Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г. И. Носова» Многопрофильный колледж

УТВЕРЖДАЮ Директор (С.А. Махновский «24» февраля 2021 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОП.08 ДИСКРЕТНАЯ МАТЕМАТИКА

«Профессиональный учебный цикл» программы подготовки специалистов среднего звена специальности 09.02.01 Компьютерные системы и комплексы (базовой подготовки)

Форма обучения

очная

Рабочая программа учебной дисциплины «Дискретная математика» разработана на основе: Федерального государственного образовательного стандарта по специальности среднего профессионального образования 09.02.01 Компьютерные системы и комплексы, утвержденного приказом Министерства образования и науки Российской Федерации от «28» июля 2014 г. №849.

Организация-разработчик: Многопрофильный колледж ФГБОУ ВО «Магнитогорский государственный технический университет им. Г. И. Носова»

Разработчики:

преподаватель МпК ФГБОУ ВО «МГТУ им. Г.И, Носова»

осселься /Елена Александровна Васильева

преподаватель МпК ФГБОУ ВО «МГТУ им. Г.И. Носова»

Оргин /Светлана Владимировна Меркулова

ОДОБРЕНО

Предметной -цикловой комиссией «Информатики и вычислительной

техники»

Председатель Дерги /И.Г.Зорина

Протокол № 6 от 17.02.2021

Методической комиссией МпК

Протокол № 3 от 24.02.2021

Рецензент: преподаватель высшей

квалификационной категории ГАПОУ НО

Политехнический колледж

/Ю.Н.Шашкова

СОДЕРЖАНИЕ

	стр
1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	4
2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	7
3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	11
4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ	20
ПРИЛОЖЕНИЕ 1	26
ПРИЛОЖЕНИЕ 2	27
ПРИЛОЖЕНИЕ 3	28
ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ	29

1 ОБЩАЯ ХАРАКТЕРИСТИКА РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ ОП.08. «ДИСКРЕТНАЯ МАТЕМАТИКА»

1.1 Область применения программы

Рабочая программа учебной дисциплины «Дискретная математика» является частью программы подготовки специалистов среднего звена по специальности 09.02.01 Компьютерные системы и комплексы (базовой подготовки). Рабочая программа составлена для очной формы обучения.

1.2 Место дисциплины в структуре программы подготовки специалистов среднего звена

Учебная дисциплина «Дискретная математика» относится к общепрофессиональному учебному циклу.

Освоению учебной дисциплины предшествует изучение учебных дисциплин «Математика», «Информатика», «Теория вероятностей и математическая статистика». Дисциплина «Дискретная математика» является предшествующей для изучения следующих учебных дисциплин, профессиональных модулей

- ОП.02. Основы электротехники
- ОП.03. Прикладная электроника
- ПМ.01. Проектирование цифровых устройств

1.3 Цель и планируемые результаты освоения дисциплины:

Содержание дисциплины ориентировано на подготовку обучающихся к освоению профессиональных модулей программы подготовки специалистов среднего звена по специальности и овладению следующими общими и профессиональными компетенциями:

- ПК 1.1. Выполнять требования технического задания на проектирование цифровых устройств.
- ПК 1.3. Использовать средства и методы автоматизированного проектирования при разработке цифровых устройств.
- OК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- OK 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- OK 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- ОК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- ОК 6. Работать в коллективе и команде, эффективно общаться с коллегами, руководством, потребителями.
- OK 7. Брать на себя ответственность за работу членов команды (подчиненных), результат выполнения заданий.
- ОК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
- ОК 9. Ориентироваться в условиях частой смены технологий в профессиональной деятельности.

Код ПК/ ОК	Умения	Знания
ПК 1.1. Выполнять требования технического задания на проектирование цифровых устройств.	У1. формулировать задачи логического характера и применять средства математической логики для их решения; У2. применять законы алгебры логики;	31. основные понятия и приемы дискретной математики; 32. логические операции, формулы логики, законы алгебры логики; 33. основные классы функций, полноту множества функций, теорему Поста; 34. основные понятия теории множеств, теоретико-множественные операции и их связь с логическими операциями; 35. логика предикатов, бинарные отношения и их виды;
ПК 1.3. Использовать средства и методы автоматизированного проектирования при разработке цифровых устройств.	У3. определять типы графов и давать их характеристики; У4. строить простейшие автоматы;	36. элементы теории отображений и алгебры подстановок; 37. метод математической индукции; 38. алгоритмическое перечисление основных комбинаторных объектов; 39. основные понятия теории графов, характеристики и виды графов; 310. элементы теории автоматов;
ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.	У01.3. оценивать свои способности и возможности в профессиональной деятельности;	301.2. возможности применения профессиональных навыков в смежных областях;
ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.	У02.1. распознавать и анализировать профессиональную задачу и/или проблему;	302.1. алгоритмы выбора типовых методов и способов выполнения профессиональных задач;
ОК 3. Принимать решения в стандартных и нестандартных	У03.2. принимать решения в нестандартной профессиональной ситуации и	

Код ПК/ ОК	Умения	Знания
ситуациях и нести за них	определять необходимые	
ответственность	ресурсы;	
ОК 4. Осуществлять	У04.2. искать информацию в	
поиск и использование	сети Интернет с использованием	
информации,	фильтров и ключевых слов;	
необходимой для		
эффективного		
выполнения		
профессиональных		
задач,		
профессионального и		
личностного развития.		
ОК 5. Использовать		305.1. современные
информационно-		средства и устройства
коммуникационные		информатизации и порядок
технологии в		их применения;
профессиональной		
деятельности.		
ОК 6. Работать в	У06.1. работать в коллективе и	306.1. основные принципы
коллективе и команде,	команде;	работы в коллективе;
эффективно общаться с		
коллегами,		
руководством,		
потребителями.		
ОК 7. Брать на себя	У07.2. выбирать оптимальные	
ответственность за	способы, приемы и методы	
работу членов команды	решения профессиональных	
(подчиненных),	задач коллективом	
результат выполнения	исполнителей;	
заданий.		
ОК 8. Самостоятельно		308.2. возможные
определять задачи		траектории
профессионального и		профессионального
личностного развития,		развития и
заниматься		самообразования;
самообразованием,		
осознанно планировать		
повышение		
квалификации.		
ОК 9. Ориентироваться		309.3. методы работы в
в условиях частой смены		профессиональной и
технологий в		смежных сферах;
профессиональной		
деятельности.		

2 СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1 Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего)	72
Обязательная аудиторная учебная нагрузка (всего)	48
в том числе:	
лекции, уроки	36
практические занятия	12
лабораторные занятия	Не
	предусмотрено
курсовая работа (проект)	Не
курсовая расота (проскт)	предусмотрено
Самостоятельная работа	24
Форма промежуточной аттестации - комплексный дифференцированный зачет	

2.2 Тематический план и содержание учебной дисциплины «Дискретная математика»

Наименование		Содержание учебного материала и	Объем часов	Коды
разделов и тем		формы организации деятельности обучающихся		компетенций/осваиваемых
				элементов компетенций
1		2	3	4
Введение	Bxo,	дной контроль. Инструктивный обзор программы учебной	2	31.
	дисі	циплины и знакомство студентов с основными условиями и		
	треб	ованиями к освоению общих и профессиональных		
	ком	петенций.		
Раздел 1. Множест	ва		24	
Тема 1.1. Основы	Сод	ержание учебного материала	6	31, 34, 38
теории множеств	Оби	цие понятия теории множеств. Основные операции над		У01.3. У03.2. У04.2. У06.1.
	мно	жествами. Отношения. Бинарные отношения и их свойства.		У07.2. 301.2. 302.1. У03.2.
	Теория отображений и алгебры подстановок. Алгоритмическое			305.1. 306.1. 308.2. 309.3.
	пере	числение основных комбинаторных объектов.		
	Пра	Практические занятия		
	1	Решение задач с помощью теории множеств.		
	2	Решение комбинаторных задач.		
	Кон	трольная работа по теме «Основы теории множеств».	2	
	Сам	остоятельная работа: Выполнение индивидуального задания по	6	
	тема	м «Доказательства тождеств, диаграммы Эйлера при		
	дока	зательстве тождеств», «Алгебра подстановок».		
Тема 1.2. Основы	Сод	ержание учебного материала	4	У3 39.
теории графов	Основные понятия теории графов, характеристики графов.			У01.3. У03.2. У04.2. У06.1.
	Практические занятия		2	У07.2. 301.2. 302.1. У03.2.
	3	Определение характеристик графов.		305.1. 306.1. 308.2. 309.3.
	Сам	остоятельная работа: Выполнение индивидуального задания по	2	
	теме	е «Основные понятия теории графов, характеристики графов».		

Наименование разделов и тем	Содержание учебного материала в формы организации деятельности обуча		Коды компетенций/осваиваемых элементов компетенций	
Раздел 2. Математ	еская логика	34		
Тема 2.1. Законы	одержание учебного материала	6	32. У1. У2.	
логики. Функции	Рормулы логики. Методика упрощения формул лого	ики с помощью	У01.3. У03.2. У04.2. У06.1.	
алгебры логики	авносильных преобразований. Понятие булевой фу	енкции.	У07.2. 301.2. 302.1. У03.2.	
	Летодика представления булевой функции в совери	иенных	305.1. 306.1. 308.2. 309.3.	
	ормальных формах. Минимизация булевых функци	й.		
	рактические занятия	2		
	Упрощение формул логики с помощью равнос	ильных		
	преобразований.			
	Представление булевой функции в виде сов	ершенной ДНФ,		
	совершенной КНФ.			
	амостоятельная работа: Выполнение индивидуаль	ьного задания по 6		
	еме «Формулы логики. Законы алгебры логик	и». Выполнение		
	ндивидуального задания по теме «Булевы фун			
	редставления булевой функции (N≤ 3) в виде ми	нимальной ДНФ		
	рафическим методом».			
Тема 2.2.	одержание учебного материала	4	33.	
Функционально	Летодика представления булевой функции в виде м	ногочлена	У01.3. У03.2. У04.2. У06.1.	
замкнутые	Кегалкина. Основные классы функций. Функционал	ьно полные	У07.2. 301.2. 302.1. У03.2.	
классы	системы функций. Теорема Поста. 305.1. 306.1. 308.2.		305.1. 306.1. 308.2. 309.3.	
	Грактические занятия	2	2	
	Проверка булевой функции на принадлежност T_1 , S, L, M.	ь к классам То,		
	онтрольная работа по теме «Булевы функции».	иая работа по теме «Булевы функции».		
	Самостоятельная работа: Выполнение индивидуального задания по теме «Представление булевой функции в виде многочлена			

Наименование разделов и тем	Содержание учебного материала и формы организации деятельности обучающихся	Объем часов	Коды компетенций/осваиваемых элементов компетенций
	Жегалкина». Выполнение индивидуального задания по теме		
Т 2 2 П	«Полнота множества функций».	4	35. 36. 37.
Тема 2.3. Логика предикатов Содержание учебного материала Понятие предиката. Области определения и истинности предиката. Обычные логические операции над предикатами. Формализация предложений с помощью логики предикатов. Метод		4	y01.3. y03.2. y04.2. y06.1. y07.2. 301.2. 302.1. y03.2. 305.1. 306.1. 308.2. 309.3.
	математической индукции. Практические занятия 7 Доказательство тождеств с помощью метода математической индукции.	2	
	Самостоятельная работа: Выполнение индивидуального задания по теме «Предикаты. Представление предикатной формулы в виде ПНФ».	2	
Раздел 3. Элемент	ы теории автоматов	10	
Тема 3.1. Конечные автоматы	Содержание учебного материала Определение конечных автоматов. Способы задания конечных автоматов.	4	310. У4 У01.3. У03.2. У04.2. У06.1. У07.2. 301.2. 302.1. У03.2.
	Практические занятия 8 Построение конечных автоматов.	2	305.1. 306.1. 308.2. 309.3.
	Самостоятельная работа: Подготовка рефератов по темам: «Примитивно-рекурсивные предикаты», «Проблема слов в ассоциативном исчислении», «Тезис Черча-Тьюринга».	4	
	Зачетное занятие	2	
	Итого	72	

З УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1 Материально-техническое обеспечение

Для реализации программы учебной дисциплины предусмотрены следующие специальные помещения и оснашение:

Тип и наименование специального помещения	Оснащение специального помещения	
кабинет Математических	Рабочее место преподавателя: персональный компьютер,	
дисциплин	проектор, экран;	
	рабочие места обучающихся, доска учебная, учебная	
	мебель	
	Персональные компьютеры	
Помещение для	Персональные компьютеры с пакетом MS Office, выходом	
самостоятельной работы	в Интернет и с доступом в электронную информационно-	
обучающихся	образовательную среду университета	

3.2 Учебно-методическое и информационное обеспечение реализации программы

Основные источники

- 1. Канцедал, С. А. Дискретная математика [Электронный ресурс] : учебное пособие / С. А. Канцедал. Москва : ИД «ФОРУМ» : ИНФРА-М, 2019. 222 с. (Среднее профессиональное образование). Режим доступа: https://new.znanium.com/read?id=329577
- 2. Гусева, А. И. Дискретная математика [Электронный ресурс] : учебник / В. С. Киреев, А. Н. Тихомирова. Москва : КУРС: ИНФРА-М, 2019. 208 с. (Среднее профессиональное образование). Режим доступа: https://new.znanium.com/read?id=329809

Дополнительные источники:

- 1. Игошин, В. И. Сборник задач по математической логике и теории алгоритмов [Электронный ресурс] : учебное пособие / В. И. Игошин. Москва : КУРС ; ИНФРА-М, 2019. 392 с. (Бакалавриат). ISBN 978-5-906818-08-9 (КУРС); ISBN 978-5-16-011429-3 (ИНФРА-М, print); ISBN 978-5-16-103684-6 (ИНФРА-М, online). Режим доступа: https://new.znanium.com/read?id=329810
- 2. Васильева, Е. А. Элементы математической логики [Электронный ресурс] : практикум [для СПО] / Е. А. Васильева; МГТУ. Магнитогорск : МГТУ, 2018. 1 электрон.опт. диск (CD-ROM).- Режим доступа: https://magtu.informsystema.ru/uploader/fileUpload?name=S164.pdf&show=dcatalogues /5/9372/S164.pdf&view=true Макрообъект.
- 3. Гусева, А.И. Дискретная математика [Электронный ресурс]: сборник задач / А.И. Гусева, В.С. Киреев, А.Н. Тихомирова. М.: КУРС: ИНФРА-М, 2018. 224 с. (Среднее профессиональное образование). Режим доступа: https://new.znanium.com/read?id=302975
- 4. Игошин, В.И. Сборник задач по математической логике и теории алгоритмов [Электронный ресурс]: учеб.пособие / В.И. Игошин. Москва: КУРС; ИНФРА-М, 2019. 392 с. (Бакалавриат). ISBN 978-5-906818-08-9 (КУРС); ISBN 978-5-16-011429-3 (ИНФРА-М, print); ISBN 978-5-16-103684-6 (ИНФРА-М, online). Режим доступа: https://new.znanium.com/read?id=329810

Программное обеспечение и Интернет-ресурсы:

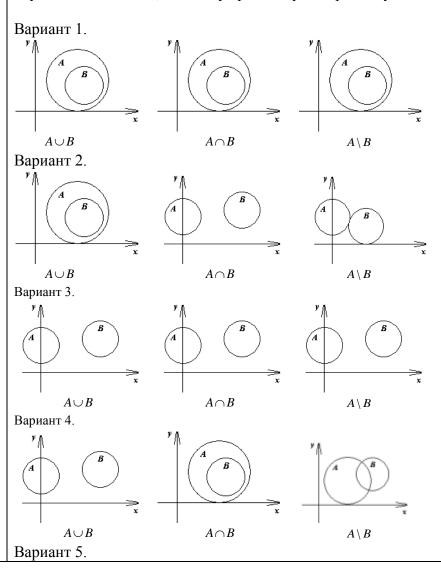
- 1. MS Windows 7 (подписка Imagine Premium)
- 2. MS Office 2007
- 3. 7 Zip

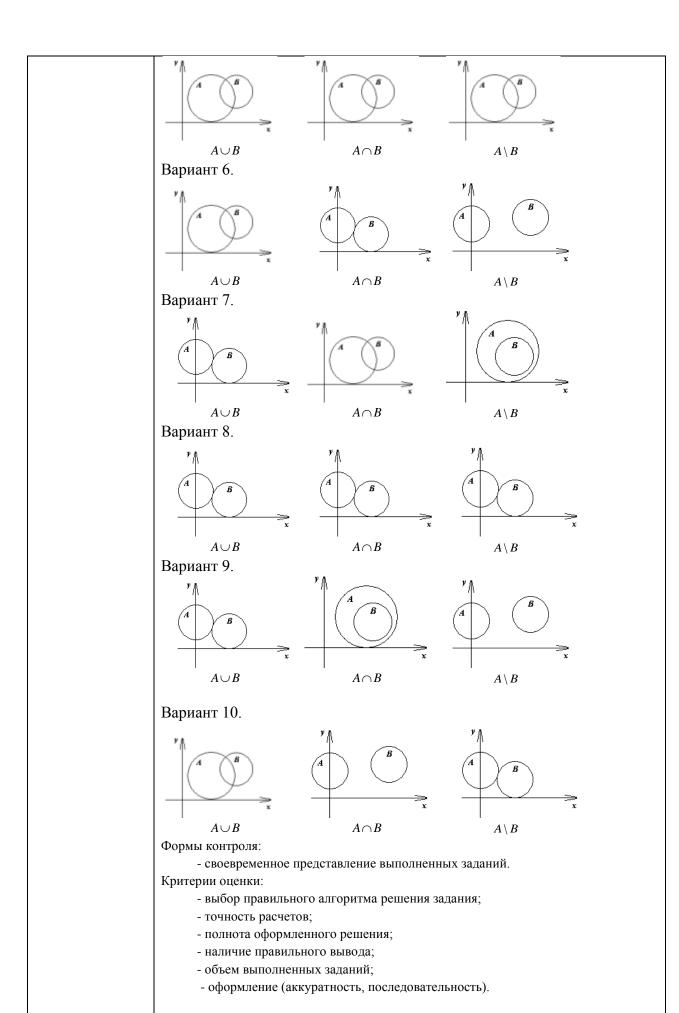
Интернет-ресурсы

- 1. Интуит национальный открытый университет. [Электронный ресурс]. Режим доступа: www.intuit.ru/studies/courses, свободный. Загл. с экрана. Яз. рус.
- 2. Единый портал интернет-тестирования в сфере образования [Электронный ресурс] https://i-exam.ru/, свободный. Загл. с экрана. Яз. рус.

3.3 Учебно-методическое обеспечение самостоятельной работы обучающихся

Самостоятельная работа является обязательной для каждого обучающегося. Самостоятельная работа может осуществляться индивидуально или группами в зависимости от цели, объема, конкретной тематики самостоятельной работы, уровня сложности, уровня умений обучающихся.


Контроль результатов внеаудиторной самостоятельной работы осуществляется в пределах времени, отведенного на обязательные учебные занятия и внеаудиторную самостоятельную работу обучающихся по учебной дисциплине, проходит как в письменной, так и устной или смешанной форме, с представлением изделия или продукта самостоятельной деятельности.


В качестве форм и методов контроля внеаудиторной самостоятельной работы используются: проверка выполненной работы преподавателем, семинарские занятия, тестирование, самоотчеты, контрольные работы, защита творческих работ и др.

Наименование	Оценочны	е средства (задания) для самос	тоятельной внеаудиторной	
раздела/темы	работы			
Раздел 1. Множе	ства			
Тема 1.1. Основы теории множеств	Выполнен тождеств, подстанов Выпол тождеств, ди Цель задания -Закреп -Углубл -Приме Задание 1. $A \cup B$, $A \cap B$, $A \cap B$ Вариант 1	пнение индивидуального домашнего за, аграммы Эйлера при доказательстве тожда: ление теоретических знаний. пение ранее изученного материала. нение полученных знаний на практике. Даны множества A и B $A \cup C$, $A \cap C$, $A \setminus B$, $B \setminus A$. Докажите тождество с помощью в Задание $A \cap B$ A	стве тождеств», «Алгебра дания по теме «Доказательства деств». 3. Найдите множества кругов Эйлера. 3адание 2 $(X \cap Y) \cup Z = (X \cup Z) \cap (Y \cup Z)$	

Вариант	A={-3;-2;-1;0;1;2;3;7},	$(X \cap Y) \setminus Z = (X \cap Z) \setminus (Y \cap Z)$
5	$B = \{5;3;2;1;0;-2;-3\}, C = \{-4;-3;-1\}$	
<i>J</i>	2;-1;0;1;2;3;4}	
Вариант	$A = \{-6; -5; -4; -3; -2; 0\}, B = \{-2; -4; -4; -4; -4; -4; -4; -4; -4; -4; -4$	$(X \cup Y) \setminus Z = (X \cup Z) \setminus (Y \cup Z)$
6	1;0;1;2}, C={-2;-1;0;1;2;3;4;5;6}	
Рорионт	A={-6;-5;-2;0;3;5;7}, B={-	$(X \setminus Y) \cup Z = (X \setminus Z) \cap (Y \setminus Z)$
Вариант	2;5;7;9;11}, C={-1;-	
	1;1;2;4;6;9;11}	
Donwova	A={-4;-2;-1;0;1;4;6;8},	$(X \cap Y) \cup Z = (X \cup Z) \cap (Y \cup Z)$
Вариант 8	$B={4;3;2;1;0;-2;-3}, C={-5;-3;-}$	
0	2;-1;0;1;2}	
Donwova	A={-3;-2;-1;0;1;2;3;7},	$(X \cap Y) \setminus Z = (X \cap Z) \setminus (Y \cap Z)$
Вариант 9	$B=\{5;3;2;1;0;-2;-3\}, C=\{-4;-3;-1\}$	
9	2;-1;0;1;2;3;4}	
Вариант	$A = \{-6; -5; -4; -3; -2; 0\}, B = \{-2; -4\}$	$(X \cup Y) \setminus Z = (X \cup Z) \setminus (Y \cup Z)$
10	1;0;1;2}, C={-2;-1;0;1;2;3;4;5;6}	

Задание 3. Покажите на графиках объединение, пересечение и разность двух множеств A и B, используя различную штриховку.

Выполнение индивидуального задания по теме «Основные понятия теории графов, характеристики графов». Цель задания: -Закрепление теоретических знаний. -Углубление ранее изученного материала. -Применение полученных знаний на практике. В таблице для каждого варианта заданы декартовы координаты вершин графа и перечислены ребра графа. Граф неориентирован. Следует построить граф на плоскости хОу и найти: 1) таблицу степеней вершин; 2) матрицу смежности; 3) матрицу инцидентности; 4) таблицу расстояний в графе; 5) определить радиус и центр графа. x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 (1;3)(3;5) (6;5) (2;2) (3:3)(1;0)(3;0)(6;2) $(x_1; x_2), (x_2; x_5), (x_2; x_3), (x_2; x_4), (x_1; x_6), (x_2; x_7), (x_6; x_7)$ (4;6) (2;4) (4;4) (6;4)(2;0)(6;0)(9;2) $(x_1; x_2), (x_2; x_5), (x_2; x_3), (x_1; x_4), (x_4; x_7), (x_6; x_7), (x_1; x_3),$ $(x_3; x_4), (x_5; x_6), (x_3; x_6)$ (2;3) (2;6) (3;7) (3;5) (5;6) (5;4) (6;6)(4;1) $(x_1; x_2), (x_2; x_3), (x_4; x_6), (x_3; x_4), (x_5; x_6), (x_3; x_5), (x_5; x_7)$ (1;1) (2;2) (2;4) (2;5) (3;5)(3;2)(5;2)Тема 1.2. $(x_1; x_2), (x_2; x_3), (x_5; x_6), (x_3; x_5), (x_6; x_8), (x_2; x_7), (x_7; x_8),$ Основы теории $(x_5; x_7)$ графов (1;4) (3;5) (5;4) (1;2) (5;2)(5;0)(7;1) $(x_1; x_2), (x_2; x_4), (x_2; x_5), (x_2; x_3), (x_4; x_5), (x_6; x_7), (x_5; x_7),$ $(x_4; x_6)$ (1;7) (2;7) (6;7) (8;5)(6:2)(2:2)(6;5)(4;5) $(x_2; x_3), (x_2; x_6), (x_2; x_8), (x_3; x_4), (x_3; x_7), (x_3; x_8), (x_4; x_5),$ $(x_4; x_7), (x_5; x_6), (x_5; x_7), (x_6; x_8)$ 7 (1;5) (2;4) (4;4) (5;5) (4;2) (2;2) (1;1)(3:3) $(x_1; x_2), (x_2; x_5), (x_2; x_3), (x_1; x_4), (x_4; x_7), (x_6; x_7), (x_1; x_3),$ $(x_3; x_4), (x_5; x_6), (x_3; x_6)$ (1;2) (2;4) (3;5) (4;4) (4;3)(2;3) (2;2)(4;2) $(x_1; x_2), (x_2; x_3), (x_2; x_5), (x_3; x_4), (x_3; x_5), (x_4; x_5), (x_4; x_8),$ $(x_5; x_7), (x_7; x_8)$ 9 (0;2) (1;4) (2;5) (3;6) (4;5)(5;4)(6;2)(3;2) $(x_1; x_2), (x_2; x_3), (x_2; x_6), (x_5; x_6), (x_3; x_5), (x_1; x_8), (x_7; x_8),$ $(x_3; x_7), (x_6; x_7)$ 10 (2;2) (2;5) (3;6) (5;6) (3;4) (4;5) (4;4)(5;4) $(x_1; x_2), (x_2; x_3), (x_3; x_4), (x_3; x_5), (x_3; x_6), (x_4; x_6), (x_4; x_8),$ $(x_5; x_6)$ Формы контроля:

- своевременное представление выполненных заданий.

Критерии оценки:

- выбор правильного алгоритма решения задания;
- точность расчетов;
- полнота оформленного решения;
- наличие правильного вывода;
- объем выполненных заданий;
- оформление (аккуратность, последовательность).

Раздел 2. Математическая логика

Выполнение индивидуального задания по теме «Формулы логики. Законы алгебры логики». Выполнение индивидуального задания по теме «Булевы функции. Методика представления булевой функции ($N \le 3$) в виде минимальной ДНФ графическим методом».

Цель задания:

- -Закрепление теоретических знаний.
- -Углубление ранее изученного материала.
- -Применение полученных знаний на практике.

Задание 1. Постройте таблицы истинности для данных логических выражений.

Задание 2. Докажите с помощью таблиц истинности равносильность данных логических выражений.

	Задание 1	Задание 2
Вариант 1	$(A \rightarrow B) \rightarrow \overline{C}$	$(A\&B)\lor\mathcal{C}$ и $(A\lor\mathcal{C})\&(B\lor\mathcal{C})$
Вариант 2	(A/B)/C	$(A \lor B) \& C$ и $(A \& C) \lor (B \& C)$
Вариант 3	$(A\sqrt{B})\sqrt{C}$	$\overline{A \lor B \lor C}$ и \overline{A} & \overline{B} & \overline{C}
Вариант 4	$(A \vee \overline{B}) \& (\overline{A} \vee B) \vee C$	$\overline{A \& B \& C}$ и $\overline{A} \lor \overline{B} \lor \overline{C}$
Вариант 5	(A ⊕B) & C	$\overline{\overline{A} \to B} \to C$ и $A \lor B \lor C$
Вариант 6	$(\overline{B \& C \lor \overline{A}}) \& A$	$(A \lor B \lor C) \& \overline{A \lor \overline{B} \lor C}$ и $B \& \overline{A} \& \overline{C}$
Вариант 7	$(\overline{B \& C} \lor \overline{A}) \& A$	$\overline{(A \oplus C)} \downarrow \overline{B} \text{ if } (A \lor C) \& (\overline{A} \lor \overline{C}) \& B$
Вариант 8	$(A \oplus \overline{B}) \& (A \oplus \overline{C})$	$(A \lor B) \& A \& C$ и $(A \& \overline{B} \& C) \lor (A \& B \& C)$
Вариант 9	$A \rightarrow \overline{B} \rightarrow \overline{C}$	$(\overline{A} \vee \overline{B} \& C) \vee (\overline{A} \oplus \overline{B}) \text{ if } (\overline{A} \vee \overline{B} \vee C) \& (\overline{A} \vee \overline{B} \vee C)$
Вариант 10	$(A\&\overline{B}\lor\overline{A}\&B)\&C$	$(A\&B\&C)\lor(A\to\overline{B})$ и $\overline{A}\lor\overline{B}\lor C$

Тема 2.1. Законы логики. Функции алгебры логики

Задание 3. Упростите логические выражения и постройте для полученных выражений таблицы истинности.

	Задание 3
Вариант 1	$X & (\overline{X} & Y \lor Z) & (X \lor \overline{Z})$
Вариант 2	$(\overline{X} \vee Y) \& (\overline{Y} \vee X \& Z)$
Вариант 3	$X & (Y \Leftrightarrow X) & (\overline{X} \vee \overline{Z})$
Вариант 4	$(X \to Y) \& X \& \overline{Y}$
Вариант 5	$(\overline{X} \& Y) \to (Z \& X)$
Вариант 6	$(X \& Y \Leftrightarrow Z) \& X \& \overline{Z}$
Вариант 7	$(X \& Z \lor \overline{X} \& \overline{Y}) \& (Z \to Y)$
Вариант 8	$(X \lor Y \& \overline{Z} \lor \overline{X} \& \overline{Y} \& Z) \& X \& \overline{Y}$
Вариант 9	$(X \to Y) & (Y \to X)$
Вариант 10	$(X \& \overline{Y} \& Z \lor \overline{X} \& \overline{Z}) \& Y$

Формы контроля:

- своевременное представление выполненных заданий.

Критерии оценки:

- выбор правильного алгоритма решения задания;
- точность расчетов;
- полнота оформленного решения;
- наличие правильного вывода;
- объем выполненных заданий;

- оформление (аккуратность, последовательность).

Выполнение индивидуального домашнего задания по теме «Булевы функции.

																		-		фушк	
Методика представления булевой функции (N≤ 3) в виде минимальной ДНФ графическим методом».																					
			ιυД(JM>>	•																
Цель задания:																					
-Закрепление теоретических знаний.																					
	-Углубление ранее изученного материалаПрименение полученных знаний на практике.																				
	-применение полученных знании на практике. Задание 1. Построить СДНФ и СКНФ по таблицам истинности.																				
Вариант		1100	rpe	уитт	5 C ₂	ĮΠ	и					ица іт 2.		лип	пос	1 VI.					
x	0	0	0	0	1	1	1	1	T	$\frac{z}{x}$		0	0	0	0	1	1	1	1		
y	0	0	1	1	0		_	1		y		0	0	1	1	0	0	1	1		
z	0	1	0	1	0	_	0	_	_	$\frac{J}{z}$		0	1	0	1	0	1	0	1		
f(x, y,									1	f(x, y)	v.										
z)	1	1	0	0	0	1	0	0		z)	, ,	1	0	0	0	1	1	0	0		
Вариант 3. Вариант 4.																					
X	0	0	0	0	1	1	1	1		x		0	0	0	0	1	1	1	1	1	
y	0	0	1	1	0	0	1	1		у		0	0	1	1	0	0	1	1		
z	0	1	0	1	0	1	0	1		z		0	1	0	1	0	1	0	1		
f(x, y, z)	0	0	0	1	0	0	0	0	j	f(x, y)	y,	1	0	0	0	0	1	0	0		
Вариант :	<u> </u>										1121	іт 6.								I	
$\frac{\mathbf{Dapuahr}}{x}$	0	0	0	0	1	1	1	1		х	таг	0	0	0	0	1	1	1	1	l	
	0	0	1	1	0			1				0	0	1	1	0	0	1	1		
$\frac{y}{z}$	0	1	0	1	0		0			$\frac{y}{z}$		0	1	0	1	0	1	0	1		
f(x, y,	0	0	0	1	0		1	0	j	f(x, y)	y,	1	1	1	0	0	0	0	0		
z)	<u> </u>									<i>z)</i>											
Вариант '	_			Ι.	1.		1.				иан	т 8.					_			1	
X	0	0	0	0	1	1	1	1	_	х		0	0	0	0	1	1	1	1		
У	0	0	1	1	0	_	4	1		У		0	0	1	1	0	0	1	1		
z	0	1	0	1	0	1	0	1	_	Z		0	1	0	1	0	1	0	1		
f(x, y,	1	0	1	1	1	0	0	0	J	f(x, y)	у,	0	1	0	1	0	1	0	0		
Z)	<u> </u>									Z) Don		rm 1/								l	
Вариант	9.	0	0	0	1	1	1	1	1		иан	т 10 О). 0	0	0	1	1	1	1	I	
x	0	0	1	1	0		-	1	-	x		0	0		1	0	0	1	1		
<i>y</i>	0	1	0	1	0	+	-		_	<u>y</u>		0	1	0	1	0	1	0	1		
f(x, y,	U	1	U	1	+0	1	+0	1	_	$\frac{z}{f(x, y)}$.,	U	1	U	1	U	1	U	1		
z)	0	0	0	0						z)		1	0	1	0	1	0	0	0		
Задание 2	2.	Для	і ф	унк	ции	1, 38	ідан	ной	і та	бли	цей	ис	тин	нос	ги,	най	ти .	ΜД	ΗФ	мето	ЭДОМ
Квайна.	1																				
Вариант	1.		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1		
x_1		\dashv	0	0	0	0	1	1	1	0	$\frac{I}{0}$	$\frac{I}{0}$	$\frac{I}{0}$	0	1	1	1 1	1			
x_2		+	0	0	1	1	0	$\frac{I}{0}$	1	1	0	0	1	1	0	$\frac{I}{0}$	1	_			
<i>x</i> ₃			0	1	0	1	0	1	0	1	0	1	0	1	0	1	0		_		
$E(x_1, x_2)$	r. r		0	$\frac{1}{0}$	0	1	0	1	0	1	0	0	1	1	1	1	1		_		
$oxed{ F(x_1, x_2, x_3, x_4) \mid 0 \mid 0 \mid 0 \mid 1 \mid 0 \mid 1 \mid 0 \mid 1 \mid 0 \mid 0$																					
x_1	. 4.		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1			
$\frac{x_1}{x_2}$			0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	_			
$\frac{x_2}{x_3}$			0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1			
x_4		\dashv	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0				
4			-	_		_	_		ــــــــ		L	1-	L	1 -	ľ	1 -	Ļ	1			

$F(x_1, x_2, x_3, x_4)$	0	0	0	1	1	0	0	1	0	0	1	1	1	0	1	1	
Вариант 3.					l	l	l			l	l			I			
x_1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
x_2	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	
x_3	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	
x_4	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
$F(x_1, x_2, x_3, x_4)$	1	0	0	1	1	0	0	1	1	0	0	0	1	1	0	1	
(x_1, x_2, x_3, x_4) Вариант 4.	1	U	U	1	1	U	U	1	1	U	U	U	1		U	1	
x_1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	
x_2																	
x_3	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	
X_4	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
$F(x_1, x_2, x_3, x_4)$	0	0	1	0	1	0	1	0	0	0	1	1	1	0	1	0	
Вариант 5.		_		_					_						1 -	- 1	
x_1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
x_2	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	
x_3	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	
x_4	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
$F(x_1, x_2, x_3, x_4)$	0	1	0	0	0	1	0	1	0	1	1	0	0	1	0	1	
Вариант 6.				_													
x_1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
x_2	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	
	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
X_4																	
$F(x_1, x_2, x_3, x_4)$	0	0	0	1	0	1	0	1	0	0	1	1	1	1	1	0	
Вариант 7.	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
x_1		0			0	0	0		1				1	1	-		
x_2	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	
x_3	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	
x_4	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
$F(x_{1,}, x_{2,}, x_{3,}, x_{4})$	0	0	0	1	1	0	0	1	0	0	1	1	1	0	1	1	
Вариант 8.					•	•	•			•	•			•			
$ x_I $	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
x_2	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	
x_3	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	
$\frac{3}{x_4}$	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
$F(x_{1,}, x_{2,}, x_{3,}, x_{4})$	1	0	0	1	1	0	0	1	1	0	0	0	1	1	0	1	
Вариант 9.		Ü	U	1	1	Ü	Ü	1	1	Ü	Ü	Ü	1		Ü	-	
x_1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
	0	0	0	0	1	1	1	1	0	0	0	0		1	1	1	
x_2													1				
x_3	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	
x_4	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
$F(x_{1,}, x_{2,}, x_{3,}, x_{4})$	0	0	1	0	1	0	1	0	0	0	1	1	1	0	1	0	
Вариант 10.																	
x_1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
x_2	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	
x_3	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	
x_4	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
$F(x_1, x_2, x_3, x_4)$	0	1	0	0	0	1	0	1	0	1	1	0	0	1	0	1	
$\Gamma(x_1, x_2, x_3, x_4)$ Формы контрол					L												
		1100	про	поте	ם מים	11112	D7 11	יייסד	10111	II IV	20 17	,,,,,,	ź				
- своевре		пое	пре	дста	вле	пис	выі	10,11	пСНІ	њХ	заді	апин	1.				
Критерии оцен	ки:																

Критерии оценки:

- выбор правильного алгоритма решения задания;
- точность расчетов;

- полнота оформленного решения;
- наличие правильного вывода;
- объем выполненных заданий;
- оформление (аккуратность, последовательность).

Выполнение индивидуального задания по теме «Представление булевой функции в виде многочлена Жегалкина». Выполнение индивидуального задания по теме «Полнота множества функций». Цель задания:

- -Закрепление теоретических знаний.
- -Углубление ранее изученного материала.
- -Применение полученных знаний на практике.

Задание 1. Постройте полином Жегалкина для данных логических функций (двумя способами).

Г Функции (да	Symmenocodum).
Вариант 1	$f(x, y, z) = (x \vee y) & (\overline{y} \vee z)$
Вариант 2	$f(x, y, z) = \left(x & \overline{y}\right) \lor \left(x & z\right)$
Вариант 3	$f(x, y, z) = \overline{x} \vee (y \vee z)$
Вариант 4	$f(x, y, z) = (\overline{x} \vee \overline{y}) \& z$
Вариант 5	$f(x, y, z) = \overline{x \vee y} \vee \overline{z}$
Вариант 6	$f(x, y, z) = (\bar{x} \vee y) \& z$
Вариант 7	$f(x, y, z) = \overline{x} \& y \lor \overline{z}$
Вариант 8	$f(x, y, z) = \overline{x \& y \& z}$
Вариант 9	$f(x, y, z) = x & y \vee \overline{z}$
Вариант 10	$f(x, y, z) = \overline{x \vee y \vee \overline{z}}$

Тема 2.2. Функционально замкнутые классы

Формы контроля:

- своевременное представление выполненных заданий.

Критерии оценки:

- выбор правильного алгоритма решения задания;
- точность расчетов;
- полнота оформленного решения;
- наличие правильного вывода;
- объем выполненных заданий;
- оформление (аккуратность, последовательность).

Цель задания:

- -Закрепление теоретических знаний.
- -Углубление ранее изученного материала.
- -Применение полученных знаний на практике.

Задание 1. Проверьте полноту следующих систем. Если система полная, то выделить базис.

Вариант 1	$\left\{x_1 \to x_2, 0, x_1 \to \overline{x_2} x_1\right\}$
Вариант 2	$\left\{x_1 x_2, \overline{x_1} \leftrightarrow x_1 x_2\right\}$

Вариант 3	$\{0,1,x_1(x_2\leftrightarrow x_1)\}$
Вариант 4	$\left\{x_1 \oplus x_2, \overline{x_1}, \overline{x_1}x_2\right\}$
Вариант 5	$\{x_1x_2, x_1 \to x_2, x_1 \leftrightarrow x_1x_2\}$
Вариант 6	$\left\{ x_1 \leftrightarrow x_2, \overline{x_1}, x_1 \lor x_2 \right\}$
Вариант 7	$\left\{x_1 \oplus x_2, \overline{x_1} \to x_2, x_1 \downarrow x_2\right\}$
Вариант 8	$\left\{1, \overline{x_1}, x_1 \leftrightarrow x_2\right\}$
Вариант 9	$\left\{x_1 \to \overline{x_2}, x_1 \lor x_2, 1\right\}$
Вариант 10	$\{x_1 x_2, x_1 \to x_2, x_1 \vee \overline{x_1} x_2\}$
	Вариант 4 Вариант 5 Вариант 6 Вариант 7 Вариант 8 Вариант 9

Формы контроля:

- своевременное представление выполненных заданий.

Критерии оценки:

- выбор правильного алгоритма решения задания;
- точность расчетов;
- полнота оформленного решения;
- наличие правильного вывода;
- объем выполненных заданий;
- оформление (аккуратность, последовательность).

Выполнение индивидуального задания по теме «Предикаты. Представление предикатной формулы в виде $\Pi H \Phi$ ».

Цель задания:

- -Закрепление теоретических знаний.
- -Углубление ранее изученного материала.
- -Применение полученных знаний на практике.

Задание 1. Определите объект, свойство объекта, область значений, функцию отношения для данной области, терм для следующих высказываний:

- а) людей под фамилиями Иванов, Петров, Сидоров очень много;
- б) две различные точки не совпадают.

Задание 2. Введите одноместные предикаты на соответствующих областях и запишите при их помощи следующие высказывания в виде логики предикатов:

- а) всякое натуральное число, делящееся на 12, делится на 2,4 и 6;
- б) жители Швейцарии обязательно владеют или французским, или итальянским, или немецким языком;
- в) функция, непрерывная на отрезке [0,1] сохраняет знак или принимает нулевое значение.

Задание 3. Введите предикаты на соответствующих областях и запишите при их помощи следующие высказывания в виде логики предикатов:

- а) если а корень уравнения от одной переменной с вещественными коэффициентами,
- то \overline{a} также корень этого уравнения;
- б) через две различные точки проходит одна единственная прямая;
- в) каждый студент выполнил, по крайней мере, одну лабораторную работу;
- г) если произведение натуральных чисел делится на простое число, то на него делится, по крайней мере, один из сомножителей.

Формы контроля:

- своевременное представление выполненных заданий.

Критерии оценки:

Тема 2.3. Логика предикатов

	- выбор правильного алгоритма решения задания;- точность расчетов;- полнота оформленного решения;							
	- наличие правильного вывода; - объем выполненных заданий;							
B 4.0	- оформление (аккуратность, последовательность).							
Раздел 3. Элемен	нты теории автоматов							
Тема 3.1. Конечные автоматы	Подготовка рефератов по темам: «Примитивно-рекурсивные предикаты», «Проблема слов в ассоциативном исчислении», «Тезис Черча-Тьюринга». Формы контроля:							

4 КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе текущего контроля и промежуточной аттестации.

4.1 Текущий контроль

	4.1 Текущии контро	OTIP					
№	Контролируемые разделы (темы) учебной дисциплины	Контролируемые результаты (умения, знания)	Наименование оценочного средства				
1	Тема 1.1. Основы теории множеств	31, 34, 38 V01.3. V03.2. V04.2. V06.1. V07.2. 301.2. 302.1. V03.2. 305.1. 306.1. 308.2. 309.3	Контрольная работа по теме «Основы теории множеств». Выполнение индивидуального задания по темам «Доказательства тождеств, диаграммы Эйлера при доказательстве тождеств», «Алгебра подстановок».				
2	Тема 1.2. Основы теории графов	У3 39. У01.3. У03.2. У04.2. У06.1. У07.2. 301.2. 302.1. У03.2. 305.1. 306.1. 308.2. 309.3.	Выполнение индивидуального задания по теме «Основные понятия теории графов, характеристики графов».				
3	Тема 2.1. Законы логики. Функции алгебры логики	32. Y1. Y2. Y01.3. Y03.2. Y04.2. Y06.1. Y07.2. 301.2. 302.1. Y03.2. 305.1. 306.1. 308.2. 309.3.	Выполнение индивидуального задания по теме «Формулы логики. Законы алгебры логики». Выполнение индивидуального задания по теме «Булевы функции. Методика представления булевой функции (N≤3) в виде минимальной ДНФ графическим методом».				
	Тема 2.2. Функционально замкнутые классы	33. V01.3. V03.2. V04.2. V06.1. V07.2. 301.2. 302.1. V03.2. 305.1. 306.1. 308.2. 309.3.	Контрольная работа по теме «Булевы функции». Выполнение индивидуального задания по теме «Представление булевой функции в виде многочлена Жегалкина». Выполнение индивидуального задания по теме «Полнота множества функций».				
	Тема 2.3. Логика предикатов	35. 36. 37. V01.3. V03.2. V04.2. V06.1. V07.2. 301.2. 302.1. V03.2. 305.1. 306.1. 308.2. 309.3	Выполнение индивидуального задания по теме «Предикаты. Представление предикатной формулы в виде ПНФ».				
	Тема 3.1. Конечные автоматы	310. У4 У01.3. У03.2. У04.2. У06.1. У07.2. 301.2. 302.1. У03.2. 305.1. 306.1. 308.2. 309.3.	Подготовка рефератов по темам: «Примитивно-рекурсивные предикаты», «Проблема слов в ассоциативном исчислении», «Тезис Черча-Тьюринга».				

4.2 Промежуточная аттестация

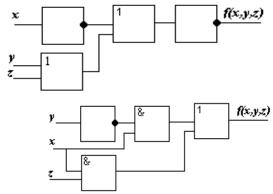
Промежуточная аттестация обучающихся осуществляется по завершении изучения дисциплины и позволяет определить качество и уровень ее освоения.

Форма промежуточной аттестации по дисциплине «Дискретная математика» - дифференцированный зачет.

кругах Эйлера.

- 22. Сформулируйте определение подстановки. Приведите пример подстановки. Что такое инверсия и транспозиция подстановки.
- 23. Сформулируйте определение декартова произведения множеств. Приведите примеры. Чему равна длина (мощность) множества.
- 24. Основы теории кодирования текстовой информации.
- 25. Основы алгебры вычетов.
- 26. Сформулируйте определение графа. Приведите примеры ориентированного и неориентированного графов.
- 27. Сформулируйте определение графа. Для данного графа укажите степень вершин и кратность ребер.

Типовые задания


1. Как на основании таблицы истинности функции получить СДНФ? Постройте ее для следующей таблицы:

x_1	x_2	F
0	0	0
0	1	1
1	0	0
1	1	1

2. Как на основании таблицы истинности функции получить СКНФ? Постройте ее для такой таблицы:

x_1	x_2	F
0	0	1
0	1	0
1	0	0
1	1	1

- 3. Минимизируйте функцию $F(x_1, x_2) = (\overline{x_1} \wedge x_2) \vee (x_1 \wedge x_2)$
- 4. Построить логические функции для следующих схем:

- 5. Постройте таблицы истинности для функций: $F(x_1, x_2) = (x_1 \wedge x_2) \vee \overline{x_1}$, $F(x_1, x_2) = (x_1 \vee x_2) \wedge \overline{x_2}$. Сконструируйте логические схемы, реализующие эти функции.
- 6. Решите задачу. Из 100 студентов университета английский язык знают 28 студентов, немецкий 30, французский 42, английский и немецкий 8, английский и французский 10, немецкий и французский 5, все три языка знают 3 студента. Сколько студентов не знают ни одного из трех языков?
- 7. Найдите $\sigma_1 \circ \sigma_2$, $\sigma_2 \circ \sigma_1$, σ_1^3 , σ_2^4 , σ_1^{-1} , порядок каждой из подстановок, число инверсий и четность подстановки σ_1 .

24

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 5 & 4 \end{pmatrix} \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}$$

- 8. Докажите тождество с помощью кругов Эйлера: $(X \cup Y) \cap Z = (X \cap Z) \cup (Y \cap Z)$.
- 9. Пусть даны множества A={-3;-2;-1;0;1;2;3;7}, B={5;3;2;1;0;-2;-3}, C={-4;-3;-2;-1;0;1;2;3;4}. Найдите множества $A \cup B$, $A \cap B$, $A \cup C$, $B \cup C$, $A \setminus B$, $A \setminus A$.
- 10. Выполните действия: a) 271,34 $_{(8)}$ + 1566,2 $_{(8)}$; б) 65,2 $_{(16)}$ + 3CA,8 $_{(16)}$; в) 731,6 $_{(8)}$ 622,6 $_{(8)}$; г) 22D,1 $_{(16)}$ 123,8 $_{(16)}$.
- 11. Полна ли система функций $\{f, g, h\}$ (принадлежность функций классам T_0, T_1, L, M, S отображена в таблице).

Функции	T_{0}	T_1	L	M	S
f	-	-	+	-	+
g	+	+	+	+	+
h	+	+	-	-	+

12. Полна ли система функций $\{F, G, H\}$ (принадлежность функций классам T_0, T_1, L, M, S отображена в таблице).

	P				
Функции	T_{0}	T_1	L	M	S
F	-	+	-	-	-
G	-	+	+	+	-
H	-	-	-	-	+

Критерии оценки зачета/дифференцированного зачета/экзамена/курсовой работы (проекта)

«Отлично» - теоретическое содержание курса освоено полностью, без пробелов, умения сформированы, все предусмотренные программой учебные задания выполнены, качество их выполнения оценено высоко.

«Хорошо» - теоретическое содержание курса освоено полностью, без пробелов, некоторые умения сформированы недостаточно, все предусмотренные программой учебные задания выполнены, некоторые виды заданий выполнены с ошибками.

«Удовлетворительно» - теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые умения работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий содержат ошибки.

«Неудовлетворительно» - теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки.

ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ, ВКЛЮЧАЯ АКТИВНЫЕ И ИНТЕРАКТИВНЫЕ МЕТОДЫ ОБУЧЕНИЯ

No	Название	Цель использования	Планируемый	Описание порядка
п/	образовательной	образовательной	результат	использования
П	технологии (с	технологии	использования	(алгоритм
	указанием автора)		образовательно	применения)
	/ активные и		й технологии	технологии в
	интерактивные			практической
	методы обучения			профессионально
	.			й деятельности
1	Традиционная	Организация усвоения	Формирование	На этапе
	технология	учащимися знаний,	знаний, умений	объяснительно-
	обучения	умений.	И	иллюстративного
	(Я.А.Коменский и	3	воспроизведени	метода.
	И.Ф.Гербарт)		е усвоенного	
2	Информонно	Оборнония напилания	знания. Повышение	Ца продажения
2	Информационно коммуникационна	Обеспечение наглядности	интереса к	На протяжении урока:
	я технология	•	изучаемой теме,	воспроизведение
	(М.В.Моисеева.		овладение	презентации.
	Е.С.Полат.		обучающимися	r · · · · ·
	М.В.Бухаркина)		первичными	
			навыками	
			работы по	
			данной	
			тематике,	
			снижение	
			уровня	
			затруднения восприятия	
			новой	
			информации	
3	Технология	Использование средств	Контроль	На
	электронного	вычислительной техники	знаний,	заключительном
	обучения (Беляев	для контроля знаний.	развитие	этапе выдаётся
	М.И.)	-	навыков	домашнее задание
			самоконтроля в	с использованием
			интерактивном	электронного
			режиме.	учебника, использование
				тестов на
				образовательном
				портале

ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Разделы/темы	Темы практических занятий	Количество часов	Требования ФГОС СПО (уметь)		
Раздел 1. Множества					
Тема 1.1. Основы теории множеств	№ 1 Решение задач с помощью теории множеств	1	У01.3. У03.2. У04.2. У06.1.		
	№ 2 Решение комбинаторных задач	1	У07.2.		
Тема 1.2. Основы теории графов	№ 3 Определение характеристик графов	2	У3 У01.3. У03.2. У04.2. У06.1. У07.2.		
Раздел 2. Математич	еская логика				
Тема 2.1. Законы логики. Функции алгебры логики	№4 Упрощение формул логики с помощью равносильных преобразований	1	У1. У2. У01.3. У03.2. У04.2. У06.1.		
1	№5 Представление булевой функции в виде совершенной ДНФ, совершенной КНФ	1	У07.2.		
Тема 2.2. Функционально замкнутые классы	№6 Проверка булевой функции на принадлежность к классам T_0 , T_1 , S , L , M	2	У01.3. У03.2. У04.2. У06.1. У07.2.		
Тема 2.3. Логика предикатов	№ 7 Доказательство тождеств с помощью метода математической индукции	2	У01.3. У03.2. У04.2. У06.1. У07.2.		
Раздел 3. Элементы теории автоматов					
Тема 3.1. Конечные автоматы	№ 8 Построение конечных автоматов.	2	У4 У01.3. У03.2. У04.2. У06.1. У07.2.		
ИТОГО		12			

Приложение 3

ОБРАЗОВАТЕЛЬНЫЙ МАРШРУТ

Контрольная точка	Контролируемые разделы (темы) учебной дисциплины	Контролируемые результаты	Оценочные средства	
№ 1	Раздел 1. Множества	31, 34, 38 V01.3. V03.2. V04.2. V06.1. V07.2. 301.2. 302.1. V03.2. 305.1. 306.1. 308.2. 309.3	Контрольная работа по теме «Основы теории множеств».	Практическое задание
№2	Раздел 2. Математическая логика	Y3 39. Y01.3. Y03.2. Y04.2. Y06.1. Y07.2. 301.2. 302.1. Y03.2. 305.1. 306.1. 308.2. 309.3.	Контрольная работа по теме «Булевы функции».	Практическое задание
Промежуточн ая аттестация	Зачет	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 9.1 9.2 9.3 9.4 901.3 903.2 904.2 906.1 907.2 301.2 302.1 903.2 305.1 306.1 308.2 309.3	Итоговая Контрольная работа	Типовые практические задания

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ

№	Раздел рабочей	Краткое содержание изменения/дополнения	Дата,	Подпись
п/п	программы		№ протокола	председателя
			заседания ПЦК	ПЦК