Pn(x) dx \ V = \int & dV \ \right] \end{array}$$

III. $\int e^x \cos \cos x dx$ или $\int e^x \sin \sin x dx$ Применим формулу 2 раза, обозначая за $dV = e^x dx$

В результате получим интегральное уравнение

Замечание:

- 1. За dV берем то выражение, от которого можем найти интеграл.
- 2. Если в случае I степень $P_n(x)$; $n \ge 2$, то формулу применяем 2 и более раза.
- 3. Если в случае $II(𝔻 ln\ l(x)\ ...\ arcctgl(x)\)$ и $n \ge 2$, то формулу применяем 2 и более раза.

Метод интегрирования по частям в определенном интеграле.

$$\int_{A}^{B} Ud = (UV|_{a}^{B} - \int_{a}^{B} VdU)$$

Более наглядно и просто интегрирование по частям записывается с помощью эквивалентного метода стрелок.

$$\int f(x) \cdot g(x) dx = F(x) \cdot g(x) - \int F(x) \cdot g'(x) dx$$

Таким образом, справа получается: произведение множителей находящихся на концах штрихованной линии минус интеграл от произведения функций на концах стрелок.

Решение типовых задач

Найти интеграл, используя интегрирования по частям:

1)
$$\int x \cdot e^x dx$$
;

1) Проинтегрируем по частям, используя метод стрелок:

$$\int x \cdot e^{x} dx = \int e^{x} \cdot x dx = e^{x} \cdot x - \int e^{x} \cdot 1 dx = e^{x} \cdot x - e^{x} + c;$$

$$\int f dx = e^{x} \cdot x - e^{x} + c;$$

$$\int e^{x} \cdot 1 dx = e^{x} \cdot x - e^{x} + c;$$

2)
Найти интеграл
$$\int \left(x+1\right)e^{2x}dx$$

Решение. В исходном интеграле выделим функции u и v, затем выполним интегрирование по частям.

$$\int (x+1)e^{2x}dx \left\| \begin{array}{l} u=x+1 & dv=e^{2x}dx \\ du=dx & v=\frac{1}{2}e^{2x} \end{array} \right\| = (x+1)\cdot\frac{1}{2}e^{2x}-\int\frac{1}{2}e^{2x}dx = \\ = \frac{(x+1)e^{2x}}{2}-\frac{1}{2}\int e^{2x}dx = \frac{(x+1)e^{2x}}{2}-\frac{1}{2}\cdot\frac{1}{2}e^{2x}+C = \\ = \frac{(x+1)e^{2x}}{2}-\frac{e^{2x}}{4}+C \\ \text{Otbet.} \int (x+1)e^{2x}dx = \frac{(x+1)e^{2x}}{2}-\frac{e^{2x}}{4}+C \end{array}$$

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

Критерии оценки:

За каждый правильный ответ -1 балл. За неправильный ответ -0 баллов. $90 \div 100$ -отлично; $80 \div 89$ - хорошо; $70 \div 79$ -удовлетворительно; менее 70-не удовлетворительно

Тема 3.3. Интегральное исчисление функции одной действительной переменной

Практическое занятие № 20Вычисление определенных интегралов

Цель: формирование умений вычислять определённые интегралы методом замены переменной.

Выполнив работу, Вы будете:

уметь:

- Применять методы дифференциального и интегрального исчисления;
- определять этапы решения задачи;
- определять задачи для поиска информации.

Выполнение практической работы способствует формированию:

- OК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ОК 02. Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности.
- ПК 1.1. Анализировать требования технического задания на проектирование цифровых систем

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

Задание:

Вычислить определённые интегралы методом замены переменной

1) a)
$$\int_0^{\pi/2} \sin \sin x \cdot dx$$
, 6) $\int_0^1 5x^3 \cdot dx$.

2) a)
$$\int_{1}^{4} \sqrt{x} dx$$
, 6) $\int_{0}^{1} x^{2} dx$.

1) a)
$$\int_0^{\pi/2}$$
 $\sin \sin x \cdot dx$, б) \int_0^1 $5x^3 \cdot dx$.
2) a) $\int_1^4 \sqrt{x} dx$, б) $\int_0^1 x^2 dx$.
3) a) $\int_0^{\pi/6}$ $\cos \cos x \cdot dx$, б) $\int_1^2 (x-1) \cdot dx$.
4) a) $\int_0^1 2^x \cdot dx$, б) $\int_{\pi/2}^{3\pi/2} \cos \cos x \cdot dx$.
5) a) $\int_0^2 e^x \cdot dx$, б) $\int_1^2 \frac{dx}{x^2}$.
6) a) $\int_1^3 \sqrt{x} \cdot dx$, б) $\int_0^1 7^{2x} dx$.
7) a) $\int_0^{\pi/2} \cos \cos x dx$, б) $\int_1^8 \sqrt[3]{x} dx$.
8) a) $\int_2^3 \frac{dx}{x}$, б) $\int_0^1 (x+3^2) dx$.
9) a) $\int_1^4 \frac{dx}{x^3}$, б) $\int_1^2 5x^5 dx$.
10) a) $\int_0^4 e^x$, б) $\int_1^\pi (\sin \sin x + 2) dx$.

4) a)
$$\int_0^1 2^x \cdot dx$$
, 6) $\int_{\pi/2}^{3\pi/2} \cos \cos x \cdot dx$

5) a)
$$\int_0^2 e^x \cdot dx$$
, 6) $\int_1^2 \frac{dx}{x^2}$.

6) a)
$$\int_{1}^{3} \sqrt{x} \cdot dx$$
, 6) $\int_{0}^{1} 7^{2x} dx$

7) a)
$$\int_0^{\pi/2} \cos \cos x \, dx$$
, 6) $\int_1^8 \sqrt[3]{x} \, dx$.

8) a)
$$\int_2^3 \frac{dx}{x}$$
, 6) $\int_0^1 (x+3^2)dx$

9) a)
$$\int_{1}^{4} \frac{dx}{x^3}$$
, 6) $\int_{1}^{2} 5x^5 dx$.

10) a)
$$\int_0^4 e^x$$
, 6) $\int_0^{\pi} (\sin \sin x + 2) dx$.

Порядок выполнения работы:

Задания решаются в любом порядке

Ход работы:

- 1. Получить у преподавателя задания.
- 2. Оформить решение в тетради для практических работ.

Определенный интеграл. Формула Ньютона-Лейбница

Сумма вида

$$I_n = \sum_{i=1}^n f(S_i) x_i$$

где S_i - произвольная точка частичного отрезка

 $[x_{i-1}, x_i], x_i = x_i - x_{i-1}$, называется интегральной суммой функции f(x) на отрезке[a,b]

Пусть функция y = f(x) определена на отрезке [a,b] и на этом отрезке произвольно выбраны не совпадающие друг с другом точки $\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ так, что $\mathbf{x}_0 < \mathbf{x}_1 < \dots < \mathbf{x}_n = b$ а = выбрано разбиение этого отрезка на n частей. В каждом интервале $[x_{i-1}, x_i]$ произвольным образом выбрана точка S_i , i = 1,2 ... n.

Определенным интегралом от функции f(x) на отрезке [a,b] называется предел I_n интегральных сумм функции f(x) при условии, что длина наибольшего частичного отрезка х, стремится к нулю

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} f(S_{i})x_{i}$$

Если непрерывная функция f(x) имеет первообразную F(x), то для нахождения определенного интеграла используют формулу Ньютон-Лейбница:

$$\int_{a}^{b} f(x)dx = F(x) \Big|_{a}^{b} = F(b) - F(a).$$

Запомни, что

$$\int_{a}^{b} f(x)dx = -\int_{a}^{b} f(x)dx.$$

Заметим так же, что правила нахождения неопределенных интегралов от суммы, разности функций u(x) и v(x)и от произведения функции f(x) на постоянную также верны для определенного интеграла.

Решение типовых задач:

1. Вычислить определённый интеграл методом непосредственного интегрирования $\int_1^2 x^3 dx$. Найдя первообразную для x^3 , затем по формуле Ньютона-Лейбница имеем

$$\int_{1}^{2} x^{3} dx = \frac{x^{4}}{4} = \frac{2^{4}}{4} - \frac{1^{4}}{4} = 3,75$$

2. При вычислении определенного интеграла методом подстановки следует помнить, что заменяя переменную под знаком интеграла, так же необходимо изменить и пределы интегрирования. Полученный интеграл вычисляют, используя формулу Ньютона-Лейбница:

$$\int_{t_{\rm H}}^{t_{\rm B}} f(x)dx = F(t_{\rm B}) - F(t_{\rm H}),$$

где t_{g} и t_{H} — новые пределы интегрирования.

Вычислить определенные интегралы методом подстановки:

1)
$$\int_{1}^{3} (3x-5)^{6} dx = \begin{vmatrix} 3x-5 = t \ d(3x-5) = dt \ (3x-5)' dx = dt \ 3dx = dt \ dx = \frac{dt}{3} - \frac{t^{6}}{3} = \frac{1}{3} \int_{-2}^{4} t^{6} dt = \frac{1}{3} \cdot \frac{t^{7}}{7} \Big|_{-2}^{4} = \frac{t^{7}}{21} \Big|_{-2}^{4} = \frac{4^{7}}{21} - \frac{(-2)^{7}}{21} = \frac{4^{7} - (-2)^{7}}{21} = 786 \frac{2}{7};$$
2)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} sin4x dx = \frac{1}{3} \cdot \frac{t^{7}}{4} \int_{-2}^{4} e^{-t} \frac{t^{7}}{21} e^{-t} dt = \frac{1}{3} \cdot \frac{t^{7}}{4} = \frac{1}$$

$$\begin{vmatrix} 4x = m \ d(4x) = dm \ (4x)' dx = dm \ 4dx = dm \ dx = \frac{dm}{4} \underline{\qquad} m_{\rm B} = 4 \cdot \frac{\pi}{2} = 2\pi \ m_{\rm H} = 4 \cdot \frac{\pi}{4} = \pi \ | = \int_{\pi}^{2\pi} \sin \sin m \ \frac{dm}{4} = \frac{1}{4} \int_{\Pi}^{2\pi} \sin \sin m dm = \frac{1}{4} \cdot (-\cos \cos m) |_{\Pi}^{2\pi} = \left(-\frac{1}{4}\cos 2\pi\right) - \left(-\frac{1}{4}\cos \cos \Pi\right) = \left(-\frac{1}{4}\cdot 1\right) + \frac{1}{4}\cdot (-1) = -\frac{1}{2};$$

$$3) \int_{\frac{\sqrt{3}}{4}}^{\frac{3}{4}} \frac{3dx}{9+16x^{2}} = \frac{3}{9} \int_{\frac{\sqrt{3}}{4}}^{\frac{3}{4}} \frac{dx}{1+\frac{16}{9}x^{2}} = \frac{1}{3} \int_{\frac{\sqrt{3}}{4}}^{\frac{3}{4}} \frac{dx}{1+\left(\frac{4}{3}x\right)^{2}} = \left|\frac{4}{3}x = z \ d\left(\frac{4}{3}x\right) = dz \ \left(\frac{4}{3}x\right)^{'} dx = dz \ \frac{4}{3} dx = dz \ dx = \frac{3dz}{4}$$

$$dz \ dx = \frac{3dz}{4} = \frac{2}{3} \left|\frac{3}{4}z = \frac{4}{3} \cdot \frac{3}{4}z = \frac{4}{3} \cdot \frac{3}{4}z = \frac{4}{3} \cdot \frac{3}{4}z = \frac{1}{3} \int_{\frac{\sqrt{3}}{3}}^{\frac{3}{4}} \frac{\frac{3}{4}z}{1+z^{2}} = \frac{1}{3} \cdot \frac{3}{4} \int_{\frac{\sqrt{3}}{3}}^{\frac{1}{3}} \frac{dz}{1+z^{2}} = \frac{1}{3} \cdot \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{1}{3} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{3}{4} \cdot \frac{3}$$

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

Критерии оценки:

За каждый правильный ответ -1 балл. За неправильный ответ -0 баллов. $90 \div 100$ -отлично; $80 \div 89$ - хорошо; $70 \div 79$ -удовлетворительно; менее 70-не удовлетворительно

Тема 3.3. Интегральное исчисление функции одной действительной переменной

Практическое занятие № 21Вычисление площадей фигур с помощью определенных интегралов

Цель: формирование умений находить площади плоских фигур с помощью определенных интегралов.

Выполнив работу, Вы будете:

уметь:

- Применять методы дифференциального и интегрального исчисления;
- определять этапы решения задачи;
- определять задачи для поиска информации.

Выполнение практической работы способствует формированию:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- OK 02. Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности.
- ПК 1.1. Анализировать требования технического задания на проектирование цифровых систем

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

Задание:

Найдите площадь фигуры, ограниченной линиями:

- 1) $y = 2x^3$; y = 0; x = 0; x = 3
- 2) $y = 2x^2$; y = 0; x = 1; x = 3.
- 3) y = 2x; y = 0; x = 1; x = 3.
- 4) $y = e^x$; y = 0; x = 0; x = 2.
- 5) $y = x^3$; $y = x^2$; x = 1; x = 2.

Порядок выполнения работы:

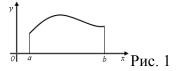
Задания решаются в любом порядке

Ход работы:

- 1. Получить у преподавателя задания.
- 2. Оформить решение в тетради для практических работ.

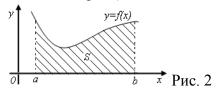
Геометрический смысл определенного интеграла

Пусть функция y = f(x) непрерывна на отрезке [a;b] и принимает на этом отрезке неотрицательные значения, т.е. f(x) > 0 при $x \in [a;b]$. Фигура, образованная линиями x = a, x = b, y = 0, y = f(x), называется криволинейной трапецией (рис. 1). Определенный интеграл от неотрицательной функции имеет простой геометрический смысл: это площадь криволинейной трапеции.

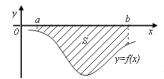


Площади плоских фигур

1. Если функция f(x) неотрицательна на отрезке [a;b], то площадь S под кривой y = f(x) на [a;b] (рис. 2) численно равна определенному интегралу от f(x) на данном отрезке: $S = \int_{a}^{b} f(x) dx$ (геометрический смысл определенного интеграла).



2. Если функция f(x) — неположительна на отрезке [a;b], то площадь S под кривой y = f(x) на [a;b] (рис. 3) равна определенному интегралу от f(x) на [a;b], взятому со знаком «минус»: $S = -\int_{-\infty}^{b} f(x) dx$



3. Если функция $f_2(x) \ge f_1(x)$ на отрезке [a;b], то площадь S фигуры, заключенной между

кривыми $y = f_2(x)$ и $y = f_1(x)$ на [a;b] (рис. 4) определяется формулой $S = \int_a^b (f_2(x) - f_1(x)) dx$

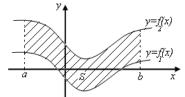


Рис. 4

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

Критерии оценки:

За каждый правильный ответ -1 балл. За неправильный ответ -0 баллов. $90 \div 100$ -отлично; $80 \div 89$ - хорошо; $70 \div 79$ -удовлетворительно; менее 70-не удовлетворительно

Тема 3.4. Обыкновенные дифференциальные уравнения

Практическое занятие № 22 Решение дифференциальных уравнений первого порядка с разделяющимися переменными

Цель: формирование умений решать дифференциальные уравнения первого порядка с разделяющимися переменными.

Выполнив работу, Вы будете:

уметь:

- Решать дифференциальные уравнения

- анализировать задачу и/или проблему и выделять её составные части;
- определять этапы решения задачи.

Выполнение практической работы способствует формированию:

- OК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ПК 2.1. Проектировать, разрабатывать и отлаживать программный код модулей управляющих программ

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

Задание:

- 1) Найти общие решение дифференциального уравнений:
 - a) ds = (2t 3)dt,
 - b) $dx = (10t^2 5)dt$,
 - c) x dx = dy,
 - d) x dx = y dy,
 - e) $x^2 dx + y dy = 0$,
- 2) Найти частные решения дифференциального уравнений:
- а) (t-4)dt + s ds = 0, если при t = -1; s = 0.
- b) $\frac{dy}{dx} + \frac{dx}{y} = 0$, если при x = 0; y = 2.
- с) 4s dt = t ds, если при t = -1; s = 3.
- d) $x^2 dy y^2 dx = 0$, если при x=0,2 y=1.
- e) $\frac{2 dy}{dx} = 1 + x^2$, если при x=0 y=0.

Порядок выполнения работы:

Задания решаются в любом порядке

Ход работы:

- 1. Получить у преподавателя задания.
- 2. Оформить решение в тетради для практических работ.

Дифференциальные уравнения первого порядка с разделяющимися переменными Дифференциальное уравнение вида

$$f_1(x)\varphi_1(y)dx - f_2(x)\varphi_2(y)dy = 0$$

относится к типу уравнений с разделяющимися переменными. Если ни одна из функций $f_1(x), f_2(x), \mathbb{P}_1(y), \varphi_2(y)$ не равна тождественно нулю, то в результате деления исходного уравнения на $f_2(x) \cdot \varphi_1(y)$ оно приводится к виду: $\frac{f_1(x)dx}{f_2(x)} - \frac{\Box_2(y)dy}{\varphi_1(y)} = 0.$ Разведём переменные в разные части равенства и проинтегрируем $\int \frac{f_1(x)dx}{f_2(x)} = \int \frac{\varphi_2(y)dy}{\varphi_1(y)}.$ Решение дифференциального уравнения, выраженное в неявной форме, называют *интегралом* этого уравнения.

Решение типовых задач:

1. Найти общие решение уравнения: $x(y^2-4) dx + y dy = 0$. Разделив обе части уравнения на $y^2 - 4 \neq 0$, имеем

$$xdx + \frac{ydy}{y^2 - 4} = 0$$

Интегрируя, находим

$$x^2 + \ln \ln |y^2 - 4| = \ln \ln C$$
 или $y^2 - 4 = Ce^{-x^2}$.

Это общее решение данного дифференциального уравнения.

Пусть теперь $y^2 - 4 = 0$, т.е. $y = \pm 2$. Непосредственной подстановкой убеждаемся, что $y = \pm 2$ — решение исходного уравнения. Однако оно не является особым, так как его можно получить из общего решения при C = 0.

2. Найти общий интеграл уравнения y' = x + y

Полагая $y' = \frac{dy}{dx}$ — и разделяя переменные, приходим к уравнению

ctgydy = tdxdx. Интегрируя, имеем

$$\int ctgydy = \int tgxdx$$
, или $22\ln |\Box \Box \sin y| = -\Box \Box \ln |\cos x| + \ln \ln C$.

Отсюда находим 222 $\sin y = \frac{c}{\cos\cos x}$, или 222 $\sin y \cos\cos x = C$ (общий интеграл).

3. Найти частный интеграл уравнения $y'cosx = \frac{y}{lnln \ v}$ удовлетворяющий начальному условию y(0) = 1.

Полагая $y' = \frac{dy}{dx}$ — перепишем данное уравнение в виде

$$\cos x \frac{dy}{dx} = \frac{y}{\ln \ln y}$$

Разделим переменные:

$$\frac{22 \ln y}{y} dy = \frac{dx}{\cos \cos x}$$

Проинтегрируем обе части уравнения:

$$\int \frac{dx}{y} \, dy = \int \frac{dx}{\cos x} + c, \text{ или } \frac{1}{2}y = \ln \ln \tan \left(\frac{x}{2} + \frac{\pi}{4}\right) + C$$
 Используя начальное условие $y = 1$ при $x = 0$, находим $C = 0$. Окончательно получим

$$\frac{1}{2}\ln\ln 2y = \ln\ln\frac{x}{2} + \frac{\pi}{4}$$

4. Найти частное решение дифференциального уравнения

$$(1 + x^2)dy + ydx = 0$$
при начальном условии $y(1) = 1$.

Преобразуем данное уравнение к виду $\frac{dy}{y} = -\frac{dx}{1+x^2}$. Интегрируя, имеем

$$\int \frac{dy}{y} = -\int \frac{dx}{1+x^2}$$
, или $\mathbb{CP} \ln |y| = -arctgx + C$

Это общий интеграл данного уравнения.

Теперь, используя начальное условие, найдем произвольную постоянную: $\mathbb{Z} \ln 1 =$ $-arctg\ 1 + C$, т.е. $C = \frac{\pi}{4}$. Следовательно,

$$\Pr[\ln y = -\arctan x + \frac{\pi}{4}],$$

откуда получаем искомое частное решение $y=e^{\frac{\pi}{4}-arctgx}$.

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

Критерии оценки:

За каждый правильный ответ – 1 балл. За неправильный ответ – 0 баллов. 90 ÷ 100-отлично; 80 ÷ 89- хорошо; 70 ÷ 79-удовлетворительно; менее 70-не удовлетворительно

Тема 3.4. Обыкновенные дифференциальные уравнения

Практическое занятие № 23 Решение однородных дифференциальных уравнений первого порядка

Цель: формирование умений решать однородные дифференциальные уравнения первого порядка..

Выполнив работу, Вы будете:

уметь:

- Решать дифференциальные уравнения
- анализировать задачу и/или проблему и выделять её составные части;
- определять этапы решения задачи.

Выполнение практической работы способствует формированию:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ПК 2.1. Проектировать, разрабатывать и отлаживать программный код модулей управляющих программ

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

Задание:

- 1. Решить уравнения: a) $(3x-1)dy + y^2dx = 0$; б) xy' + 2y = 2xyy'.
- 2. Решить уравнения: a) $(xy x^2)y' = y^2$; б) $xy' = y \ln \frac{x}{y}$.
- 3. Решить уравнения: a) $y'-2y=e^{2x}$; б) $(y^2+x)y'=1$.

Порядок выполнения работы:

Задания решаются в любом порядке

Ход работы:

- 1. Получить у преподавателя задания.
- 2. Оформить решение в тетради для практических работ.

Однородные дифференциальные уравнения первого порядка

Дифференциальное уравнение первого порядка называется однородным, если оно может

быть представлено в виде:
$$y' = g\left(\frac{y}{x}\right)$$
.

Замена переменной $z = \frac{y}{x}$, где z = z(x), сводит однородные дифференциальные уравнения к уравнениям с разделяющимися переменными.

Линейные дифференциальные уравнения первого порядка

Дифференциальное уравнение первого порядка называется *линейным*, если оно имеет вид: y' + f(x)y = g(x), где f(x), g(x) — некоторые непрерывные функции переменной x. Если функция g(x) тождественно равна нулю, то уравнение называется *однородным*, в противном случае — *неоднородным*.

Один из способов решения такого уравнения, предложенный Даламбером, — представить неизвестную функцию в виде $y = u \cdot v$. Тогда y' = u'v + uv' и дифференциальное уравнение запишется в виде

$$u'v + uv' + f(x)uv = g(x)$$
 MIIII $u'v + u[v' + f(x)v] = g(x)$.

Если функцию v выбрать так, что будет выполняться равенство v' + f(x)v = 0, то относительно другой функции u дифференциальное уравнение будет простым: vu' = g(x). Таким образом, решение исходного дифференциального уравнения (3) распадается на решение двух дифференциальных уравнений: сначала v' + f(x)v = 0, а затем vu' = g(x).

Дифференциальное уравнение первого порядка называется *уравнением Бернулли*, если оно имеет вид: $y' + f(x)y = g(x)y^n$, где $n \neq 0$, $n \neq 1$.

Это уравнение приводится к линейному с помощью подстановки $z = y^{1-n}$, либо может быть непосредственно решено тем же методом, что и линейные уравнения.

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

Критерии оценки:

За каждый правильный ответ -1 балл. За неправильный ответ -0 баллов. $90 \div 100$ -отлично; $80 \div 89$ - хорошо; $70 \div 79$ -удовлетворительно; менее 70-не удовлетворительно

Тема 3.4. Обыкновенные дифференциальные уравнения

Практическое занятие № 24 Решение линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами

Цель: формирование умений решатьоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Выполнив работу, Вы будете:

уметь:

- Решать дифференциальные уравнения
- анализировать задачу и/или проблему и выделять её составные части;
- определять этапы решения задачи.

Выполнение практической работы способствует формированию:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ПК 2.1. Проектировать, разрабатывать и отлаживать программный код модулей управляющих программ

Материальное обеспечение:

Раздаточный материал (карточки с заданиями).

Технические средства обучения: компьютер с лицензионным программным обеспечением и мультимедиа проектор

Задание:

- 1. Решить уравнения: a) xy'' + y' = 0; б) $yy'' = (y')^2$.
- 2. Решить уравнения: a) 2y'' y' y = 0; б) 4y'' + 4y' + y = 0; в) y'' + 2y' + 5y = 0.

Порядок выполнения работы:

Задания решаются в любом порядке

Ход работы:

- 1. Получить у преподавателя задания.
- 2. Оформить решение в тетради для практических работ.

Дифференциальное уравнение второго порядка имеет вид: y'' = f(x, y, y').

Задача Коши для уравнения 2-го порядка состоит в том, чтобы найти решение дифференциального уравнения y'' = f(x, y, y'), которое удовлетворяет начальным условиям $y(x_0) = y_0$, $y'(x_0) = y_0'$.

В некоторых случаях решение дифференциального уравнения 2-го порядка может быть сведено к решению уравнения 1-го порядка, т.е. допускает понижение порядка. Рассмотрим некоторые типы таких уравнений.

Если уравнение второго порядка имеет вид: y'' = f(x, y'), т.е. в запись уравнения не входит искомая функция y = y(x), то рекомендуется ввести новую зависимую переменную z = y' при сохранении независимой переменной. Относительно новой зависимой переменной получим дифференциальное уравнение 1-го порядка: z' = f(x, z).

Если дифференциальное уравнение второго порядка имеет вид: y'' = f(y, y'), т.е. не содержит независимой переменной x, то понижение порядка достигается заменой y' = p, где p рассматривается как функция переменной y: p = p(y). При этом y'' = p'p, и мы приходим к уравнению p'p = f(y, p) первого порядка. Решив это уравнение, придем к зависимости y' от x и y, т.е. к дифференциальному уравнению первого порядка относительно y.

Линейное дифференциальное уравнение второго порядка с постоянными коэффициентами имеет вид: y'' + py' + qy = r(x), где p и q — некоторые действительные числа, r(x) — некоторая функция. Если функция r(x) тождественно равна нулю, то соответствующее уравнение называется однородным, в противном случае — неоднородным.

Рассмотрим решение однородного дифференциального уравнения y'' + py' + qy = 0.

Данному уравнению ставится в соответствие характеристическое уравнение: $\lambda^2 + p\lambda + q = 0$, где λ — переменная.

В зависимости от значения дискриминанта D квадратного уравнения $\lambda^2 + p\lambda + q = 0$ имеют место три случая:

- 1) D>0 уравнение имеет различные действительные корни, т.е. $\lambda_1 \neq \lambda_2$. Общее решение дифференциального уравнения имеет вид $y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}$.
- 2) D=0 уравнение имеет равные действительные корни, т.е. $\lambda_1 = \lambda_2 = \lambda$. Общее решение дифференциального уравнения имеет вид $y = C_1 e^{\lambda x} + C_2 x e^{\lambda x}$.
- 3) D < 0 уравнение имеет комплексные сопряженные корни $\lambda_{1,2} = a \pm ib$. Общее решение дифференциального уравнения имеет вид $y = C_1 e^{ax} \cos bx + C_2 e^{ax} \sin bx$.

Рассмотрим теперь решение неоднородного дифференциального уравнения с постоянными коэффициентами.

Это уравнение может быть в частности решено *методом вариации произвольных постоянных*, который состоит в следующем. Сначала находится общее решение $y = C_1 y_1 + C_2 y_2$ однородного дифференциального уравнения, имеющего ту же левую часть, что и исходное неоднородное уравнение. Затем решение неоднородного уравнения находится в виде $y = C_1(x)y_1 + C_2(x)y_2$, т.е. предполагается, что постоянные C_1 и C_2 являются функциями

независимой переменной x. При этом функции $C_1(x)$ и C_2 могут быть найдены как решения $\begin{cases} C_1'y_1 + C_2'y_2 = 0, \\ C_1'y_1' + C_2'y_2' = r. \end{cases}$ системы $\begin{cases} C_1'y_1' + C_2'y_2' = r. \end{cases}$

Форма представления результата:

Представить выполненные задания в тетради для практических работ преподавателю.

Критерии оценки:

За каждый правильный ответ -1 балл. За неправильный ответ -0 баллов. $90 \div 100$ -отлично; $80 \div 89$ - хорошо; $70 \div 79$ -удовлетворительно; менее 70-не удовлетворительно