Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г. И. Носова» Многопрофильный колледж

УТВЕРЖДАЮ Директор /С.А.Махновский «09» февраля 2022г

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ЛАБОРАТОРНО-ПРАКТИЧЕСКИХ РАБОТ УЧЕБНОЙ ДИСЦИПЛИНЫ ОП.07 Электротехника и электроника

для обучающихся специальности

44.02.06 Профессиональное обучение (по отраслям). Обработка металлов давлением

Магнитогорск, 2022

ОДОБРЕНО: Предметно-цикловой комиссией	Методической комиссией МпК
Обработки металлов давлением Председатель О.В. Шелковникова	Протокол №4 от 09.02.2022 г.
Протокол № 5 от 19.01.2022 г.	
Составитель: преподаватель ФГБОУ ВО «МГТУ им. Г.И	.Носова» МпК <u>Н.Г. Коновалова</u>
Методические указания по выполнен программы учебной дисциплины	ию практических работ разработаны на основе рабочей

СОДЕРЖАНИЕ

1 ВВЕДЕНИЕ	
Практическая работа № 1	6
Практическая работа № 1Практическая работа № 2	8
Практическая работа №3	10
Практическая работа №4	
Практическая работа №5	14
Практическая работа №6	
Практическая работа №7	16
Практическая работа №8	
Практическая работа № 9	20
Практическая работа №10	21
Практическая работа №11	23
Практическая работа №12	24
Практическая работа №13	25
Практическая работа №14	

1 ВВЕДЕНИЕ

Важную часть теоретической и профессиональной практической подготовки обучающихся составляют практические занятия.

Состав и содержание практических занятий направлены на реализацию Федерального государственного образовательного стандарта среднего профессионального образования.

Ведущей дидактической целью практических занятий является формирование учебных практических умений, необходимых в последующей учебной деятельности.

В соответствии с рабочей программой учебной дисциплины «ОП.07.Электротехника и электроника» предусмотрено проведение практических занятий.

В результате их выполнения, обучающийся должен:

уметь:

- -выбирать электрические, электронные приборы и электрооборудование;
- -правильно эксплуатировать электрооборудование и механизмы передачи движения технологических машин и аппаратов;
 - -производить расчеты простых электрических цепей;
 - рассчитывать параметры различных электрических цепей и схем;
- -снимать показания и пользоваться электроизмерительными приборами и приспособлениями;

Содержание практических и лабораторных занятий ориентировано на подготовку обучающихся к освоению профессионального модуля программы подготовки специалистов среднего звена по специальности и овладению *профессиональными компетенциями*:

- ПК 4.1. Участвовать в планировании деятельности первичного структурного подразделения;
- ПК 4.2. Участвовать в разработке и внедрении технологических процессов;
- ПК 4.3. Разрабатывать и оформлять техническую и технологическую документацию;
- ПК 4.4. Обеспечивать соблюдение технологической и производственной дисциплины;
- ПК 4.5. Обеспечивать соблюдение техники безопасности.

А также формированию общих компетенций:

- ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- OK2. Организовывать собственную деятельность, определять методы решения профессиональных задач, оценивать их эффективность и качество.
 - ОК 3. Оценивать риски и принимать решения в нестандартных ситуациях.
- ОК 4. Осуществлять поиск, анализ и оценку информации, необходимой для постановки и решения профессиональных задач, профессионального и личностного развития.
- OК 5. Использовать информационно-коммуникационные технологии для совершенствования профессиональной деятельности.
- ОК 6. Работать в коллективе и команде, взаимодействовать с руководством, коллегами и социальными партнерами.
- OK 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
- ОК 9. Осуществлять профессиональную деятельность в условиях обновления ее целей, содержания, смены технологий.
 - ОК 11. Строить профессиональную деятельность с соблюдением правовых норм, ее

Выполнение обучающихся практических и лабораторных работ по учебной дисциплине «ОП.07.Электротехника и электроника» направлено на:

- обобщение, систематизацию, углубление, закрепление, развитие и детализацию полученных теоретических знаний по конкретным темам учебной дисциплины;
- формирование умений применять полученные знания на практике, реализацию единства интеллектуальной и практической деятельности;
- формирование и развитие умений: наблюдать, сравнивать, сопоставлять, анализировать, делать выводы и обобщения, самостоятельно вести исследования, пользоваться различными приемами измерений, оформлять результаты в виде таблиц, схем, графиков;
- приобретение навыков работы с различными приборами, аппаратурой, установками и другими техническими средствами для проведения опытов;
- развитие интеллектуальных умений у будущих специалистов: аналитических проектировочных, конструктивных и др.;
- выработку при решении поставленных задач профессионально значимых качеств, таких как самостоятельность, ответственность, точность, творческая инициатива.

Практические и лабораторные занятия проводятся после соответствующей темы, которая обеспечивает наличие знаний, необходимых для ее выполнения.

2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Тема 1.1Электрическое поле и его характеристики

Практическая работа № 1

Расчет электрической цепи при последовательном, параллельном и смешанном соединении конденсаторов

Цель:

- закрепить знания по изученной теме;
- научить рассчитывать конденсаторную батарею.

Выполнив работу, Вы будете:

уметь:

- -производить расчеты простых электрических цепей;
- -рассчитывать параметры различных электрических цепей и схем.

Материальное обеспечение:

Конспект лекций, инструкция к выполнению практической работы, рабочая тетрадь.

Задание:

- 1. Определить общую емкость электрической цепи.
- 2. Определить заряды и напряжения в соответствие с индивидуальным заданием на практическую работу.

Краткие теоретические сведения:

Электрические заряды в цепи могут не только перемещаться по её элементам, но также накапливаться в них, создавая запас энергии. Способность проводника и окружающей его среды накапливать электрическое поле характеризуется электрической емкостью.

Электрическая емкость – скалярная величина, численно равная заряду, который нужно сообщить проводнику, чтобы его потенциал изменился на 1В.

Ёмкость численно равна отношению величины электрического заряда на участке электрической цепи к величине напряжения на нём.

$$C = \frac{q}{U} = \left[\frac{K\pi}{B}\right] = \left[\Phi\right]$$

Способы соединения конденсаторов:

1. Последовательное соединение конденсаторов

Схема замещения цепи с последовательным соединением конденсаторов представлена на рисунке 1.1.

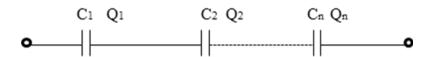


Рисунок 1.1 – Схема последовательного соединения конденсаторов

Для последовательного соединения конденсатора справедливы соотношения

$$Q_{\text{OBIII}} = Q_1 = Q_2 \dots = Q_n$$

$$U_{\text{OBIII}} = U_1 + U_2 \dots + U_n$$

$$\frac{1}{C_{\text{OBIII}}} = \frac{1}{C_1} + \frac{1}{C_2} \dots + \frac{1}{C_n},$$

2. Параллельное соединение резисторов

При параллельном соединении все конденсаторы подключаются к двум узлам электрической цепи, т.е. включаются на одно напряжение. Схема замещения цепи с параллельным соединением резисторов представлена на рисунке 1.2

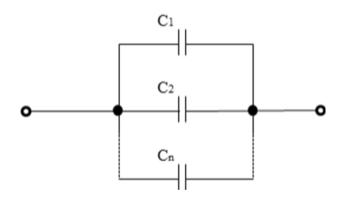


Рисунок 1.2 - Схема параллельного соединения конденсаторов

Для параллельного соединения справедливы соотношения

$$U_{OBIII} = U_1 = U_2 = U_n$$
,

$$Q_{OBIII} = Q_1 + Q_2 \dots + Q_n,$$

$$C_{OBIII} = C_1 + C_2 + C_n$$

Определите общую емкость конденсаторной батареи изображенной на рисунке 1.5, если все конденсаторы имеют емкость 600 мкФ (Ответ запишите в микрофарадах).

Порядок выполнения работы:

- 1. Повторить конспект лекций по теме «Электрическое поле и его характеристики».
- 2. Выполнить конденсаторной батареи в соответствие с заданным вариантом.

Ход работы:

- 1. Начертить схему. Выявить способы соединения конденсаторов электрической цепи постоянного тока.
 - 2. Вычислить общую емкость электрической цепи.
 - 3. Определить напряжение и заряд на каждом конденсаторе.
 - 4. Осуществить проверку правильности решения.

Форма представления результата:

Работа выполняется в тетрадях для практических работ, сдается в конце занятия в форме решенной задачи.

Критерии оценки:

- оценка «**отлично**» выставляется студенту, если расчет выполнен в полном объеме, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;
- оценка «**хорошо**» выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;
- оценка «**удовлетворительно**» выставляется студенту, если задание выполнено с «грубыми» ошибками, решение оформлено без соблюдения установленных правил;
 - оценка «**неудовлетворительно**» выставляется студенту, если работа не выполнена.

Тема 2.2 Способы соединения активных и пассивных элементов электрических цепей постоянного тока

Практическая работа № 2

Расчет электрических цепей методом эквивалентных преобразований

Цель:

- закрепить знания по изученной теме;
- научить рассчитывать электрическую цепь постоянного тока методом эквивалентных преобразований.

Выполнив работу, Вы будете:

уметь:

- -производить расчеты простых электрических цепей;
- -рассчитывать параметры различных электрических цепей и схем.

Материальное обеспечение:

Конспект лекций, инструкция к выполнению практической работы, рабочая тетрадь.

Задание:

- 1. Определить общее сопротивление заданной электрической цепи.
- 2. Определить токи напряжения и мощности в соответствие с индивидуальным заданием на практическую работу.

Краткие теоретические сведения:

На практике наибольшее распространение получили электрические цепи с комбинированным способом соединения пассивных элементов. Метод эквивалентных преобразований применяется для расчета режима электрической цепи с одним источником энергии и комбинированной (смешанной) схемой соединения пассивных элементов. Метод эквивалентных преобразований также можно использовать для упрощения части сложной схемы при расчетах другими методами. Суть метода заключается в замене всех резисторов одним резистором с эквивалентным сопротивлением (рисунок 3.1).

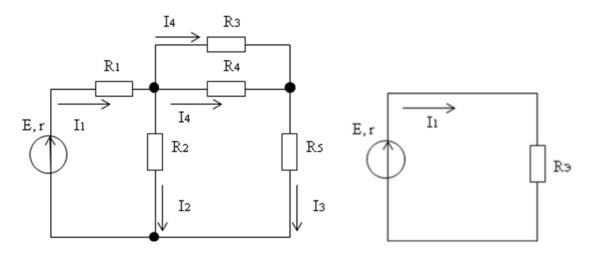


Рисунок 3.1- Схема комбинированного соединении резисторов

После преобразования схемы по закону Ома для полной цепи можно определить ток, протекающий через источник (общий ток), а затем, вернувшись к исходной схеме, определяются все токи и напряжения в электрической схеме.

Порядок выполнения работы:

- 1. Повторить конспект лекций по теме «Способы соединения активных и пассивных элементов электрических цепей постоянного тока».
- 2. Выполнить расчет электрической цепи постоянного тока методом эквивалентных преобразований в соответствие с заданным вариантом.

Ход работы:

1. Начертить схему. Выявить способы соединения пассивных элементов электрической цепи постоянного тока.

- 2. Вычислить общее сопротивление электрической цепи.
- 3. Определить напряжение, ток и мощность на каждом резисторе.
- 4. Осуществить проверку правильности решения.

Форма представления результата:

Работа выполняется в тетрадях для практических работ, сдается в конце занятия в форме решенной задачи.

Критерии оценки:

- оценка «**отлично**» выставляется студенту, если расчет выполнен в полном объеме, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;
- оценка «**хорошо**» выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;
- оценка «**удовлетворительно**» выставляется студенту, если задание выполнено с «грубыми» ошибками, решение оформлено без соблюдения установленных правил;
 - оценка «неудовлетворительно» выставляется студенту, если работа не выполнена.

Тема 2.3 Законы электрических цепей постоянного тока

Практическая работа №3

Расчет сложной электрической цепи постоянного тока методом узловых и контурных уравнений

Цель:

- закрепить знания по изученной теме «Законы электрических цепей постоянного тока»;
- научить рассчитывать сложные электрические цепи методом узловых и контурных уравнений

Выполнив работу, Вы будете:

уметь:

- -производить расчеты простых электрических цепей;
- -рассчитывать параметры различных электрических цепей и схем.

Материальное обеспечение:

Конспект лекций, инструкция к выполнению практической работы, рабочая тетрадь.

Задание:

- 1. Определить все токи в электрической цепи методом узловых и контурных уравнений.
- 2. Составить баланс мошностей.

Краткие теоретические сведения:

Метод основан на составлении уравнений по первому и второму законам Кирхгофа. Достоинством данного метода является его универсальность.

Алгоритм расчета методом узловых и контурных уравнений

1) Произвольно выбрать направления токов во всех ветвях электрической схемы и указать их на схеме.

- 2) Определить количество узлов (Ny) и ветвей (Nв) в схеме.
- 3) Определить количество уравнений по первому и второму законам Кирхгофа. Количество уравнений по первому закону Кирхгофа определяется по формуле

$$N_1=Ny-1$$

Количество уравнений по второму закону Кирхгофа определяется по формуле

$$N_2 = N_B - (N_{y-1})$$

Суммарное количество уравнений должно быть равно количеству ветвей (токов) в схеме.

- 4) Составить систему уравнений по первому и второму законам Кирхгофа для произвольно выбранных узлов и контуров. Направление обхода контура выбирается произвольно.
- 5) Решить полученную систему уравнений любым математическим методом. Результатом решения будет определение всех токов электрической цепи.
- 6) На схеме изменить направления токов, которые в результате решения системы приняли отрицательное значение. Отрицательное значение говорит о неправильном выборе направления тока в 1 пункте алгоритма.
 - 7) Выполнить проверку. Составить баланс мощности.

Порядок выполнения работы:

- 1. Повторить конспект лекций по теме «Законы электрических цепей постоянного тока».
- 2. Выполнить расчет электрической цепи постоянного тока методом узловых и контурных уравнений.

Ход работы:

- 1. Начертить схему. Определить количество узлов и ветвей в цепи.
- 2. Указать направления токов.
- 3. Составить систему уравнений по законам Кирхгофа и решить ее.
- 4. Составить баланс мощностей и сделать вывод о правильности решения.

Форма представления результата:

Работа выполняется в тетрадях для практических работ, сдается в конце занятия в форме решенной задачи.

Критерии оценки:

- оценка «**отлично**» выставляется студенту, если расчет выполнен в полном объеме, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;
- оценка «**хорошо**» выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;
- оценка «удовлетворительно» выставляется студенту, если задание выполнено с «грубыми» ошибками, решение оформлено без соблюдения установленных правил;
 - оценка «неудовлетворительно» выставляется студенту, если работа не выполнена.

Тема 3.1 Характеристики магнитного поля. Магнитные свойства вещества.

Практическая работа №4

Цель:

- закрепить знания по изученной теме «Характеристики магнитного поля. Магнитные свойства вещества»;
- научить рассчитывать сложные электрические цепи методом узловых и контурных уравнений

Выполнив работу, Вы будете:

уметь:

- -производить расчеты простых электрических цепей;
- -рассчитывать параметры различных электрических цепей и схем.

Материальное обеспечение:

Конспект лекций, инструкция к выполнению практической работы, рабочая тетрадь.

Краткие теоретические сведения:

конструкцию многих электротехнических устройств (электрических трансформаторов, электрических аппаратов, измерительных приборов и т. д.) входят магнитные цепи. Магнитной цепью называется часть электротехнического устройства, содержащая ферромагнитные тела, в которой при наличии намагничивающей силы возникает магнитный поток и вдоль которой замыкаются линии магнитной индукции. Магнитная цепь состоит из магнитопровода (сердечника) И источника намагничивающей силы. Источниками намагничивающей силы являются постоянные магниты или катушки с токами. В конструктивном отношении магнитные цепи выполняют не разветвленными и разветвленными.

Прямая задача расчета магнитных цепей заключается в определении по заданному магнитному потоку в цепи намагничивающей силы, необходимой для создания этого потока.

На рисунок 3.1 изображена неразветвленная магнитная цепь, в которой замыкается один и тот же магнитный поток не всех участках магнитопровода. Кроме основного магнитного потока, который замыкается в магнитопроводе в цепи присутствуют магнитные потоки рассеяния. Для упрощения расчет ведется без учета магнитных потоков рассеяния.

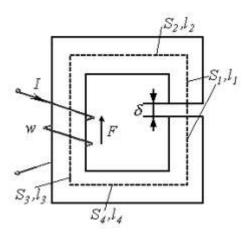


Рисунок 3.1 – Неразветвленная магнитная цепь

Порядок расчета:

- А) Проводят среднюю магнитную линию
- Б) Разбивают магнитную цепь на однородные участки с неизменными сечениями и определяют площадь поперечного сечения участков S и длины 1 по средней магнитной линии;

В) По заданному магнитному потоку и уже известной площади поперечного сечения S сердечника находят магнитную индукцию на каждом из участков по формуле (3.1).

$$B = \frac{\Phi}{S} \,. \tag{3.1}$$

 Γ). По кривым намагничивания (рисунок 3.2) для каждого ферромагнитного участка определяют напряженность магнитного поля H.

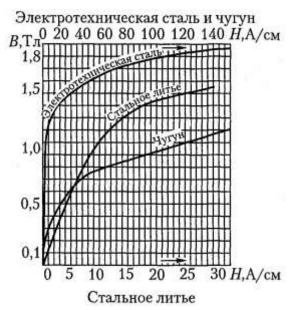


Рисунок 3.2- Кривые намагничивания стали и чугуна

Д) Напряженность поля в воздушном зазоре или не феромагнитном участке определяется по формуле (3.2)

$$H_0 = \frac{B_0}{\mu_0} = \frac{B_0}{125 \cdot 10^{-8}} \,. \tag{3.1}$$

Д. По второму закону Кирхгофа сумма магнитных напряжений на отдельных участках равна искомой магнитодвижущей силе (МДС),

$$I \cdot W = H_1 \cdot l_1 + H_2 \cdot l_2 + \dots + H_n \cdot l_n + H_o \cdot \delta_0$$

где 1 – длина магнитопровода, подсчитанная по средней линии без учета закруглений.

Задание:

1. Выполнить расчет магнитной цепи.

Порядок выполнения работы:

- 1. Повторить конспект лекций по теме «Характеристики магнитного поля. Магнитные свойства вещества».
 - 2. Выполнить расчет магнитной цепи.
 - 3. Ответить на контрольные вопросы.

Ход работы:

1. Начертите схему согласно своему варианту.

- 2. Рассчитайте сечение сердечника участков цепи.
- 4. Определите магнитную индукцию во всех участках цепи.
- 5. Определите напряженность магнитного поля в стальных участках и напряженность в воздушном зазоре.
 - 6. Определите НС и ток, в катушке используя уравнение закона полного тока.

Форма представления результата:

Работа выполняется в тетрадях для практических работ, сдается в конце занятия в форме решенной задачи.

Критерии оценки:

- оценка «**отлично**» выставляется студенту, если расчет выполнен в полном объеме, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;
- оценка «**хорошо**» выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;
- оценка «удовлетворительно» выставляется студенту, если задание выполнено с «грубыми» ошибками, решение оформлено без соблюдения установленных правил;
 - оценка «неудовлетворительно» выставляется студенту, если работа не выполнена.

Тема 4.3 Общий случай неразветвленной цепи переменного тока

Практическая работа №5

Расчет неразветвленной электрической цепи переменного тока

Пель:

- закрепить знания по изученной теме «Общий случай неразветвленной цепи переменного тока»;
 - научить рассчитывать неразветвленные электрические цепи переменного тока.

Выполнив работу, Вы будете:

уметь:

- -производить расчеты простых электрических цепей;
- -рассчитывать параметры различных электрических цепей и схем.

Материальное обеспечение:

Конспект лекций, инструкция к выполнению практической работы, рабочая тетрадь.

Задание:

- 1. Определить в соответствие с заданием токи и напряжения в электрической цепи.
- 2. Определить активную, реактивную и полную мощности электрической цепи.

Порядок выполнения работы:

1. Повторить конспект лекций по темам «Основные сведения о синусоидальном электрическом токе», «Расчет неразветвленной электрической цепи переменного тока», «Общий случай неразветвленной цепи переменного тока».

2. Выполнить расчет электрической цепи переменного тока в соответствие с индивидуальным заданием.

Ход работы:

- 1. Начертите электрическую схему и укажите все токи и напряжения.
- 2.В соответствие с заданием определите ток и все требуемые напряжения в электрической цепи.
 - 3. Постройте в масштабе векторную диаграмму.
 - 4. Определите активную, реактивную и полную мощности электрической цепи.

Форма представления результата:

Работа выполняется в тетрадях для практических работ, сдается в конце занятия в форме решенной задачи.

Критерии оценки:

- оценка «**отлично**» выставляется студенту, если расчет выполнен в полном объеме, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;
- оценка «**хорошо**» выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;
- оценка «**удовлетворительно**» выставляется студенту, если задание выполнено с «грубыми» ошибками, решение оформлено без соблюдения установленных правил;
 - оценка «неудовлетворительно» выставляется студенту, если работа не выполнена.

Тема 5.1 Способы соединения фаз трехфазных генераторов и приемников электрической энергии

Практическая работа №6

Расчет трехфазной электрической цепи при соединении фаз приемника звездой и треугольником

Цель:

- закрепить знания по изученной теме «Способы соединения фаз трехфазных генераторов и приемников электрической энергии»;
- научить рассчитывать трехфазные электрические цепи при соединении фаз приемника звездой или треугольником.

Выполнив работу, Вы будете:

уметь:

- -производить расчеты простых электрических цепей;
- -рассчитывать параметры различных электрических цепей и схем.

Материальное обеспечение:

Конспект лекций, инструкция к выполнению практической работы, рабочая тетрадь.

Задание:

- 1. Определить линейные и фазные токи в заданной электрической цепи.
- 2. Определить мощность электрической цепи.
- 3. Построить векторную диаграмму.

Порядок выполнения работы:

- 1. Повторить конспект лекций по теме «Способы соединения фаз трехфазных генераторов и приемников электрической энергии».
 - 2. Выполните расчет трехфазной электрической цепи.

Ход работы:

- 1. Начертить схему. Определить схему соединения фаз приемника.
- 2.Определить фазные напряжения, фазные и линейные токи.
- 3.Построить в масштабе векторную диаграмму.
- 4.Определить мощности трехфазной электрической цепи.

Форма представления результата:

Работа выполняется в тетрадях для практических работ, сдается в конце занятия в форме решенной задачи.

Критерии оценки:

- оценка «**отлично**» выставляется студенту, если расчет выполнен в полном объеме, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;
- оценка «**хорошо**» выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;
- оценка «**удовлетворительно**» выставляется студенту, если задание выполнено с «грубыми» ошибками, решение оформлено без соблюдения установленных правил;
 - оценка «неудовлетворительно» выставляется студенту, если работа не выполнена.

Тема 6.1 Основные метрологические понятия

Практическая работа №7

Расчет погрешностей измерения

Цель:

- закрепить знания по изученной теме «Основные метрологические понятия»;
- научить рассчитывать погрешности измерений.

Выполнив работу, Вы будете:

уметь:

-снимать показания и пользоваться электроизмерительными приборами и приспособлениями;

-рассчитывать параметры различных электрических цепей и схем.

Материальное обеспечение:

Конспект лекций, инструкция к выполнению практической работы, рабочая тетрадь.

Краткие теоретические сведения:

Погрешность измерений – отклонение результата измерения от истинного значения измеряемой величины.

Результат измерения – некоторое число, принятое для данной физической величины единиц, дающее количественную информацию о свойствах измеряемой физической величины.

Истинное значение физической величины – значение, идеально отражающее в качественном и количественном отношениях соответствующее свойство данного физического объекта.

Действительное значение физической величины – значение, определенное экспериментально и настолько приближающееся к истинному, что может быть использовано вместо него.

По форме представления различают следующие виды погрешностей:

1.Абсолютная погрешность — величина равная разности между измеренным A_x и действительным A_0 значениями измеряемой величины.

 $\Delta A = A_x - A_0$.

2. Относительная погрешность

$$\beta = \frac{\Delta A}{A_0} \cdot 100$$

3. Приведенная погрешность

$$\gamma = \frac{\Delta A}{A_{MAX}} \cdot 100,$$

где $A_{\text{мах}}$ - предел измерения средства измерения.

Приведенная погрешность для большинства электротехнических средств измерения определяет класс точности прибора.

Числа, указывающие класс точности прибора γ_0 , обозначают наибольшую допустимую приведенную погрешность в процентах, т.е. при нормальной эксплуатации максимальное значение приведенной погрешности не должно превышать класс точности.

Задание:

1. Решить задачи на определение погрешностей измерения в соответствие с индивидуальным заданием.

Порядок выполнения работы:

- 1. Повторить конспект лекций по темам «Основные метрологические понятия.
- 2. Решить задачи.
- 3. Ответить на контрольные вопросы

Ход работы:

- 1. Прочитайте условия задачи и составьте дано задачи.
- 2. Решить задачи на определение погрешностей измерения.

Форма представления результата:

Работа выполняется в тетрадях для практических работ, сдается в конце занятия в форме решенной задачи.

Критерии оценки:

- оценка «**отлично**» выставляется студенту, если расчет выполнен в полном объеме, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;
- оценка «**хорошо**» выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;
- оценка **«удовлетворительно»** выставляется студенту, если задание выполнено с **«грубыми»** ошибками, решение оформлено без соблюдения установленных правил;
 - оценка «неудовлетворительно» выставляется студенту, если работа не выполнена.

Тема 6.2 Измерение электрических величин

Практическая работа №8

Расширение пределов измерения амперметров и вольтметров

Цель:

- закрепить знания по изученной теме «Измерения электрических величин»;
- научить рассчитывать погрешности измерений.

Выполнив работу, Вы будете:

уметь:

-снимать показания и пользоваться электроизмерительными приборами и приспособлениями;

-рассчитывать параметры различных электрических цепей и схем.

Материальное обеспечение:

Конспект лекций, инструкция к выполнению практической работы, рабочая тетрадь.

Краткие теоретические сведения:

Для расширения пределов измерения амперметров, предназначенных для работы в цепях постоянного тока, их включают в цепь параллельно шунту. При этом через прибор проходит только часть измеряемого тока, обратно пропорциональная его сопротивлению R_A . Большая часть $I_{\rm II}$ этого тока проходит через шунт. Прибор измеряет падение напряжения на шунте, зависящее от проходящего через шунт тока, т. е. используется в качестве милливольтметра. Шкала прибора градуируется в амперах. Зная сопротивления прибора R_A и шунта $R_{\rm III}$ можно по току I_A , фиксируемому прибором, определить измеряемый ток:

$$I = I_A (R_A + R_W)/R_W = I_A n$$

где $n = I/I_A = (R_A + R_{III})/R_{III}$ — коэффициент шунтирования. Сопротивление шунта, необходимое для измерения тока I, в n раз большего, чем ток прибора I_A ,

$$R_{uu} = R_A / (n-1)$$

Конструктивно шунты либо монтируют в корпус прибора (шунты на токи до 50 A), либо устанавливают вне его и соединяют с прибором проводами. Если прибор предназначен для постоянной работы с шунтом, то шкала его градуируется сразу в значениях измеряемого тока с учетом коэффициента шунтирования и никаких расчетов для определения тока выполнять не требуется. В случае применения наружных (отдельных от приборов) шунтов на них указывают номинальный ток, на который они рассчитаны, и номинальное напряжение на зажимах (калиброванные шунты). Шунты подбирают к приборам так, чтобы при номинальном напряжении на зажимах шунта стрелка прибора отклонялась на всю шкалу. Следовательно, номинальные напряжения прибора и шунта должны быть одинаковыми.

Для того чтобы повышение температуры шунта при прохождении по нему тока не оказывало влияния на показания прибора, шунты изготовляют из материалов с большим удельным сопротивлением и малым температурным коэффициентом (константан, манганин, никелин и пр.). Для уменьшения влияния температуры на показания амперметра последовательно с катушкой прибора в некоторых случаях включают добавочный резистор из константана или другого подобного материала.

Для включения электроизмерительных приборов в цепи переменного тока служат измерительные трансформаторы, обеспечивающие безопасность обслуживающего персонала при выполнении электрических измерений в цепях высокого напряжения. Включение электроизмерительных приборов в эти цепи без таких трансформаторов запрещается правилами техники безопасности. Кроме того, измерительные трансформаторы расширяют пределы измерения приборов, т. е. позволяют измерять большие токи и напряжения с помощью несложных приборов, рассчитанных для измерения малых токов и напряжений.

Трансформатор тока служит для подключения амперметров и других приборов, которые должны реагировать на протекающий по цепи переменный ток. Его выполняют в виде обычного двухобмоточного повышающего трансформатора; первичную обмотку включают последовательно в цепь измеряемого тока, к вторичной обмотке подключают амперметр.

Так как сопротивление обмотки амперметра, подключаемого к трансформатору тока, обычно мало, трансформатор практически работает в режиме короткого замыкания, и с достаточной степенью точности можно считать, что токи I_1 и I_2 , проходящие по его обмоткам, будут обратно пропорциональны числу витков w_1 и w_2 этих обмоток, т.е.

$$I_1/I_2 = w_1/w_2 = n$$

Следовательно, подобрав соответствующим образом число витков w $_1$ и w $_2$ обмоток трансформатора, можно измерять большие токи I_1 , пропуская через электроизмерительный прибор малые токи I_2 . Ток I_1 может быть при этом определен умножением измеренного вторичного тока I_2 на величину n.

Для расширения пределов измерения вольтметров применяют трансформатор напряжения.

Трансформатор напряжения служит для подключения вольтметров и других приборов, которые должны реагировать на напряжение. Его выполняют, как обычный двухобмоточный понижающий трансформатор: первичную обмотку подключают к двум точкам, между которыми требуется измерить напряжение, а вторичную — к вольтметру. На схемах измерительный трансформатор напряжения изображают как обычны. Так как сопротивление обмотки вольтметра, подключаемого к трансформатору напряжения, велико, трансформатор практически работает в режиме холостого хода, и можно с достаточной степенью точности считать, что напряжения U_1 и U_2 на первичной и вторичной обмотках будут прямо пропорциональны числу витков w_1 и w_2 обеих обмоток трансформатора, т. е.

$$U_1/U_2 = w_1/w_2 = n$$

Таким образом, подобрав соответствующее число витков w_1 и w_2 обмоток трансформатора, можно измерять высокие напряжения, подавая на электроизмерительный прибор небольшие напряжения.

Напряжение U_1 может быть определено умножением измеренного вторичного напряжения U_2 на коэффициент трансформации трансформатора n.

Вольтметры, предназначенные для постоянной работы с трансформаторами напряжения, градуируют на заводе с учетом коэффициента трансформации, и значения измеряемого напряжения могут быть непосредственно отсчитаны по шкале прибора.

Для предотвращения опасности поражения обслуживающего персонала электрическим током в случае повреждения изоляции трансформатора один вывод его вторичной обмотки и стальной кожух трансформатора должны быть заземлены.

Задание:

1. Решить задачи на определение добавочного сопротивления, сопротивления шунта, коэффициентов трансформации трансформаторов тока и напряжения в соответствие с индивидуальным заданием.

Порядок выполнения работы:

- 1. Повторить конспект лекций по темам «Основные метрологические понятия.
- 2. Решить залачи.
- 3. Ответить на контрольные вопросы

Ход работы:

- 1. Прочитайте условия задачи и составьте дано задачи.
- 2. Решить задачи на определение добавочного сопротивления, сопротивления шунта, коэффициентов трансформации трансформаторов тока и напряжения.

Форма представления результата:

Работа выполняется в тетрадях для практических работ, сдается в конце занятия в форме решенной задачи.

Критерии оценки:

- оценка «**отлично**» выставляется студенту, если расчет выполнен в полном объеме, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;
- оценка «**хорошо**» выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;
- оценка **«удовлетворительно»** выставляется студенту, если задание выполнено с **«грубыми»** ошибками, решение оформлено без соблюдения установленных правил;
 - оценка «неудовлетворительно» выставляется студенту, если работа не выполнена.

Тема 7.2 Электрические машины постоянного тока

Практическая работа № 9

Расчет характеристик двигателя постоянного тока

Цель:

- закрепить знания по изученной теме «Электрические машины постоянного тока»;
- научить рассчитывать характеристики двигателя постоянного тока.

Выполнив работу, Вы будете:

уметь:

-рассчитывать параметры различных электрических цепей и схем.

Материальное обеспечение:

Конспект лекций, инструкция к выполнению практической работы, рабочая тетрадь.

Задание:

1. Рассчитать и построить характеристики двигателя постоянного тока.

Порядок выполнения работы:

- 1. Повторить конспект лекций по темам «Электрические машины постоянного тока»
- 2. Рассчитать и построить характеристики двигателя постоянного тока.
- 3. Ответить на контрольные вопросы

Ход работы:

- 1. Прочитайте условия задания и составьте дано.
- 2. Начертить электрическую схему двигателя постоянного тока.
- 3. Рассчитать и построить характеристики двигателя постоянного тока.
- 4. Сделать выводы.

Форма представления результата:

Работа выполняется в тетрадях для практических работ, сдается в конце занятия в форме решенной задачи.

Критерии оценки:

- оценка «**отлично**» выставляется студенту, если расчет выполнен в полном объеме, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;
- оценка «**хорошо**» выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;
- оценка «удовлетворительно» выставляется студенту, если задание выполнено с «грубыми» ошибками, решение оформлено без соблюдения установленных правил;
 - оценка «неудовлетворительно» выставляется студенту, если работа не выполнена

Тема 8.1 Основы электропривода

Практическая работа №10

Изучение аппаратов управления

Цель:

- закрепить знания по изученной теме «Электрический привод»;
- изучить конструкцию и принцип действия электрических аппаратов управления.
- научить выбирать электрические аппараты управления.

Выполнив работу, Вы будете:

уметь:

- -правильно эксплуатировать электрооборудование и механизмы передачи движения технологических машин и аппаратов;
 - -выбирать электрические, электронные приборы и электрооборудование;

Материальное обеспечение:

Конспект лекций, инструкция к выполнению практической работы, рабочая тетрадь.

Задание:

- 1.Изучить конструкции и принцип работы электрических аппаратов.
- 2. Выбрать электрические аппараты в соответствие с заданием.

Порядок выполнения работы:

- 1. Повторить конспект лекций по темам «Основы электропривода».
- 2. Изучить конструкции и принцип работы электрических аппаратов.
- 3. Осуществить выбор электрических аппаратов в соответствие с заданием.
- 4. Ответить на контрольные вопросы.

Ход работы:

- 1. Изучить конструкцию контакторов постоянного и переменного тока.
- 2.Изучить конструкцию магнитного пускателя.
- 3.В тетради для практических работ заполнить таблицу и ответить на контрольные вопросы.

Таблица 10.1.- Электрические аппараты управления

Название	Основные элементы	УГО	Назначение	Основные параметры
электрического	конструкции		электрического	электрического аппарата
аппарата	электрического		аппарата	
	аппарата			

^{4.}Осуществить выбор электрических аппаратов в соответствие с заданием.

Форма представления результата:

Работа выполняется в тетрадях для практических работ, сдается в конце занятия в форме отчета по практической работе.

Критерии оценки:

- оценка «**отлично**» выставляется студенту, если отчет о выполнении практической работы выполнен в полном объеме, таблица заполнена правильно, ответы на вопросы сформулированы точно и грамотно; студент свободно владеет теоретическим материалом, безошибочно применяет его при выполнении практической работы;
- оценка «**хорошо**» выставляется студенту, если при выборе электрических аппаратов допущены незначительные ошибки, оформление отчета по практической работе не соответствует установленным требованиям, ответы на поставленные вопросы раскрыты не в полном объеме.
- оценка «удовлетворительно» выставляется студенту, если задание выполнено с «грубыми» ошибками, отчет по практической работе оформлен без соблюдения установленных правил.

- оценка «неудовлетворительно» выставляется студенту, если работа не выполнена.

Тема 8.1 Основы электропривода

Практическая работа №11

Изучение схем управления

Цель:

- закрепить знания по изученной теме «Электрический привод»;
- изучить типовые схемы управления электрическими двигателями.
- научить выбирать электрические аппараты управления.

Выполнив работу, Вы будете:

уметь:

- -правильно эксплуатировать электрооборудование и механизмы передачи движения технологических машин и аппаратов;
 - -выбирать электрические, электронные приборы и электрооборудование;

Материальное обеспечение:

Конспект лекций, инструкция к выполнению практической работы, рабочая тетрадь.

Краткие теоретические сведения:

Электрические двигатели переменного тока применяются для привода большинства общепромышленных механизмов. При пуске электрических двигателей происходит определенная последовательность переключений в силовой цепи двигателя и в цепях управления. При этом используются релейно-контакторные и бесконтактные аппараты. Для асинхронных двигателей с короткозамкнутым ротором основным является прямой пуск непосредственным включением в электрическую сеть. Для асинхронных двигателей с фазным в целях ограничения пусковых токов в цепи ротора включаются пусковые резисторы. В процессе разгона электрического двигателя пусковые резисторы постепенно выводятся путем шунтирования контактами контакторов. Процесс торможения двигателей также может быть автоматизирован. В процессе пуска выключение ступеней происходит через определенные интервалы времени либо в зависимости от других параметров, при этом изменяются ток и скорость двигателя. Управление пуском двигателя осуществляется в функции ЭДС (или скорости), тока, времени и пути.

Задание:

- 1. Изучить схему пуска асинхронного двигателя с короткозамкнутым ротором.
- 2.Изучить схему пуска асинхронного двигателя с фазным ротором.

Порядок выполнения работы:

- 1.Повторить конспект лекций по темам «Основы электропривода».
- 2. Изучить схему пуска асинхронного двигателя с короткозамкнутым ротором.
- 3.Изучить схему пуска асинхронного двигателя с фазным ротором.
- 4.Ответить на контрольные вопросы.
- 5.Защитить работу.

Ход работы:

- 1. Начертить в тетради для практических работ схему прямого пуска асинхронного двигателя с короткозамкнутым ротором.
- 2.Изучить последовательность срабатывания электрических аппаратов при нажатии кнопки «Пуск» и при нажатии кнопки «Стоп».
- 3. Начертить в тетради для практических работ схему управления асинхронным двигателем с фазным ротором в функции времени.
- 4.Изучить последовательность срабатывания электрических аппаратов при пуске и торможении.
- 5.Выписать все обозначения в электрических схемах соответствующие им названия электрического аппарата и назначение электрического аппарата в схеме.
 - 6.Ответить на контрольные вопросы.

Форма представления результата:

Работа выполняется в тетрадях для практических работ, сдается в конце занятия в форме отчета по практической работе.

Критерии оценки:

- оценка «**отлично**» выставляется студенту, если отчет о выполнении практической работы выполнен в полном объеме, ответы на вопросы сформулированы точно и грамотно;
- оценка «**хорошо**» выставляется студенту, если допущены незначительные ошибки, оформление отчета по практической работе не соответствует установленным требованиям, ответы на поставленные вопросы раскрыты не в полном объеме; студент владеет основным объёмом теоретического материала.
- оценка **«удовлетворительно»** выставляется студенту, если задание выполнено с «грубыми» ошибками, отчет по практической работе оформлен без соблюдения установленных правил; студент владеет теоретическим материалом не в полном объеме.
 - оценка «неудовлетворительно» выставляется студенту, если работа не выполнена.

Тема 8.1 Основы электропривода

Практическая работа №12

Расчет мощности и выбор электрических двигателей

Цель:

- закрепить знания по изученной теме «Электрический привод».
- научить выбирать электрические двигатели.

Выполнив работу, Вы будете:

уметь:

- -правильно эксплуатировать электрооборудование и механизмы передачи движения технологических машин и аппаратов;
 - -выбирать электрические, электронные приборы и электрооборудование;

Материальное обеспечение:

Конспект лекций, инструкция к выполнению практической работы, рабочая тетрадь.

Краткие теоретические сведения:

Задание:

1. Рассчитать мощность и выбрать электрический двигатель для общепромышленных механизмов.

Порядок выполнения работы:

- 1.Повторить конспект лекций по темам «Основы электропривода».
- 2. Рассчитать мощность и выбрать электрический двигатель в соответствие с индивидуальным заданием.

Ход работы:

- 1. Изучить задание выписать исходные данные для расчета.
- 2. Рассчитать момент статический на валу двигателя.
- 3. Рассчитать мощность электродвигателя.
- 4. По расчетной мощности в справочнике выбрать электродвигатель.
- 5. Заполнить таблицу с технической характеристикой выбранного двигателя.
- 2.Ответить на контрольные вопросы.
- 3.Защитить работу.

Форма представления результата:

Работа выполняется в тетрадях для практических работ, сдается в конце занятия в форме отчета по практической работе.

Критерии оценки:

- оценка «**отлично**» выставляется студенту, если отчет о выполнении практической работы выполнен в полном объеме, ответы на вопросы сформулированы точно и грамотно;
- оценка «**хорошо**» выставляется студенту, если допущены незначительные ошибки, оформление отчета по практической работе не соответствует установленным требованиям, ответы на поставленные вопросы раскрыты не в полном объеме; студент владеет основным объёмом теоретического материала.
- оценка «удовлетворительно» выставляется студенту, если задание выполнено с «грубыми» ошибками, отчет по практической работе оформлен без соблюдения установленных правил; студент владеет теоретическим материалом не в полном объеме.
 - оценка «неудовлетворительно» выставляется студенту, если работа не выполнена.

Тема 9.1 Основы электроснабжения

Практическая работа №13

Расчет сечения проводов и кабелей по допустимой нагрузке

Цель:

- закрепить знания по изученной теме «Основы электроснабжения»;
- научить рассчитывать сечение и выбирать провода и кабели по допустимой нагрузке.

Выполнив работу, Вы будете:

уметь:

- -правильно эксплуатировать электрооборудование и механизмы передачи движения технологических машин и аппаратов;
 - -выбирать электрические, электронные приборы и электрооборудование.

Материальное обеспечение:

Конспект лекций, инструкция к выполнению практической работы, справочная литература, рабочая тетрадь.

Краткие теоретические сведения:

Для соединения отдельных элементов на электрических станциях и подстанциях широко применяются кабели. Они прокладываются в каналах, туннелях, в полу и по стенам здания. Кабельные линии широко применяются в электроустановках собственных нужд электростанций.

Наибольшее распространение получили трехжильные и четырехжильные кабели с бумажной изоляцией. Кабель имеет токоведущие жилы из меди или алюминия. Жилы могут быть однопроволочными или многопроволочными. Трехжильный кабель может иметь общую поясную изоляцию. Защитная оболочка выполняется сплошной из свинца или алюминия. Она предохраняет изоляцию от попадания влаги и высыхания пропиточного состава. От механического повреждения кабель защищается броней выполненной из стальных лент или стальных проволок.

Правильный расчет и выбор сечения кабелей имеет большое значение и определяет надежность и работоспособность электросети. Выбор кабеля завышенного сечения приводит к значительному увеличению потерь мощности в проектируемой сети. Заниженное сечения кабеля приведет к перегреву кабеля и его разрушению. Исходными данными при расчете сечения кабеля являются: величина токовой нагрузки, напряжение сети, мощность потребителя электроэнергии. Проектирование электросети и выбор кабелей всегда начинается с определения свойств электрооборудования, которое будет находиться в этой сети и потреблять электроэнергию. Если на участке сети будет находиться несколько потребителей электричества, то для выбора сечения кабеля для данного участка их мощности складываются. После определения потребляемой мощности для каждого участка проектируемой сети, рассчитывают допустимую токовую нагрузку. После просчета токовой нагрузки и определения ее длительности, необходимо выяснить условия, при которых будет использоваться электросеть, температура и способ прокладки электрической сети (открытый или закрытый). Выбор кабелей электросети осуществляется по таблицам длительного допустимого тока нагрузки с учетом способа прокладки кабелей. Сечение кабеля всегда берут с запасом.

Сечение проводников линий электропередачи должно быть таким, чтобы провода не перегревались при любой нагрузке в нормальном рабочем и послеаварийном режиме.

Выбор сечения проводников по нагреву сводится к сравнению расчётного тока Ір с длительно допустимыми токами нагрузки Ідоп, для стандартных сечений с учётом марки кабеля и температурных условий.

Должно выполняться условие

$$I_P \leq I_{\Pi \cap \Pi} K_T K_{\Pi}$$
,

где K_T - поправочный температурный коэффициент, вводимый, если температура земли отличается от $+15~^{0}$ C, а воздуха - $+25~^{0}$ C;

 K_{Π} - поправочный коэффициент на прокладку, вводимый, если количество работающих рядом кабелей больше одного, т.к. ухудшаются условия их охлаждения.

Расчетный ток в линии в послеаварийном режиме (работа одного кабеля) Ір определяется по формуле

$$I_{\rm P} = \frac{S_{\rm P}}{U \cdot \sqrt{3}}$$

где Sp - расчётная полная мощность приёмника, кВА;

Uн - номинальное напряжение сети, кВ.

Расчётная полная мощность приёмника Sp, определяется по формуле

$$S_P = \sum S_H n$$

где Shn - номинальная полная мощность n-го приёмника, кВА.

Задание:

1. Выбрать сечение кабеля по заданным значениям нагрузки.

Порядок выполнения работы:

- 1. Повторить конспект лекций по темам «Основы электроснабжения».
- 2. Выбрать тип и сечение кабеля.

Ход работы:

- 1. Изучить конструкцию кабелей.
- 2.Определить расчетный ток кабеля.
- 3.По расчетному току осуществить выбор сечения кабеля по таблицам в справочной литературе.
- 4.Описать конструкцию выбранного кабеля в соответствие с маркировкой. Определить материал жил, изоляции, защитной оболочки.
 - 5.Ответить на контрольные вопросы.

Форма представления результата:

Работа выполняется в тетрадях для практических работ, сдается в конце занятия в форме отчета по практической работе.

Критерии оценки:

- оценка «**отлично**» выставляется студенту, если отчет о выполнении практической работы выполнен в полном объеме, таблица заполнена правильно, ответы на вопросы сформулированы точно и грамотно; студент свободно владеет теоретическим материалом, безошибочно применяет его при выполнении практической работы;
- оценка «**хорошо**» выставляется студенту, если при выборе электрических аппаратов допущены незначительные ошибки, оформление отчета по практической работе не соответствует установленным требованиям, ответы на поставленные вопросы раскрыты не в полном объеме.
- оценка «удовлетворительно» выставляется студенту, если задание выполнено с «грубыми» ошибками, отчет по практической работе оформлен без соблюдения установленных правил.
 - оценка «неудовлетворительно» выставляется студенту, если работа не выполнена.

Тема 10.3 Выпрямители

Практическая работа №14

Расчет выпрямителя

Цель:

- изучить принцип действия схем трехфазных выпрямителей;
- научить рассчитывать параметры трехфазных выпрямителей;
- закрепление теоретических знаний;
- углубление ранее изученного материала по теме «Выпрямители»;
- выработка умений и навыков по применению формул;
- выработка умений и навыков по составлению алгоритма типовых заданий;
- применение полученных знаний на практике.

Выполнив работу, Вы будете:

уметь:

- -правильно эксплуатировать электрооборудование и механизмы передачи движения технологических машин и аппаратов;
 - -выбирать электрические, электронные приборы и электрооборудование;

Материальное обеспечение:

Конспект лекций, инструкция к выполнению практической работы, справочная литература, рабочая тетрадь.

Краткие теоретические сведения:

Задание:

1. Рассчитать выпрямитель в соответствие с заданием.

Порядок выполнения работы:

- 1.Повторить конспект лекций по темам «Выпрямители»
- 2.Ответить на контрольные вопросы преподавателя.
- 3.Ознакомиться с инструкцией по выполнению работы.
- 4. Выполнить расчет выпрямителя.
- 5. Выполнить отчет о проделанной работе.
- 6. Защитить работу.

Ход работы:

- 1. Рассчитать мощность силового трансформатора.
- 2.По справочнику выбрать трансформатор. Техническую характеристику трансформатора представить в таблице 11.1.

Таблица 11.1- Технические данные трансформатора

Наименование	Обозначение	Значение
Номинальная мощность, кВА	Sн	
Номинальное напряжение первичной обмотки, В	U1H	
Номинальное напряжение вторичной обмотки, В	U2н	
Номинальный ток вторичной обмотки, А	І2л	
Напряжение короткого замыкания, %	e _{k%}	

Потери холостого хода, Вт	ΔΡxx	
Потери короткого замыкания, Вт	ΔРкз	
Схема соединения обмоток трансформатора		

- 3. Рассчитать и выбрать количество вентилей (тиристоров).
- 4. Начертить схему включения вентилей.
- 5.Ответить на контрольные вопросы. Защитить работу.

Форма представления результата:

Работа выполняется в тетрадях для практических работ, сдается в конце занятия в форме отчета по практической работе.

Критерии оценки:

- оценка «**отлично**» выставляется студенту, если отчет о выполнении практической работы выполнен в полном объеме, расчеты выполнены правильно, ответы на вопросы сформулированы точно и грамотно; студент свободно владеет теоретическим материалом, безошибочно применяет его при выполнении практической работы;
- оценка «**хорошо**» выставляется студенту, если при выборе элементов выпрямителя допущены незначительные ошибки, оформление отчета по практической работе не соответствует установленным требованиям, ответы на поставленные вопросы раскрыты не в полном объеме.
- оценка **«удовлетворительно»** выставляется студенту, если задание выполнено с «грубыми» ошибками, отчет по практической работе оформлен без соблюдения установленных правил.
 - оценка «неудовлетворительно» выставляется студенту, если работа не выполнена.