Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Магнитогорский государственный технический университет им. Г.И. Носова»

Многопрофильный колледж

УТВЕРЖДАЮ Директор /С.А.Махновский 24 февраля 2021

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ ПРАКТИЧЕСКИХ ИЛИ ЛАБОРАТОРНЫХ РАБОТ

по ПМ.01 ОРГАНИЗАЦИЯ ПРОСТЫХ РАБОТ ПО ТЕХНИЧЕСКОМУ ОБСЛУЖИВАНИЮ И РЕМОНТУ ЭЛЕКТРИЧЕСКОГО И ЭЛЕКТРОМЕХАНИЧЕСКОГО ОБОРУДОВАНИЯ

МДК.01.02 Электроснабжение

для студентов специальности
13.02.11 Техническая эксплуатация и обслуживание электрического и
электромеханического оборудования (по отраслям)

Форма обучения

очная

Магнитогорск, 2021

ОДОБРЕНО

Предметно-цикловой комиссией Монтаж и эксплуатация электрооборудования Председатель С.Б. Меняшева Протокол №6 от 17.02.2021 г.

Методической комиссией МпК Протокол №3 от 24.02.2021 г.

Составитель:

преподаватель ФГБОУ ВО «МГТУ им. Г.И. Носова» МпК

Людмила Петровна Яхина

Методические указания по выполнению практических и лабораторных работ разработаны на основе рабочей программы ПМ01 «Организация простых работ по техническому обслуживанию и ремонту электрического и электромеханического оборудования» МДК.01.02 Электроснабжение

Содержание практических и лабораторных работ ориентировано на формирование общих и профессиональных компетенций по программе подготовки специалистов среднего звена по специальности 13.02.11 Техническая эксплуатация и обслуживание электрического и электромеханического оборудования (по отраслям). Рабочая программа составлена для очной формы обучения.

СОДЕРЖАНИЕ

1 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	4
2 ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ/ЛАБОРАТОРНЫХ ЗАНЯТИЙ	6
3 МЕТОДИЧЕСКИЕ УКАЗАНИЯ	7
Лабораторное занятие 1	8
Лабораторное занятие 2	9
Лабораторное занятие 3	10
Лабораторное занятие 4	12
Лабораторное занятие 5	14
Практическое занятие 1	15
Практическое занятие 2	16
Практическое занятие 3	17
Практическое занятие 4	18
Практическое занятие 5	19
Практическое занятие 6	20
Практическое занятие 7	21
Практическое занятие 8	22
Практическое занятие 9	23

1 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Состав и содержание практических и лабораторных занятий направлены на реализацию Федерального государственного образовательного стандарта среднего профессионального образования.

Ведущей дидактической целью практических занятий является формирование профессиональных практических умений (умений выполнять определенные действия, операции, необходимые в последующем в профессиональной деятельности).

Ведущей дидактической целью лабораторных занятий является экспериментальное подтверждение и проверка существенных теоретических положений (законов, зависимостей).

В соответствии с рабочей программой ПМ01 Организация простых работ по техническому обслуживанию и ремонту электрического и электромеханического оборудования МДК.01.02 Электроснабжение, предусмотрено проведение практических и лабораторных занятий. В рамках практического/лабораторного занятия обучающиеся могут выполнять одну или несколько практических/лабораторных работ.

В результате их выполнения, обучающийся должен:

уметь:

-У1 определять электроэнергетические параметры электрических машин и аппаратов, электротехнических устройств и систем;

Содержание практических и лабораторных занятий ориентировано на формирование общих компетенций по профессиональному модулю программы подготовки специалистов среднего звена по специальности и овладению *профессиональными компетенциями*:

- ПК 1.1 Выполнять наладку, регулировку и проверку электрического и электромеханического оборудования
- ПК 1.2 Организовывать и выполнять техническое обслуживание и ремонт электрического и электромеханического оборудования
- ПК 1.3 Осуществлять диагностику и технический контроль при эксплуатации электрического и электромеханического оборудования

А также формированию общих компетенций:

- ОК 01 Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- ОК 02. Осуществлять поиск, анализ и интерпретацию информации, необходимой для выполнения задач профессиональной деятельности
- ОК 03 Планировать и реализовывать собственное профессиональное и личностное развитие
- OК04 Работать в коллективе и команде, эффективно взаимодействовать с коллегами, руководством, клиентами
- OК05 Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста
- ОК07 Содействовать сохранению окружающей среды, ресурсосбережению, эффективно действовать в чрезвычайных ситуациях
- ОК09 Использовать информационные технологии в профессиональной деятельности

Выполнение обучающимися практических и/или лабораторных работ по ПМ01 Организация простых работ по техническому обслуживанию и ремонту электрического и электромеханического оборудования МДК.01.02 Электроснабжение, направлено на:

- формирование умений применять полученные знания на практике, реализацию единства интеллектуальной и практической деятельности;
- формирование и развитие умений: наблюдать, сравнивать, сопоставлять, анализировать, делать выводы и обобщения, самостоятельно вести исследования, пользоваться различными приемами измерений, оформлять результаты в виде таблиц, схем, графиков;
- приобретение навыков работы с различными приборами, аппаратурой, установками и другими техническими средствами для проведения опытов;
- развитие интеллектуальных умений у будущих специалистов: аналитических, проектировочных, конструктивных и др.;
- выработку при решении поставленных задач профессионально значимых качеств, таких как самостоятельность, ответственность, точность, творческая инициатива.

Практические и лабораторные занятия проводятся после соответствующей темы, которая обеспечивает наличие знаний, необходимых для ее выполнения.

Разделы/темы Pаздел 1. Организа:	Темы практических/лабораторны х занятий ция и выполнение наладки,	Количеств о часов 17/17	в том числе в практ. подготовк е	Требовани я ФГОС СПО (уметь)
	ческого обслуживания и ского и электромеханического			
1.2 Внутреннее электроснабжени е промышленных предприятий.	Лабораторная работа №1. Исследование режимов работы линии электропередачи переменного тока при изменении коэффициента мощности нагрузки	4	4	y1, y01.1,y01.2, y01.4,y01.7, y03.2, y04.2, y04.8, y05.3
	Практическое занятие № 1 Изучение классификации электроприемников по требуемой категории надежности	1		V1, V01.1,V01.2, V01.4,V01.7, V03.2, V04.2, V04.8, V05.3
	Практическое занятие № 2 Изучение условных обозначений элементов электрических схем	2		V1, V01.1,V01.2, V01.4,V01.7, V03.2, V04.2, V04.8, V05.3
	Практическое занятие № 3 Расчет электрических нагрузок в сетях напряжением до 1000В	2		V1, V01.1,V01.2, V01.4,V01.7, V03.2, V04.2, V04.8, V05.3
	Практическое занятие № 4 Построение графика электрических нагрузок	2		У1, У01.1,У01.2, У01.4,У01.7, У03.2, У04.2, У04.8, У05.3
	Практическое занятие № 5 Выбор месторасположения подстанции и построение	2		У1, У01.1,У01.2, У01.4,У01.7,

	картограммы нагрузок			У03.2, У04.2, У04.8, У05.3
	Практическое занятие № 6 Расчет токов короткого замыкания в сетях до 1000В	2		У1, У01.1,У01.2, У01.4,У01.7, У03.2, У04.2, У04.8, У05.3
1.3 Внешнее электроснабжени е промышленных предприятий.	Лабораторная работа №2 Исследование схем включения вторичных обмоток трансформаторов тока	4	4	У1, У01.1,У01.2, У01.4,У01.7, У03.2, У04.2, У04.8, У05.3
	Практическое занятие №7. Изучение электрооборудования ГПП,.КТП	2		У1, У01.1,У01.2, У01.4,У01.7, У03.2, У04.2, У04.8, У05.3
	Практическое занятие №8. Расчет токов КЗ в сетях выше 1000В 4/2	2		У1, У01.1,У01.2, У01.4,У01.7, У03.2, У04.2, У04.8, У05.3
1.4 Релейная защита	Лабораторная работа №3Испытание релейной защиты высоковольтного электродвигателя	3	3	У1, У01.1,У01.2, , У01.4,У01.7, У03.2, У04.2, У04.8, У05.3
	Лабораторная работа № 5 Испытание релейной защиты понижающего трансформатора	2	2	У1, У01.1,У01.2, У01.4,У01.7, У03.2, У04.2, У04.8, У05.3
	Лабораторная работа №4Испытание максимальной токовой защиты с применением индукционного токового реле	4	4	У1, У01.1,У01.2, У01.4,У01.7, У03.2, У04.2, У04.8, У05.3
	Практическое занятие №9 Расчет максимально -токовой защиты	2		У1, У01.1,У01.2, У01.4,У01.7,

	силового трансформатора			У03.2, У04.2, У04.8, У05.3
ИТОГО		34	17	

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Тема 1.2 Внутреннее электроснабжение промышленных предприятий

Лабораторное занятие № 1

Исследование режимов работы линии электропередачи переменного тока при изменении коэффициента мощности нагрузки

Цель: 1. Изучить основные эксплуатационные характеристики линии электропередачи переменного тока.

- 2. Экспериментально определить параметры нагрузки.
- 3. Исследовать режимы работы линии при изменении коэффициента мощности нагрузки.

Выполнив работу, Вы будете:

уметь: - собирать схему

- подключать измерительные приборы

-снимать характеристики

Материальное обеспечение:

1. Стенд для испытания НТЦ-10

Задание:

1Прослушать инструктаж по ТБ

2.Согласно инструкции (прилагается) выполнить лабораторную работу

Порядок выполнения работы

- 1. Изучить схему замещения ЛЭП на стенде и подключить нагрузку, батарею конденсаторов и необходимые измерительные приборы.
 - 2. Зашунтировать ЛЭП, установить номинальное напряжение U2н = 42B.
- 3. Определить опытным путем величину емкости С1 батареи конденсаторов для повышения коэффициента мощности нагрузки до значения Соѕф2ТР заданного преподавателем.
- 4. Изменяя емкость батареи конденсаторов экспериментально исследовать зависимость η = f(C1) при изменении C1 от 0 до 16 мк Φ

Форма предоставления результата

Отчет о проделанной работе, заполненная таблица, схема, выводы, и т. Вопросы для самопроверки:

- 1. В чём заключается различие между падением напряжения в линии и потерей напряжения?
- 2. Как объяснить зависимость коэффициента полезного действия линии электропередачи от характера нагрузки?
- 3. Почему активная мощность P2 пропорциональна активной составляющей тока, а реактивная Q2 реактивной?
 - 4. Что такое резонанс токов, и каковы условия его возникновения?

Ход работы:

1. Выполнить лаб. работу согласно инструкции

Критерии оценки:

оценка «**отлично**» выставляется студенту, если расчетная и графическая части выполнены в полном объеме, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно собирает электрические схемы, применяет его при решении задач.

оценка «**хорошо**» выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно собирает электрические схемы ,применяет его при решении задач;

оценка «удовлетворительно» выставляется студенту, если задание выполнено с «грубыми» ошибками, решение оформлено без соблюдения установленных правил; при сборке схемы допускались ошибки

оценка «неудовлетворительно» выставляется студенту, если работа не выполнена.

Тема 1.2 Внутреннее электроснабжение промышленных предприятий

Лабораторное занятие № 2

Исследование схем включения вторичных обмоток трансформаторов тока

Цель: 1.Ознакомиться с устройством стенда и принципом работы

2. Ознакомление со схемами соединения вторичных обмоток трансформатора тока, используемых в устройствах релейной защиты и автоматики.

Выполнив работу, Вы будете:

уметь: - снимать рабочие и скоростные характеристики двигателя.

- собирать схему
- подключать измерительные приборы

Материальное обеспечение:

Лабораторная установка Приборы и оборудование.

Задание:

1Прослушать инструктаж по ТБ

2. Согласно инструкции (прилагается) выполнить лабораторную работу

Порядок выполнения работы

- 1. Ознакомиться с аппаратурой установленной на стенде.
- 2. Собрать поочерёдно все схемы, представленные на рис.1.2.а 1.2.д.

После проверки преподавателем собранной схемы, замкнуть тумблер SA1, амперметры PA1 - PA4 покажут первичный ток цепи, а амперметры PA5 - PA8 токи вторичных цепей.

Переключателем SA2 можно установить вид короткого замыкания в первичной цепи.

3. Для каждой схемы, имитируя различные виды коротких замыканий, произвести запись показаний всех приборов в таблице 1.1.

Таблица 1.1.

	Пок	Токазания приборов											
Вид К.З.	Впе	ервичі	ных ц	епях	Во в	торич	ных і	цепях					
Рис.1.1.а	Ia	Ів	Ic	Io	Ia	Kc	Ів	Kc	Ic	Kc	Io	Kc	Кч
						X		X		X		X	
Трехфазное													

Двухфазное							
Двухфазное							
на землю							
Однофазное							
на землю							
Рис.1.1.б							
Трехфазное							
Двухфазное							
Двухфазное							
на землю							
Однофазное							
на землю							
Рис.1.1.в							
Трехфазное							
Двухфазное							
Двухфазное							
на землю							
Однофазное							
на землю							
Рис.1.1.г							
Трехфазное							
Двухфазное							
Двухфазное							
на землю							
Однофазное							
на землю							
Рис.1.1.д							
Трехфазное							
Двухфазное							
Двухфазное							
на землю							
Однофазное							
на землю							

- 4. По данным показаний приборов для каждой схемы определить величину Ксх соответствующего определённому виду короткого замыкания.
- 5. Определить чувствительность токовой защиты при различных схемах её выполнения и различных видах коротких замыканий

Форма предоставления результата

Отчет о проделанной работе, заполненная таблица, схема, выводы, и т.д. Вопросы для самопроверки:

- 1. В каких случаях применяется схема соединения трансформаторов тока в треугольник?
- 2. Почему в сетях с изолированной нейтралью устанавливают два трансформатора тока (по одному на каждую крайнюю фазу), а в сетях с глухозаземлённой нейтралью три трансформатора тока (по одному на каждую фазу)?
 - 3. Как узнать ток во вторичной фазе по показаниям приборов в схеме рис. 1.1.б.
- 4. Начертить схему защиты с одним реле, включенным на разность токов двух фаз. Какая должна быть установка реле, если оно должно срабатывать при токе в линии ТА?

- 5. Назначение нулевого провода в схеме полной звезды?
- 6. Указать типы защит, где используется включение токовых обмоток реле по схемам, представленным на рис. 1.1.в.
- 7. Ток, каких фаз измеряет каждый из амперметров схемы на рис. 1.1.б при нормальном режиме?

Ход работы:

1.Выполнить лаб.работу согласно инструкции

Критерии оценки:

оценка «**отлично**» выставляется студенту, если расчетная и графическая части выполнены в полном объеме, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно собирает электрические схемы, применяет его при решении задач.

оценка «**хорошо**» выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно собирает электрические схемы ,применяет его при решении задач;

оценка «удовлетворительно» выставляется студенту, если задание выполнено с «грубыми» ошибками, решение оформлено без соблюдения установленных правил ; при сборки схемы допускались ошибки

оценка «неудовлетворительно» выставляется студенту, если работа не выполнена.

Тема 1.4 Релейная зашита

Лабораторное занятие № 3 Испытание релейной защиты высоковольтного электродвигателя

Цель: : 1.Ознакомиться с устройством стенда и принципом работы

- 2. Научиться снимать
- 3. Изучить защиту электродвигателей.
- 4. Отстроить защиту электродвигателя на действующем стенде.

Выполнив работу, Вы будете:

уметь: - собирать схему

- подключать измерительные приборы
- Отстраивать защиту электродвигател

Материальное обеспечение:

Стенд для испытания. Приборы и оборудование.

Задание:

1Прослушать инструктаж по ТБ

2.Согласно инструкции (прилагается) выполнить лабораторную работу

Порядок выполнения работы

- 1. Собрать схему защиты электродвигателя
- 2. Рассчитать релейную защиту асинхронного электродвигателя $PH = 1000 \kappa BT$; $K\Pi Д = 95,2\%$; $Cos \phi = 0,92$; In/IH = 6,4; $UH = 6 \kappa B$; $Ik3 = 20 \kappa A$.
- 3. После сборки схемы (рис. 4.1) и проверки её преподавателем, осуществить пуск двигателя нажатием кнопки SB1, предварительно включив SA1 и SA7. Отключить двигатель M1 нажатием кнопки SB2. Выключить тумблер SA7.

- 4. Произвести настройку защиты. Снять кожух с реле РТ-84. Установить перемычку на минимальный ток срабатывания.
- 5. Последовательность операций при проведении лабораторной работы.
- 5.1. Перевести тумблер SA15 в верхнее положение, замкнуть SA5, замкнуть SA7, включить SA5, нажать SB1.
- 5.2. Уставку выдержки времени реле РТ-84 установить минимальной. Необходимо убедиться, что переключатель SA2 находиться в положении 1 и на панели не осталось никаких "лишних" перемычек от выполнения предыдущих лабораторных работ и регуляторы RP3, RP4 находятся в крайнем против хода часовой стрелки положении. Для создания перегрузки необходимо замкнуть тумблер SA3 (SA4 отключен). Поворачивая регулятор RP3 по часовой стрелке добиться, того чтобы диск реле пришел во вращение, а зубчатый сектор вошел в зацепление с червячной передачей. После срабатывания контакта реле тока с замедлением включится реле блокировки KL1 и двигатель отключится. Отключить SA3. Затем опыт можно повторить.
- 5.3. Переставить перемычки в цепи питания блокировочного реле КL1 в положение, показанное пунктирными линиями. Для создания к.з. (двухфазного) необходимо разомкнуть SA3 и включить SA4 с соблюдением вышеуказанных предосторожностей. Настройка срабатывания электромагнитного элемента производится после того, как регулятором RP4 добились более быстрого вращения диска реле тока, чем при включении SA3, затем, удерживая поворотную рамку реле тока в положении, не позволяющем произвести зацепления зубчатого сектора с червячной передачей, поворотом регулировочного винта электромагнитного элемента добиться его срабатывания. Вновь блокировочное реле КL1 отключит двигатель уже без выдержки времени. Отключить SA4. Затем эксперимент можно повторить.

Форма предоставления результата

Отчет о проделанной работе, заполненная таблица, схема, выводы, и т.д. Вопросы для самопроверки: 1. Какие виды защиты, и от каких повреждений устанавливаются на электродвигателях?

- 2. Какие защиты на электродвигателях выполняются с выдержкой времени?
- 3. Каково назначение промежуточного реле в схемах защиты?
- 4. Каково назначение указательных реле в схемах защиты?
- 5. Каким образом производится выбор тока срабатывания защиты от междуфазных замыканий?

Ход работы:

1. Выполнить лаб. работу согласно инструкции

Критерии оценки:

оценка «**отлично**» выставляется студенту, если расчетная и графическая части выполнены в полном объеме, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно собирает электрические схемы, применяет его при решении задач.

оценка **«хорошо»** выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно собирает электрические схемы ,применяет его при решении задач;

оценка «удовлетворительно» выставляется студенту, если задание выполнено с «грубыми» ошибками, решение оформлено без соблюдения установленных правил; при сборки схемы допускались ошибки

оценка «неудовлетворительно» выставляется студенту, если работа не выполнена.

Тема 1.4 Релейная защита

Лабораторное занятие № 4

Испытание максимальной токовой защиты с применением индукционного токового реле

Цель: 1.Ознакомиться с устройством стенда и принципом работы

2. Изучить особенности применения защиты, ее достоинства и недостатки, устройство и работу индукционного реле

Выполнив работу, Вы будете:

уметь: - снимать рабочие и скоростные характеристики двигателя.

- собирать схему
- подключать измерительные приборы

Материальное обеспечение:

Лабораторная установка Приборы и оборудование.

Задание:

1Прослушать инструктаж по ТБ

2. Согласно инструкции (прилагается) выполнить лабораторную работу

Порядок выполнения работы

- 1. Списать паспортные данные реле.
- 2. Зарисовать схему
- 3. Начертить таблицу испытаний реле.
- 4. Изучить устройство реле.
- 5. Прогноз: как влияет на ток срабатывания индукционного реле изменение количества витков обмотки?
- 6. Собрать схему, рычажок тумблера SA15 должен быть внизу и после проверки её преподавателем приступить к выполнению лабораторной работы. Проверить токи срабатывания на указанных уставках. Для этого включить тумблер SA5, перевести PR1 в крайнее левое положение, V1 покажет некоторое начальное напряжение.

Включить SA6 и медленно увеличивая PR1 следить за показанием A9, для расширения предела которого использовать его кнопку .

Определить ток начала работы реле (диск начинает вращаться) Ін.р,А. Продолжая увеличивать ток в обмотке реле, с помощью ТРН засечь ток срабатывания Іс.р (зубчатый сектор входит в зацепление), по окончании отсчета загорается HL5. Затем уменьшить его до величины отпуска катушки Ів.р.

Рассчитать коэффициент возврата.

$$K_{\theta} = I_{\theta}.p/I_{cp.p}$$
 (

Результаты опытов занести в таблицу 2.1

Таблица 2.1

N опыта	Іср. по	Опытные данные					
	уставке, А	Icp, A	Ів.р.,А	Кв	Ток начала работы реле		
					Ін.р., А		

1			
2			
3			
4			
5			

- 2.3.2. Сравнить опытные данные с ответом на вопрос прогноза.
- 2.3.3. Прогноз: как влияет на ток срабатывания отсечки воздушный зазор между якорем и электромагнитом? Дать письменный ответ.
- 2.3.4. Установить максимальную уставку по времени. Уставку индукционного элемента реле установить минимальной. Изменяя воздушный зазор между якорем и электромагнитом определить токи срабатывания электромагнитного элемента реле (отсечки). Для этого после включения ТРН вывести PR1 в крайнее левое положение, после чего замкнуть SA6 и увеличивая ток при помощи PR1 следить за показанием A9, пока не сработает электромагнитный элемент (рекомендуется слегка придерживать поворотный механизм пальцами чтобы исключить зацепление зубчатого сектора с червяком).

Повторить опыт на другом значении уставки индукционного элемента реле (по заданию преподавателя) опытные данные занести в таблицу 2.2. Таблица 2.3

N опыта	Кратность тока Ір/Іуставки	Время срабатывания, сек
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		

По данным таблицы 2.3. построить характеристику.

tc = f(Ip/IycT).

Форма предоставления результата

Отчет о проделанной работе, заполненная таблица, схема, выводы, и т.д. Вопросы для самопроверки: 1. Устройство реле PT-84?

- 2. Работа индукционного элемента реле и его назначение?
- 3. Работа отсечки (электромагнитного элемента) реле, регулирование тока срабатывания отсечки?
 - 4. Назначение постоянного магнита в реле?
 - 5. Назначение короткозамкнутых витков электромагнита реле?
 - 6. Преимущество применения в схемах защиты реле РТ-84 по сравнению с РТ-40?
 - 7. Зависимость времени срабатывания реле от тока в обмотке реле?

Ход работы:

1. Выполнить лаб. работу согласно инструкции

Критерии оценки:

оценка «**отлично**» выставляется студенту, если расчетная и графическая части выполнены в полном объеме, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно собирает электрические схемы, применяет его при решении задач.

оценка **«хорошо»** выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно собирает электрические схемы ,применяет его при решении задач;

оценка «удовлетворительно» выставляется студенту, если задание выполнено с «грубыми» ошибками, решение оформлено без соблюдения установленных правил ; при сборки схемы допускались ошибки

оценка «неудовлетворительно» выставляется студенту, если работа не выполнена

Тема 1.4 Релейная защита

Лабораторное занятие № 5 Испытание релейной защиты понижающего трансформатора

Цель: 1.Ознакомиться с устройством стенда и принципом работы

2. Опробовать защиты в действии.

Выполнив работу, Вы будете:

уметь: - собирать схему

- подключать измерительные приборы
- -испытывать на дифференциальную,
- максимально- токовую защиту,
- защиту от перегрузки, действующей на сигнал

Материальное обеспечение:

- 1. Стенд
- 2.измерительные приборы

Задание:

1Прослушать инструктаж по ТБ

2. Согласно инструкции (прилагается) выполнить лабораторную работу

Порядок выполнения работы

- 1. Собрать схему без подключения нагрузки и нейтрали.
- .2. Установить перемычки трансформаторов тока 4TT так, чтобы при их сборке получился треугольник. После расчета дифференциальной защиты и максимальной токовой защиты установить при помощи SA13:

icp1 = 12A,

SA14 Icp = 5A,

SA12 - номинальный режим работы.

После установки включить лабораторную работу:

- 3. Включить SA1.
- 4. Нажать SB5 (загорается HL10) замкнулся выключатель B3.
- 5. Нажать SB4 (загорается HL8) замкнулся выключатель B1.

Установка готова к работе.

Проверить работу защит при различных режимах работы.

SA9 – к.з. на стороне высокого напряжения (откл.без задержки);

SA10 – к.з. на стороне низкого напряжения (откл.без задержки);;

- SA11 к.з. на стороне нагрузки напряжения (откл. с задержкой);
- SA12 режим нагрузки: перегрузка вкл.индикации HL11, к.з. откл. без задержки);

Форма предоставления результата

Отчет о проделанной работе, заполненная таблица, схема, выводы, и т.д. Вопросы для самопроверки:

- 1. Принцип действия максимальной токовой защиты.
- 2. Принцип действия дифференциальной защиты.
- 3. Как устроено реле типа РНТ565?
- 4. Что называется Ксх?

Ход работы:

1.Выполнить лаб.работу согласно инструкции

Критерии оценки:

оценка «**отлично**» выставляется студенту, если расчетная и графическая части выполнены в полном объеме, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно собирает электрические схемы, применяет его при решении задач.

оценка «**хорошо**» выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно собирает электрические схемы ,применяет его при решении задач;

оценка «удовлетворительно» выставляется студенту, если задание выполнено с «грубыми» ошибками, решение оформлено без соблюдения установленных правил ; при сборки схемы допускались ошибки

оценка «неудовлетворительно» выставляется студенту, если работа не выполнена

Тема 1.2 Внутреннее электроснабжение промышленных предприятий

Практическое занятие № 1

Изучение классификации электроприемников по требуемой категории надежности

Цель: 1. Изучить категории эл.приемников по требуемой категории надежности электроснабжения

Выполнив работу, Вы будете:

уметь:

- оценивать потребителей нагрузки по надежности электромснабжения

Материальное обеспечение:

таблицы, учебники, др, раздаточный материал

Задание:

Написать конспект в соответствии с планом: 1.Потребители 1 категории

- 2. Потребители 2-ой категории
- 3. Потребители 3-ей категории

Порядок выполнения работы:

- 1. Указать тему, цели
- 2. Составить конспект
- 3. Изучить категории эл. приемников по надежности электроснабжения
- 4. Приготовиться к защите практической работы

Форма предоставления результата

Краткий конспект.

Ход работы:

1. Выполнить практическую работу согласно инструкции

Критерии оценки:

оценка «**отлично**» выставляется студенту, если расчетная и графическая части выполнены в полном объеме, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении залач.

оценка «**хорошо**» выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;

оценка «удовлетворительно» выставляется студенту, если задание выполнено с «грубыми» ошибками, решение оформлено без соблюдения установленных правил; оценка «неудовлетворительно» выставляется студенту, если работа не выполнена.

Тема1.2 Внутреннее электроснабжение промышленных предприятий

Практическое занятие № 2

Изучение условных обозначений элементов электрических схем

Цель: Изучить элементы электрических схем, их размеры, буквенные обозначения

Выполнив работу, Вы будете:

уметь: - Читать электрические схемы

Материальное обеспечение:

Справочное пособие, Госты

Задание: Написать конспект в соответствии с методическими указаниями

Порядок выполнения работы:

- 1. Указать тему, цели
- 2. Составить конспект

Форма предоставления результата

Ход работы:

1.Выполнить практическую работу согласно инструкции

Критерии оценки:

оценка «**отлично**» выставляется студенту, если расчетная и графическая части выполнены в полном объеме, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении запач

оценка «**хорошо**» выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;

оценка «удовлетворительно» выставляется студенту, если задание выполнено с «грубыми» ошибками, решение оформлено без соблюдения установленных правил;

оценка «неудовлетворительно» выставляется студенту, если работа не выполнена

Тема1.2 Внутреннее электроснабжение промышленных предприятий Практическое занятие № 3 Расчет электрических нагрузок в сетях напряжением до 1000В

Цель: 1. Закрепить знания о расчете электрических сетей промышленных предприятий.

2. Закрепить умения пользоваться справочниками при выборе кабелей и проводов

Выполнив работу, Вы будете: уметь:

- пользоваться справочниками при выборе кабелей и проводов

Материальное обеспечение:

Инструменты, таблицы, учебники, справочники _, раздаточный материал

Задание: Согласно своему варианту рассчитать нагрузки и выбрать кабели

Порядок выполнения работы:

- Оформить практическую работу согласно требованиям
- -Указать тему, цели
- -Записать задания, выписать значения своего варианта
- -Предоставить полное выполнение практической работы с указанием пунктов решения и расчетов
- -Расчеты производить в принятой системе измерений (система СИ)

Форма предоставления результата

Отчет о проделанной работе, заполненная таблица, выводы

Ход работы:

1.Выполнить практическую работу согласно инструкции

Критерии оценки:

оценка «**отлично**» выставляется студенту, если расчетная и графическая части выполнены в полном объеме, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач.

оценка «**хорошо**» выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;

оценка «удовлетворительно» выставляется студенту, если задание выполнено с «грубыми» ошибками, решение оформлено без соблюдения установленных правил;

оценка «неудовлетворительно» выставляется студенту, если работа не выполнена

Тема1.2 Внутреннее электроснабжение промышленных предприятий Практическое занятие № 4 Построение графика электрических нагрузок

Цель: 1. Закрепить знания о расчете электрических нагрузок.

2. Закрепить умения строить графики электрических нагрузок

Выполнив работу, Вы будете:

уметь: -строить графики электрических нагрузок

Материальное обеспечение: Инструмент ,учебники, раздаточный материал

Задание: 1. Согласно своему варианту рассчитать нагрузки

2.Построить график электрических нагрузок

Порядок выполнения работы:

- 1. Оформить практическую работу согласно требованиям
- 2. Указать тему, цели
- 3. Записать задания, выписать значения своего варианта
- 4.Предоставить полное выполнение практической работы с указанием пунктов решения и расчетов
- 5.. Расчеты производить в принятой системе измерений (система СИ)

Ход работы:

1.Выполнить практическую работу согласно инструкции

Форма предоставления результата

Отчет о проделанной работе, заполненная таблица, график, выводы.

Критерии оценки:

оценка «**отлично**» выставляется студенту, если расчетная и графическая части выполнены в полном объеме, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении залач.

оценка «**хорошо**» выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;

оценка «удовлетворительно» выставляется студенту, если задание выполнено с «грубыми» ошибками, решение оформлено без соблюдения установленных правил; оценка «неудовлетворительно» выставляется студенту, если работа не выполнена

Тема 1.2 Внутреннее электроснабжение промышленных предприятий 1

Практическое занятие № 5

Выбор месторасположения подстанции и построение картограммы нагрузок

Цель: 1. Закрепить знания о построении картограммы нагрузок

2. Закрепить умения строить картограмму нагрузок

Выполнив работу, Вы будете:

уметь: - строить картограмму нагрузок и выбирать местоположение п/ст

Материальное обеспечение: раздаточный материал

Задание: 1. Согласно своему варианту рассчитать нагрузки и построить картограмму нагрузок

Порядок выполнения работы:

- 1. Оформить практическую работу согласно требованиям
- 2. Указать тему, цели
- 3. Записать задания, выписать значения своего варианта
- 4.Предоставить полное выполнение практической работы с указанием пунктов решения и расчетов
- 5.. Расчеты производить в принятой системе измерений (система СИ)

Форма предоставления результата

Отчет о проделанной работе, картограмма нагрузок. выводы

Ход работы:

1.Выполнить практическую работу согласно инструкции

Критерии оценки:

оценка «**отлично**» выставляется студенту, если расчетная и графическая части выполнены в полном объеме, решение оформлено с соблюдением установленных правил; студент

свободно владеет теоретическим материалом, безошибочно применяет его при решении задач.

оценка «**хорошо**» выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;

оценка «удовлетворительно» выставляется студенту, если задание выполнено с «грубыми» ошибками, решение оформлено без соблюдения установленных правил; оценка «неудовлетворительно» выставляется студенту, если работа не выполнена

Тема1.2 Внутреннее электроснабжение промышленных предприятий

Практическое занятие № 6

Расчет токов короткого замыкания в сетях до 1000В

Цель: 1. Закрепить знания о расчете токов короткого замыкания в сетях до 1000В

2. Закрепить умения составлять схему замещения

Выполнив работу, Вы будете:

уметь:

- составлять схему замещения

- рассчитывать токи короткого замыкания

Материальное обеспечение: учебники, раздаточный материал

Задание: 1 . Согласно своему варианту рассчитать токи короткого замыкания в сетях до 1000В

Порядок выполнения работы:

- 1. Оформить практическую работу согласно требованиям
- 2. Указать тему, цели
- 3. Записать задания, выписать значения своего варианта
- 4.Предоставить полное выполнение практической работы с указанием пунктов решения и расчетов
- 5...Расчеты производить в принятой системе измерений (система СИ)

Форма предоставления результата

Отчет о проделанной работе, выводы

Ход работы:

1.Выполнить практическую работу согласно инструкции

Критерии оценки:

оценка «**отлично**» выставляется студенту, если расчетная и графическая части выполнены в полном объеме, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач.

оценка «**хорошо**» выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;

оценка «удовлетворительно» выставляется студенту, если задание выполнено с «грубыми» ошибками, решение оформлено без соблюдения установленных правил;

оценка «неудовлетворительно» выставляется студенту, если работа не выполнена

Тема 1.3 Внешнее электроснабжение промышленных предприятий.

Практическое занятие № 7 Изучение электрооборудования ГПП КТП

Цель: 1. Изучить принцип действия и устройство основного оборудования ГПП.КТП **Выполнив работу, Вы будете:** *уметь:*

Материальное обеспечение: учебники, раздаточный материал

Задание: 1.Составить конспект

2. Изучить виды, назначение, устройство, принцип действия оборудования

ГПП.КТП

Порядок выполнения работы

- 1. Указать тему, цели
- 2.Составить конспект
- 3. Изучить различные виды оборудования
- 4. Приготовиться к защите практической работы

Форма предоставления результата

Отчет о проделанной работе, конспект, рисунки ГПП, КТП.

Ход работы:

1. Выполнить практическую работу согласно инструкции

Критерии оценки:

оценка «**отлично**» выставляется студенту, если расчетная и графическая части выполнены в полном объеме, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач.

оценка «**хорошо**» выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;

оценка «удовлетворительно» выставляется студенту, если задание выполнено с «грубыми» ошибками, решение оформлено без соблюдения установленных правил; оценка «неудовлетворительно» выставляется студенту, если работа не выполнена

Тема 1.3 Внешнее электроснабжение промышленных предприятий.

Практическое занятие № 8 Расчет токов КЗ в сетях выше 1000В

Цель: 1. Закрепить знания о расчете токов КЗ в сетях выше 1000В в двух точках

2. Закрепить умения составлять схему замещения

Выполнив работу, Вы будете:

уметь: - составлять схему замещения

Материальное обеспечение: учебники, раздаточный материал

Задание: 1 Согласно своему варианту рассчитать токи КЗ в сетях выше 1000В в двух точках **Порядок выполнения работы:**

- 1. Оформить практическую работу согласно требованиям
- 2. Указать тему, цели
- 3. Записать задания, выписать значения своего варианта
- 4.Предоставить полное выполнение практической работы с указанием пунктов решения и расчетов
- 5. Расчеты производить в принятой системе измерений (система СИ)

Форма предоставления результата

Отчет о проделанной работе. выводы

Ход работы:

1.Выполнить практическую работу согласно инструкции

Критерии оценки:

оценка «**отлично**» выставляется студенту, если расчетная и графическая части выполнены в полном объеме, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач.

оценка «**хорошо**» выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;

оценка «удовлетворительно» выставляется студенту, если задание выполнено с «грубыми» ошибками, решение оформлено без соблюдения установленных правил ;

оценка «неудовлетворительно» выставляется студенту, если работа не выполнена.

Тема1.4 Релейная защита Практическое занятие № 9 Расчет максимально -токовой защиты силового трансформатора

Цель: 1. Закрепить знания о выборе и расчете MT3

2. Закрепить умения пользоваться справочниками при выборе МТЗ.

Выполнив работу, Вы будете:

уметь: -пользоваться справочниками при выборе МТЗ.

Материальное обеспечение: Инструменты, таблицы, учебники, справочники, раздаточный материал

Задание: 1: Согласно своему варианту выбрать МТЗ силового трансформатора

Порядок выполнения работы:

- 1. Оформить практическую работу согласно требованиям
- 2. Указать тему, цели
- 3. Записать задания, выписать значения своего варианта
- 4.Предоставить полное выполнение практической работы с указанием пунктов решения и расчетов
- 5. Расчеты производить в принятой системе измерений (система СИ)

Форма предоставления результата

Отчет о проделанной работе, картограмма нагрузок. выводы

Ход работы:

1. Выполнить практическую работу согласно инструкции

Критерии оценки:

оценка «**отлично**» выставляется студенту, если расчетная и графическая части выполнены в полном объеме, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении залач.

оценка «**хорошо**» выставляется студенту, если при выполнении задания допущены незначительные ошибки, решение оформлено с соблюдением установленных правил; студент свободно владеет теоретическим материалом, безошибочно применяет его при решении задач;

оценка «удовлетворительно» выставляется студенту, если задание выполнено с «грубыми» ошибками, решение оформлено без соблюдения установленных правил;

оценка «неудовлетворительно» выставляется студенту, если работа не выполнена