Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г. И. Носова» Многопрофильный колледж

УТВЕРЖДАЮ Директор / С.А. Махновский 26 февраля 2020 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОПЦ.10 ЧИСЛЕННЫЕ МЕТОДЫ

«Общепрофессиональный цикл» программы подготовки специалистов среднего звена специальности 09.02.07 Информационные системы и программирование

Квалификация: программист

Форма обучения

очная

Рабочая программа учебной дисциплины разработана на основе: ФГОС по специальности среднего профессионального образования 09.02.07 Информационные системы и программирование, утвержденного приказом Министерства образования и науки Российской Федерации от «09» декабря 2016 г. №1547; Примерной основной образовательной программы по специальности 09.02.07 Информационные системы и программирование, зарегистрированной в федеральном реестре примерных основных образовательных программ (регистрационный номер 09.02.07-170511), и примерной программы учебной дисциплины Численные методы (Приложение № II-13 к ПООП СПО).

ОДОБРЕНО

Предметной -цикловой комиссией «Информатики и вычислительной

техники»

Методической комиссией МпК

Протокол №3 от 26.02 2020

Разработчик:

преподаватель МпК ФГБОУ ВО «МГТУ им. Г.И. Носова» // Власта Диляуровна Тутарова

Тутарова

доцент кафедры «Вычислительная техника и программирование» ФГБОУ Рецензент: ВО «МГТУ им. Г.И. Носова», к.т.н., доцент

/ Александр Николаевич Калитаев

СОДЕРЖАНИЕ

	стр.
1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	4
2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	6
3. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ	10
4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ	13
ПРИЛОЖЕНИЕ 1	26
ПРИЛОЖЕНИЕ 2	27
ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ	29

1 ОБЩАЯ ХАРАКТЕРИСТИКА РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ "ЧИСЛЕННЫЕ МЕТОДЫ"

1.1 Область применения программы

Рабочая программа учебной дисциплины «Численные методы» является частью программы подготовки специалистов среднего звена по специальности 09.02.07 Информационные системы и программирование. Рабочая программа составлена для очной формы обучения.

1.2 Место дисциплины в структуре программы подготовки специалистов среднего звена

Учебная дисциплина «Численные методы» относится к общепрофессиональному учебному циклу

Освоению учебной дисциплины предшествует изучение учебных дисциплин.

- ЕН.01 Элементы высшей математики
- ЕН.02 Дискретная математика с элементами математической логики
- ЕН.03 Теория вероятностей и математическая статистика
- ОПЦ.04 Основы алгоритмизации и программирования

Дисциплина «Численные методы» является предшествующей для изучения следующих учебных дисциплин, профессиональных модулей:

- ПМ.01 Разработка модулей программного обеспечения для компьютерных систем,
- ПМ.11 Разработка, администрирование и защита баз данных.

1.3 Цель и планируемые результаты освоения дисциплины:

Содержание дисциплины ориентировано на подготовку обучающихся к освоению профессиональных модулей программы подготовки специалистов среднего звена по специальности и овладению следующими общими и профессиональными компетенциями:

- $\Pi K 1.1$ Формировать алгоритмы разработки программных модулей в соответствии с техническим заданием.
 - ПК 1.2 Разрабатывать программные модули в соответствии с техническим заданием.
 - ПК 1.5 Осуществлять рефакторинг и оптимизацию программного кода.
- ПК 11.1 Осуществлять сбор, обработку и анализ информации для проектирования баз данных.
- ОК 1 Выбирать способы решения задач профессиональной деятельности, применительно к различным контекстам.
- OК 2 Осуществлять поиск, анализ и интерпретацию информации, необходимой для выполнения задач профессиональной деятельности;.
- ОК 4 Работать в коллективе и команде, эффективно взаимодействовать с коллегами, руководством, клиентами.
- OК 5 Осуществлять устную и письменную коммуникацию на государственном языке с учетом особенностей социального и культурного контекста.
 - ОК 9 Использовать информационные технологии в профессиональной деятельности.
- OК 10 Пользоваться профессиональной документацией на государственном и иностранном языке.

Код ПК, ОК	Умения	Знания
OK 1	У01.1 распознавать задачу и/или проблему в профессиональном и/или социальном контексте	301.3 основные источники информации и ресурсы для решения задач и проблем в профессиональном и/или социальном контексте 301.7 алгоритмы выполнения работ в профессиональной и смежных областях; 301.8 порядок оценки результатов решения задач профессиональной деятельности
OK 2	У02.2 определять необходимые источники информации	302.2 приемы структурирования информации
OK 4	У04.5 использовать коммуникационные навыки при работе в команде для успешной работы над групповым решением проблем	
OK 5	У05.4 использовать стандартный набор коммуникационных технологий	305.6 важность эффективного общения и навыков профессиональной коммуникации
OK 9	У09.1 применять средства информационных технологий для решения профессиональных задач У09.2 использовать современное программное обеспечение	309.2 порядок их применения и программное обеспечение в профессиональной деятельности
OK 10	У10.4 кратко обосновывать и объяснить свои действия (текущие и планируемые);	310.5 правила чтения текстов профессиональной направленности;
ПК 1.1	У1. использовать основные численные методы решения математических задач У4. разрабатывать алгоритмы и программы для решения вычислительных задач, учитывая необходимую точность получаемого результата	31 методы хранения чисел в памяти электронно-вычислительной машины (далее – ЭВМ) и действия над ними, оценку точности вычислений
ПК 1.2	У4. разрабатывать алгоритмы и программы для решения вычислительных задач, учитывая необходимую точность получаемого результата	32 методы решения основных математических задач — интегрирования, дифференцирования, решения линейных и трансцендентных уравнений и систем уравнений с помощью ЭВМ
ПК 1.5	У2 выбирать оптимальный численный метод для решения поставленной задачи; У3 давать математические характеристики точности исходной информации и оценивать точность полученного численного решения;	32 методы решения основных математических задач — интегрирования, дифференцирования, решения линейных и трансцендентных уравнений и систем уравнений с помощью ЭВМ
ПК 11.1.	УЗ давать математические характеристики точности исходной информации и оценивать точность полученного численного решения;	31 методы хранения чисел в памяти электронно-вычислительной машины (далее – ЭВМ) и действия над ними, оценку точности вычислений

2 СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1 Объем учебной дисциплины и виды учебной работы (очно)

Вид учебной работы	Объем часов
Объем образовательной программы	64
в том числе:	
лекции, уроки	32
практические занятия	Не предусмотрено
лабораторные занятия	24
курсовая работа (проект)	Не предусмотрено
консультации	Не предусмотрено
Самостоятельная работа	8
	Комплексный
Промежуточная аттестация	дифференцированный
	зачет

2.2 Тематический план и содержание учебной дисциплины Численные методы (очно)

Наименование Содержание учебного материала и разделов и тем формы организации деятельности обучающи		Объем часов	Коды компетенций/осваиваемых элементов компетенций		
1	2	3	4		
Тема 1. Основные понятия теории	Содержание учебного материала	2	OК 1, 2, 4, 5, 9, 10, ПК 1.1, 1.2, 1.5, ПК 11.1.		
погрешностей вычислений.	1.Типы погрешностей. Статистический и технический подходы к учету погрешностей.		У3, У4, У01.1, У02.2, У05.4, У09.1, У09.2		
	В том числе лабораторных работ	2	31, 301.3, 302.2, 309.2,		
	Лабораторная работа №1 «Решение простейших задач на вычисление погрешностей».		310.5		
	Самостоятельная работа обучающихся: Практическое задание	8			
Тема 2. Численное решение СЛАУ	Содержание учебного материала	6	OK 1, 2, 4, 5, 9, 10, ПК 1.1, 1.2, 1.5, ПК 11.1.		
	1 Прямые методы (LU-метод, метод прогонки)		У1, У2, У3, У4, У01.1,		
	2 Итерационные методы. Метод простой итерации, метод Зейделя		У02.2, У05.4, У09.1, У09.2		
	В том числе лабораторных работ	6	31, 32, 301.3, 302.2, 309.2,		
	Лабораторная работа №2 «Решение систем линейных уравнений»		310.5		
Тема 3. Алгоритмы и методы поиска	Содержание учебного материала	6	OK 1, 2, 4, 5, 9, 10, ПК 1.1, 1.2, 1.5, ПК 11.1.		
корней уравнения и решения	1 Поиск корней уравнения методом половинного деления, методом касательных, итерационным методом		У1, У2, У3, У4, У01.1, У02.2, У05.4, У09.1,		

Наименование разделов и тем	Содержание учебного материала и формы организации деятельности обучающихся	Объем часов	Коды компетенций/осваиваемых элементов компетенций		
1	2	3	4		
нелинейных систем	2 Решение систем нелинейных уравнений методом Ньютона, методом спуска.		У09.2 31, 32, 301.3, 302.2, 309.2,		
	В том числе лабораторных работ Лабораторная работа №3 «Решение алгебраических и трансцендентных уравнений»	6	310.5		
Тема 4. Методы аналитического	Содержание учебного материала	6	OK 1, 2, 4, 5, 9, 10, ПК 1.1, 1.2, 1.5, ПК 11.1.		
представления таблично заданной функции	1 Интерполирование функции многочленами Лагранжа и Ньютона. 2 Интерполирование функции многочленами Чебышева, тригонометрическая интерполяция, интерполяция сплайнами циклов.		У1, У2, У3, У4, У01.1, У02.2, У05.4, У09.1, У09.2		
	В том числе лабораторных работ Лабораторная работа №4 «Интерполирование функции».	4	31, 32, 301.3, 302.2, 309.2, 310.5		
Тема 5. Алгоритмы и методы	Содержание учебного материала	5	OK 1, 2, 4, 5, 9, 10, ПК 1.1, 1.2, 1.5, ПК 11.1.		
численного интегрирования и дифференцирования	1 Численное дифференцирование 2 Квадратурные формулы Ньютона-Котеса, Гаусса		У1, У2, У3, У4, У01.1, У02.2, У05.4, У09.1,		
	В том числе лабораторных работ	4	У09.2 31, 32, 301.3, 302.2, 309.2, 310.5		
	Лабораторная работа №5 «Численное интегрирование и дифференцирование».		310.3		

Наименование разделов и тем			Коды компетенций/осваиваемых элементов компетенций
1	2	3	4
Тема 6. Численные методы решения	Содержание учебного материала	5	ОК 1, 2, 4, 5, 9, 10, ПК 1.1, 1.2, 1.5, ПК 11.1.
обыкновенных дифференциальных	1 Метод Эйлера, метод Рунге-Кутта, решение задачи Коши		У1, У2, У3, У4, У01.1, У02.2, У05.4, У09.1,
уравнений	2 Метод прогонки решения краевой задачи для ОДУ.		У09.2
	В том числе лабораторных работ	2	31, 32, 301.3, 302.2, 309.2,
	Лабораторная работа №6 «Численное решение дифференциальных уравнений».		310.5
Промежуточная атте	тация (дифференцированный зачет)	2	ОК 1, 2, 4, 5, 9, 10, ПК 1.1, 1.2, 1.5, ПК 11.1.
ИТОГО		64	

3 УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1 Материально-техническое обеспечение

Для реализации программы учебной дисциплины предусмотрены следующие специальные помещения и оснащение:

Тип и наименование специального помещения	Оснащение специального помещения					
лаборатория программного	Мультимедийные средства хранения, передачи и					
обеспечения и сопровождения	представления информации.					
компьютерных систем	Учебно-методическая документация, дидактические					
	средства.					
	Персональные компьютеры					
Помещение для самостоятельной	Персональные компьютеры с пакетом MS Office, выходом					
работы обучающихся	в Интернет и с доступом в электронную информационно-					
	образовательную среду университета					

3.2 Учебно-методическое и информационное обеспечение реализации программы Основные источники:

- 1. Колдаев, В. Д. Численные методы и программирование [Электронный ресурс] : учебное пособие / В. Д. Колдаев ; под ред. проф. Л.Г. Гагариной. Москва : ИД «ФОРУМ» : ИНФРА-М, 2018. 336 с. (Среднее профессиональное образование). Режим доступа: https://new.znanium.com/read?id=309203
- 2. Пантелеев, А. В. Численные методы. Практикум [Электронный ресурс] : учебное пособие / А. В. Пантелеев, И. А. Кудрявцева. Москва : ИНФРА-М, 2017. 512 с. Режим доступа: https://new.znanium.com/read?id=11529

3. Дополнительные источники:

- 4. Савенкова, Н. П. Численные методы в математическом моделировании [Электронный ресурс] : учебное пособие / Н. П. Савенкова, О. Г. Проворова, А. Ю. Мокин. 2-е изд., испр. и доп. Москва : ИНФРА-М, 2017. 176 с. Режим доступа: https://new.znanium.com/read?id=81564
- 5. Гулин, А. В. Введение в численные методы в задачах и упражнениях [Электронный ресурс] : учебное пособие / Гулин А.В., Мажорова О. С., Морозова В. А. Москва : АРГАМАК-МЕДИА, НИЦ ИНФРА-М, 2019. 368 с. (Прикладная математика, информатика, информатика, информ.технологии). Режим доступа: https://new.znanium.com/read?id=342122

Программное обеспечение и Интернет-ресурсы:

программное обеспечение и интернет-ресурсы:						
Наименование ПО	№ Договора	Срок действия				
		лицензии				
MS Windows 7 (подписка Imagine	Д-1227 от 08.10.2018	11.10.2021				
Premium)	Д-757-17 от 27.06.2017	27.07.2018				
	Д-593-16 от 20.05.2016	20.05.2017				
	Д-1421-15 от 13.07.2015	13.07.2016				
MS Office 2007	№135 от 17.09.2017	бессрочно				
Kaspersky Endpoint Security для	Д-300-18 от 21.03.2018	28.01.2020				
бизнеса-Стандартный	Д-1347-17 от 20.12.2017	21.03.2018				
_	Д-1481-16 от 25.11.2016	25.12.2017				
	Д-2026-15 от 11.12.2015	11.12.2016				
7 Zip	свободно распространяемое	бессрочно				
Porland Davidonar Studio	свободно распространяемое	бессрочно				
Borland Developer Studio	ПО					

Наименование ПО	№ Договора	Срок	действия
		лицензии	
	Д-1227 от 8.10.2018	11.10.2021	
Visual Studio 2013 Рго(подписка Imagine	Д-757-17 от 27.06.2017	27.07.2018	
Premium)	Д-593-16 от 20.05.2016	20.05.2017	
	Д-1421-15 от 13.07.2015	13.07.2016	
Mathcad Education - University Edition	Д-1662-13 от 22.11.2013	бессрочно	
(200 pack)			

Интернет-ресурсы

1. Бояршинов Б. Численные методы. — М.: Национальный открытый университет «Интуит», 2018. [Электронный ресурс].— Режим доступа: https://www.intuit.ru/studies/courses/2317/617/info, свободный. — Загл. с экрана. Яз. рус.

3.3 Учебно-методическое обеспечение самостоятельной работы обучающихся

Самостоятельная работа является обязательной для каждого обучающегося. Самостоятельная работа может осуществляться индивидуально или группами в зависимости от цели, объема, конкретной тематики самостоятельной работы, уровня сложности, уровня умений обучающихся.

Контроль результатов внеаудиторной самостоятельной работы осуществляется в пределах времени, отведенного на обязательные учебные занятия и внеаудиторную самостоятельную работу обучающихся по учебной дисциплине, проходит как в письменной, так и устной или смешанной форме, с представлением изделия или продукта самостоятельной деятельности.

В качестве форм и методов контроля внеаудиторной самостоятельной работы используются: проверка выполненной работы преподавателем, семинарские занятия, тестирование, самоотчеты, контрольные работы, защита творческих работ и др.

No	Наименование раздела/темы	Оценочные средства (задания) для самостоятельной внеаудиторной работы
1	Тема 1. Основные понятия теории погрешностей вычислений	Практическое задание. Текст задания: 1. Перечислите различия между абсолютной, относительной и приведенной погрешностями, укажите их размерность. 2. Получите выражения для границ случайных погрешностей результатов наблюдений для заданной доверительной вероятности Рд, распределенных по следующим законам: а) равномерному; б) Симпсона; в) нормальному; г) Лапласа; д) арксинуса. 3. Пользуясь методом максимального правдоподобия, получите выражения для эффективной оценки математического ожидания результатов наблюдений , распределенных по следующим законам: а) нормальному; б) Лапласа; в) равномерному. 4. Постройте гистограмму для приведенных ниже результатов многократных наблюдений: 113,4; 111,3; 110,0; 112,2; 111,7; 112,8;112.5; 114,0; 113,6; 113,2. 5. Постройте кумулятивную кривую для числовых данных, приведенных в задании 4. 6. Определите оценки математического ожидания (среднее арифметическое, среднее по размаху, медиану) для результатов наблюдений, приведенных в задании 4. 7. Определите оценки дисперсии и СКО результатов

3.0													
№	Наименование раздела/темы	Оценочные средства (задания) для самостоятельной внеаудиторной работы											
		наблюдений, приведенных в задании 4.											
		8. Определите оценку островершинности (эксцесс) для											
		результатов наблюдений, приведенных в задании 4.											
													ены в
		9. Результаты многократных наблюдений представлены в таблице в виде гистограммы, в которой рі - высота столбиков,											
		а - координата середины их основания.											
		Pi			25	-	3,95		,75		1,25		
		Xi		1,			1,1		,2		1,3		
						-	виде				-	-	
		_	-		-	едли	ивость,	польз	уясі	ь кри	териє	eм Пи	рсона
			=36, P					_		.,			
							ратных			ений	пред	ставл	ены в
		таоли					ивной к				<u> </u>		
			F(xi)		0),34	0.5	-),66	1,0		
			xi		0,9	1	1,0	1,1]	1,2	1,3	3	
						-	виде ј						
							ясь кри		ем К	СОЛМС	гороі	ва для	и РД =
		_					й n = 40						
							ым крит						
		_		k pe	зульт	атон	в норма	альном	му з	закон	y pac	преде	ления
		для Р	-0,9.	3	41,8		341,4		344	1 2			
				-	3,1		40,9		40,				
				-	1,4		40,4		42,				
				4	3,2		42,6		42,	1			
				4	2,2		40,9		41,	9			
				4	0,8		42,1		42,	2			
				4	1,2		41,5		34,	3			
		12. P	езульт			пюд	ений ра	аспред	целе	ны п	 о рав	вномер	оному
							арифм						-
					_		цено н						
			имумо		гист	-	амм	резул	ьтат	ЮB	изме	ерени	й и
			одени	-									
							ем Райт					-	
		_					хов)	в ре	зулі	ьтата	X H	аблюд	цений,
		_	еденні										
							ием См						
				-		,	промах					аолюд	цений,
		_					12 для	-					1401105
			_				зицию	-	-		-		конов
		распределения, заданных в таблицах в виде гистограмм, и оцените математическое ожидание и дисперсию этой											
			ите и озици		wain	100K	кос ож	хидані	rIŪ	и д	испер	мно	этой
				2,5	2,5	2,5		p2	2	2	2	2	2
<u></u>		r - '	,-	,-	1-,-	1-,5		r -	_				

No	Наименование раздела/темы	Оценочные средства (задания) для самостоятельной внеаудиторной работы
№	Наименование раздела/темы	Оценочные средства (задания) для самостоятельной внеаудиторной работы Xi 5,2 5,3 5,4 5,5 x2 9,0 9,1 9,2 9,3 9,4 16. Среднеквадратические отклонения двух составляющих случайной погрешности измерения напряжения равны 0,1 В и 0,2 В. Определите границы результирующей погрешности измерения напряжения для доверительной вероятности 0,95, если ее систематическая составляющая равна 0,05 В, а случайные погрешности распределены по равномерному закону. 17. Определите границы результирующей случайной погрешности измерения тока с доверительной вероятностью 0,95, если границы ее составляющих определены с вероятностью 0,9 и равны 0,1 А; 0,2 А и 0,3 А соответственно, а их распределения подчиняются нормальному закону. 19. Результаты наблюдений распределены по нормальному закону. Изобразите в одной системе координат плотность их распределения, также плотность распределения результата измерения с числом наблюдений п=9. Цель работы: более глубокое изучение материала по применению теории погрешностей вычисления. Рекомендации к выполнению
		1. Ознакомиться и изучить материал по данной теме, используя литературные источники и интернет
		источники
		2. Структурировать изученный материал
		3. Выполнить предложенные задания с применением соответствующего программного обеспечения.

4 КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе текущего контроля и промежуточной аттестации.

4.1 Текущий контроль:

№	Контролируемые разделы (темы) учебной дисциплины	Контролируемые результаты (умения, знания)	Наименование оценочного средства
1	Тема 1. Основные понятия теории погрешностей вычислений.	Y2, Y3, Y4, Y01.1, Y02.2, Y05.4, Y09.1, Y09.2, Y10.4	Лабораторная работа
2	Тема 2. Численное решение СЛАУ	У1, У2, У3, У4, У01.1, У02.2, У05.4, У09.1, У09.2	Лабораторная работа
3	Тема 3. Алгоритмы и методы поиска корней уравнения и решения нелинейных систем	Y1, Y2, Y3, Y4, Y01.1, Y02.2, Y05.4, Y09.1, Y09.2	Лабораторная работа
4	Тема 4. Методы аналитического представления таблично	У1, У2, У3, У4, У01.1, У02.2, У05.4,	Лабораторная

No	Контролируемые разделы (темы) учебной дисциплины	Контролируемые результаты (умения, знания)	Наименование оценочного средства
	заданной функции	У09.1, У09.2	работа
5	Тема 5. Алгоритмы и методы численного интегрирования и дифференцирования	Y1, Y2, Y3, Y4, Y01.1, Y02.2, Y05.4, Y09.1, Y09.2	Лабораторная работа
6	Тема 6. Численные методы решения обыкновенных дифференциальных уравнений	У1, У2, У3, У4, У01.1, У02.2, У05.4, У09.1, У09.2	Лабораторная работа

4.2 Промежуточная аттестация

Промежуточная аттестация обучающихся осуществляется по завершении изучения дисциплины и позволяет определить качество и уровень ее освоения.

Форма промежуточной аттестации по дисциплине «Численные методы»

дифференцированный зачет.

дифференцированный зачет.		
Результаты обучения	Оценочные средства для промежуточной аттестации	
31, 32, 301.3, 301.7,		
	Приближенным числом а называют число, незначительно	
301.8, 302.2	отличающиеся от	
	а) точного А	
	b) неточного A	
	с) среднего А	
	d) точного не известного	
	е) приблизительного А	
	а называется приближенным значением А по недостатку, если	
	a) a < A	
	b) $a > A$	
	$\begin{array}{c} c \\ c \\ \end{array} a = A$	
	(a) (a)	
	e) $a \le A$	
	а называется приближенным значением числа А по избытку, если	
	a) a > A	
	b) a < A	
	c) a = A	
	d) $a \ge A$	
	(e) $a \le A$	
	Под ошибкой или погрешностью Δa приближенного числа а обычно понимается разность между соответствующим точным числом A и данным приближением, т.е. a) $\Delta a = A - a$	
	b) $\Delta a = A + a$	
	c) $\Delta a = A/a$	
	$(d) a = \Delta a - A$	
	$e'A = \Delta a + A$	
	Абсолютная погрешность приближенного числа а) $\Delta = \Delta a $	
	b) $\Delta a = a$	
	$c) \Delta = a $	
	d) $A = \Delta a $	
	e) $\Delta a = \Delta B $	
	Абсолютная погрешность	
	$a) \Delta = A - a $	
	() <u>(11) [</u>	
	b) $\Delta A = a$ c) $\Delta = B - a $ d) $a = A + a $ e) $\Delta a = A + B $	

Результаты обучения	Оценочные средства
	для промежуточной аттестации
	Предельную абсолютную погрешность вводят если
	а) число А не известно
	b) число а не известно
	с) Д не известно
	d) $A - a$ не известно
	е) не известно В
	Предельная абсолютная погрешность
	a) Δa
	b) ΔB
	c) ΔA
	d) A
	e) A
	Определить предельную абсолютную погрешность числа $a = 3,14$, заменяющего число π
	a) 0,002
	b) 0,001
	c) 3,141
	d) 0,2
	e) 0,003
	Относительная погрешность
	a) $\sigma = \Delta/ A $
	b) $\sigma = \Delta$
	c) $\sigma = \Delta/B$
	d) $\sigma = c/a$
	e) $\sigma = a - A$
	Погрешность, связанная с самой постановкой математической задачи
	а) погрешность задачи
	b) погрешность метода
	с) остаточная погрешность
	d) погрешность действия
	е) начальная
	Погрешности, связанная с наличием бесконечных процессов в
	математическом анализе
	а) остаточная погрешность
	b) абсолютная
	с) относительная
	d) погрешность условия
	е) начальная погрешность
	Погрешности, связанные с наличием в математических формулах,
	числовых параметров
	а) начальном
	b) конечной
	с) абсолютной
	d) относительной

Результаты обучения	Оценочные средства
	для промежуточной аттестации
	е) остаточной
	Погрешности, связанные с системой счисления
	а) погрешность округления
	b) погрешность действий
	с) погрешности задач
	d) остаточная погрешность
	е) относительная погрешность
	Округлить число $\pi = 3,1415926535$ до пяти значащих цифр а) 3,1416 b) 3,1425 c) 3,142 d) 3,14 e) 0,1415
	Абсолютная погрешность при округлении числа π до трёх значащих цифр a) $0.5*10-2$ b) $0.5*10-3$ c) $0.5*10-4$ d) $0.5*10-1$ e) 0.5
	Числовой ряд названия сходящимся, если а) существует предел последовательности его частных сумм b) можно найти сумму ряда c) существует последовательность d) частные суммы равны нулю
	е) существует предел разности
	С помощью этого метода число верных цифр примерно удваивается на каждом этапе по сравнению с первоначальным количеством а) процесс Герона b) формула Тейлора с) формула Маклорена d) метод Крамера е) процесс Даломбера
	Методом половинного деления уточнить корень уравнения $x^4+2x^3-x-1=0$ а) $0,867$ b) $0,234$ с) $0,2$ d) $0,43$ e) $0,861$
	Используя метод хорд найти положительный корень уравнения x^4 - $0.2x^2$ - $0.2x$ - 1.2 = 0 a) 1.198 + 0.0020

Результаты обучения	Оценочные средства
1 cojtil i u i u i u i u i u i u i u i u i u i	для промежуточной аттестации
	b) 1,16+0,02
	c) 2+0,1
	d) 3,98+0,001
	e) 4,2+0,0001
	Вычислить методом Ньютона отрицательный корень уравнения x^4 - $3x^2$ + $75x$ - 10000 = 0
	a) -10,261
	b) -10,31
	c) -5,6
	$\frac{c}{d} = \frac{3}{3}$
	e) -0,44
	(c) (0,44
	Используя комбинированный метод вычислить с точностью до 0,005 единственный положительный корень уравнения а) 1,04478
	b) 1,046
	c) 2,04802
	d) 3,45456
	e) 802486
	Найти действительные корни уравнения x-sinx=0,25
	a) 1,17
	b) 1,23
	c) 2,45
	d) 4,8
	e) 5,63
	Определить число положительных и число отрицательных корней
	уравнения х4-4х+1=0
	а) 2 и 0
	b) 3 и 2
	с) 0 и 4
	d) 0 и 1
	е) 0 и 4
	Определить нижнее число и верхнее число перемен знаков в системе 1, 0, 0, -3, 1.
	а) 2 и 4
	b) 3 и 1
	с) 0 и 4
	d) 0 u 5
	е) 3 и 2
	0/3 11 2
	Определить состав корней уравнения $x^4+8x^3-12x^2+104x-20=0$
	а) один положительный и один отрицательный
	b) нет ни одного корня c) невозможно найти число корней
	d) уравнение не имеет положительных корней
	а) уравнение не имеет положительных корнеи

Результаты обучения	Оценочные средства
	для промежуточной аттестации
	е) два отрицательных корня
	Две матрицы одного и того же типа, имеющие одинаковое число
	строк и столбцов, и соответствующие элементы их равны, называют
	а) равными
	b) одинаковыми
	с) разными по рангу
	d) схожими
	е) транспонированными
	-, -F
	Укажите свойства суммы матриц А+(В+С)=
	a) (A+B)+C
	b) (B+A)*C
	c) ABC
	d) A+B+C*A
	e) A*C+B*C
	Укажите название матрицы –А=(-1)А
	а) противоположная
	b) обратная
	с) равная
	d) матрица не существует
	е) транспонированная
	Заменив в матрице типа m×n строки соответственно столбцами
	получим
	а) транспонированную матрицу
	b) равную матрицу
	с) среднюю матрицу
	d) обратную матрицу
	е) квадратную матрицу
	С какой матрицей совпадает дважды транспонированная матрица
	а) с исходной
	b) с обратной
	с) с нулевой
	d) с единичной
	е) с квадратной
	Нахождение обратной матрицы для данной называется
	а) обращение данной матрицы
	b) транспонированием
	с) суммой матриц
	d) заменой строк и столбцов
	е) произведением матриц
	у проповеденнем магриц
	Если элементы квадратной матрицы, стоящие выше (ниже) главной
	диагонали, равны нулю, то матрицу называют
	а) треугольной
	b) нулевой

Результаты обучения	Оценочные средства
	для промежуточной аттестации
	с) диагональной
	d) такая матрица не существует
	е) единичной
	Метод, представляющий собой конечные алгоритмы для вычисления корней системы
	а) точный метод
	b) метод релаксации
	с) метод итерации
	d) приближенный метод
	е) относительный метод
	су отпосительным метод
	Метод, позволяющий получить корни системы с заданной точностью
	путем сходящихся бесконечных процессов
	а) итерационный метод
	b) точный метод
	с) приближенный метод
	d) относительный метод
	е) метод Зейделя
	Этот метод является наиболее распространенным приемом решения
	систем линейных уравнений, алгоритм последовательного
	исключения неизвестных
	а) метод Гаусса
	b) метод Крамера
	с) метод обратный матриц
	d) ведущий метод
	е) аналитический метод
	Целый однородный полином второй степени от п переменных
	называется
	а) квадратичной формой
	b) кубической формой
	с) прямоугольной формой
	d) треугольной формой
	е) матричной формой
	Квадратичная форма называется положительно (отрицательно)
	определенной, если она принимает положительные (отрицательные)
	значения, обращаясь в нуль лишь при
	a) x1=x2==xn=0
	b) x1+x2++xn=0
	c) x1x2xn=0
	d) a+b+c+=0
	e) $x_1+x_2++x_n=5$
	Простейшая форма этого метода заключается в том, что на каждом
	шаге обращают в нуль максимальную по модулю невязку путем
	изменения значения соответствующей компоненты приближения
	а) метод ослабления

Результаты обучения	Оценочные средства
	для промежуточной аттестации
	b) итерационный метод
	с) метод обратных матриц
	d) ведущий метод
	е) метод Гаусса
	Как иначе называют метод бисекций?
	а) Метод половинного деления
	b) Метод хорд
	с) Метод пропорциональных частей
	d) Метод «начального отрезка»
	е) Метод коллокации
	Методы решения уравнений делятся на:
	а) Прямые и итеративные
	b) Прямые и косвенные
	с) Начальные и конечные
	d) Определенные и неопределенные
	е) Простые и сложные
	Кто опубликовал формулу для решения кубического уравнения?
	а) Кардано
	b) Галуа
	с) Абеле
	d) Дарбу
	е) Фредгольм
	Основная теорема алгебры:
	а) Уравнение вида $\alpha 0$ хn + $\alpha 1$ хn-1 ++ α n-1х + α n=0 имеет ровно n
	корней, вещественных или комплексных, если k-кратный корень
	считать за k корней
	b) Если функция f(x) определена и непрерывна на отрезке [α;b] и
	принимает на его концах значения разных знаков, то на[α ; b]
	содержится, по меньшей мере, один корень уравнения f(x)=0
	с) Если функция $f(x)$ монотонна на отрезке [α ; b], то она интегрируема
	на этом отрезке
	d) Если функция f(x) монотонна на отрезке [α;b], то она
	дифференцируема на этом отрезке e) Определитель D= aii n-го порядка равен сумме произведений
	элементов какой-либо строки (столбца) на их алгебраические
	дополнения
	Отделение корней можно выполнить двумя способами:
	а) аналитическим и графическим
	b) приближением и отделением
	с) аналитическим и систематическим
	d) систематическим и графическим
	е) приближением последовательным и параллельным
	Укажите первую теорему Больцано-Коши:
	а) Если функция f(x) определена и непрерывна на отрезке [α;b] и

Розун тоту гобуновна	Оценочные средства
Результаты обучения	для промежуточной аттестации
	принимает на его концах значения разных знаков, то на[α;b]
	содержится, по меньшей мере, один корень уравнения f(x)=0
	b) Уравнение вида $\alpha 0$ хn + $\alpha 1$ хn-1 ++ α n-1х + α n=0 имеет ровно n
	корней, вещественных или комплексных, если k-кратный корень
	считать за k корней
	с) Если функция f(x) монотонна на отрезке [α;b], то она интегрируема
	на этом отрезке
	d) Если функция f(x) монотонна на отрезке [α;b], то она
	дифференцируема на этом отрезке
	е) Определитель D= aij n-го порядка равен сумме произведений
	элементов какой-либо строки (столбца) на их алгебраические
	дополнения
	дополнения
	Отделим корни уравнения $x^3 - 2x - 3 = 0$
	а) Единственный корень расположен между $\sqrt{2}$ 3 и ∞
	b) Корней нет
	с) Один из корней находится на отрезке [1,2]
	d) Один из корней находится на отрезке [1,2]
	е) Единственный корень расположен между $\sqrt{\frac{1}{8}}$ и $\sqrt{\frac{3}{8}}$
	е) Единственный корень расположен между 1/28 и 1/28
	При контроле решения алгебраического уравнения может быть
	полезна:
	а) Теорема Виета
	b) Теорема Ньютона
	с) Теорема Перрона
	d) Теорема Штурма
	е) Теорема Бюдана-Фурье
	o) respense risper
	Итерация iteratio в переводе с латинского:
	а) повторение
	b) замещение
	с) возвращение
	d) умножение
	е) удаление
	Укажите рекуррентную формулу метода простой итерации:
	a) $xn+1=\varphi(xn)$
	b) x=φ
	(c) x=C
	d) $xn+1=\psi(xn)+\varphi(xn)$
	e) $xn-1=\psi(xn)-\varphi(xn)$
	От латинского слова recurrens:
	а) возвращающийся
	b) меняющийся
	с) повторяющийся
	d) заменяющийся
	е) приближающийся
	Поспедоратель пость упорнатрорающая условию Конии постростая:
	Последовательность, удовлетворяющая условию Коши, называется:

D 4	Оценочные средства
Результаты обучения	для промежуточной аттестации
	а) фундаментальной последовательностью
	b) рекуррентной последовательностью
	с) итеративной последовательностью
	d) двусторонней последовательностью
	е) односторонней последовательностью
	Метод хорд-
	а) Частный случай метода итераций
	b) Частный случай метода коллокации
	с) Частный случай метода прогонки
	d) Частный случай метода квадратных корней
	е) Частный случай метода Гаусса
	Свойство самоисправляемости:
	а) Усиливает надежность метода
	b) Не влияет на конечный результат
	с) Влияет на конечный результат
	d) Не учитывается
	е) Считается ошибочным
	Как иначе называют метод Ньютона?
	а) Метод касательных
	b) Метод коллокации
	с) Метод прогонки
	d) Метод итераций
	е) Метод хорд
	Как иначе называют метод хорд?
	а) Метод пропорциональных частей
	b) Метод касательных
	с) Метод коллокации
	d) Метод бисекций
	е) Метод квадратных корней
	Метод хорд имеет еще одно имя:
	а) Метод пропорциональных частей
	b) Метод касательных
	с) Метод бисекций
	d) Метод коллокации
	е) Метод прогонки
	H 6
	Что общего у метода хорд и метода итераций?
	а) Общая скорость и свойство самоисправляемости
	b) Свойство самоисправляемости
	с) Общая скорость
	d) Легкость при решении
	е) Требуется нахождение производной
	Метод Ньютона-
	а) обладает свойством самоисправляемости и имеет высокую скорость
	а) обладает своиством самонсправляемости и имеет высокую скорость

Результаты обучения	Оценочные средства для промежуточной аттестации
	сходимости
	b) дает большой выигрыш во времени
	с) занимает очень много времени
	d) предельно прост
	е) надежен
	Методом хорд уточнить корень уравнения
	$x^3 - 2x - 3 = 0, \xi[1;2]; \varepsilon = 10-3$
	a) ξ=1.8933±0.0001
	b) ξ=0.0001±1
	c) ξ =0.0033±0.0001
	d) $\xi=\pm 1$
	e) ξ=±3.3
	Если точка движется равномерно $v(t)=v=const$, то ответ готов:
	a) S=v(T2 - T1)
	b) S=0
	c) $v = v0 + at$ d) $v = s/t$
	e) $S = v0t + at2/2$
	6) 8 0001 412/2
	Предел суммы $S \approx \upsilon(\tau 1)\Delta t 1 + \upsilon(\tau 2)\Delta t 2 + + \upsilon(\tau n)\Delta t n$ называется:
	а) Определенным интегралом
	b) Неопределенным интегралом
	с) Рекуррентной формулой
	d) Формулой численного дифференцирования
	е) Схемой Халецкого
	Все методы вычисления интегралов делятся на:
	а) Точные и приближенные
	b) Прямые и итеративные
	с) Прямые и косвенные
	d) Аналитические и графические
	е) Приближенные и систематические
	Точный метод вычисления интегралов был предложен:
	а) Ньютоном и Лейбницем
	b) Ньютоном и Гауссом
	с) Гауссом и Стирлингом
	d) Вольтерром
	е) Гауссом и Крамером
	Геометрически нижняя сумма Дарбу равна:
	а) Площади ступенчатого многоугольника, содержащегося в
	криволинейной трапеции
	b) Площади ступенчатого многоугольника, содержащего внутри себя
	криволинейную трапецию
	с) Площади прямоугольного параллелепипеда d) Площади ступенчатого шестиугольника
	е) Площади ступенчатого шестиугольника
	ој площади ступстчатого примоугольника

Результаты обучения	Оценочные средства
1 csysibiai bi doy iciinz	для промежуточной аттестации
	Геометрически верхняя сумма Дарбу равна:
	а) Площади ступенчатого многоугольника, содержащего внутри себя
	криволинейную трапецию
	b) Площади ступенчатого многоугольника, содержащегося в
	криволинейной трапеции
	с) Площади прямоугольного параллелепипеда
	d) Площади ступенчатого шестиугольника
	е) Площади ступенчатого прямоугольника
	Приближенные методы вычисления интегралов можно разделить на 2
	группы:
	а) аналитические и численные
	b) аналитические и графические
	с) систематические и численные
	d) систематические и случайные
	е) приближенные и неприближенные

Критерии оценки дифференцированного зачета

- -«Отлично» теоретическое содержание курса освоено полностью, без пробелов, умения сформированы, все предусмотренные программой учебные задания выполнены, качество их выполнения оценено высоко, по результатам итогового теста набрано не менее 85% правильных ответов.
- -«Хорошо» теоретическое содержание курса освоено полностью, без пробелов, некоторые умения сформированы недостаточно, все предусмотренные программой учебные задания выполнены, некоторые виды заданий выполнены с ошибками, по результатам итогового теста набрано 70-84% правильных ответов.
- -«Удовлетворительно» теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые умения работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий содержат ошибки по результатам итогового теста набрано 50-69% правильных ответов.
- -«Неудовлетворительно» теоретическое содержание курса не освоено, необходимые умения не сформированы, выполненные учебные задания содержат грубые ошибки, по результатам итогового теста набрано менее 49% правильных ответов.

ПЕРЕЧЕНЬ ЛАБОРАТОРНЫХ ЗАНЯТИЙ

Разделы/темы	Темы лабораторных занятий	Количество часов	Требования ФГОС СПО (уметь)
Тема 1. Основные понятия теории погрешностей вычислений.	Лабораторная работа №1 «Решение простейших задач на вычисление погрешностей»	2	Y2, Y3, Y4, Y01.1, Y02.2, Y05.4, Y09.1, Y09.2, Y10.4
Тема 2. Численное решение СЛАУ	Лабораторная работа №2 «Решение систем линейных уравнений»	6	У1, У2, У3, У4, У01.1, У02.2, У05.4, У09.1, У09.2
Тема 3. Алгоритмы и методы поиска корней уравнения и решения нелинейных систем	Лабораторная работа №3 «Решение алгебраических и трансцендентных уравнений»	6	Y1, Y2, Y3, Y4, Y01.1, Y02.2, Y05.4, Y09.1, Y09.2
Тема 4. Методы аналитического представления таблично заданной функции	Лабораторная работа №4 «Интерполирование функции».	4	Y1, Y2, Y3, Y4, Y01.1, Y02.2, Y05.4, Y09.1, Y09.2
Тема 5. Алгоритмы и методы численного интегрирования и дифференцирования	Лабораторная работа №5 «Численное интегрирование и дифференцирование».	4	Y1, Y2, Y3, Y4, Y01.1, Y02.2, Y05.4, Y09.1, Y09.2
Тема 6. Численные методы решения обыкновенных дифференциальных уравнений	Лабораторная работа №6 «Численное решение дифференциальных уравнений».	2	Y1, Y2, Y3, Y4, Y01.1, Y02.2, Y05.4, Y09.1, Y09.2
ИТОГО		24	

ОБРАЗОВАТЕЛЬНЫЙ МАРШРУТ

Контро льная точка	Раздел/тема	Формируемые компетенции (ОК, ПК, У, 3)	Оценочные средства	
Nº1	Тема 1. Основные понятия теории погрешностей вычислений.	OK 1, 2, 4, 5, 9, 10, ΠΚ 1.1, 1.2, 1.5, ΠΚ 11.1. У3, У4, У01.1, У02.2, У05.4, У09.1, У09.2 31, 301.3, 302.2, 309.2, 310.5	Лабораторная работа №1 «Решение простейших задач на вычисление погрешностей»	Защита лабораторной работы
№2	Тема 2. Численное решение СЛАУ	OK 1, 2, 4, 5, 9, 10, ΠΚ 1.1, 1.2, 1.5, ΠΚ 11.1. У1, У2, У3, У4, У01.1, У02.2, У05.4, У09.1, У09.2 31, 32, 301.3, 302.2, 309.2, 310.5	Лабораторная работа №2 «Решение систем линейных уравнений»	Защита лабораторной работы
№3	Тема 3. Алгоритмы и методы поиска корней уравнения и решения нелинейных систем	OK 1, 2, 4, 5, 9, 10, ΠΚ 1.1, 1.2, 1.5, ΠΚ 11.1. У1, У2, У3, У4, У01.1, У02.2, У05.4, У09.1, У09.2 31, 32, 301.3, 302.2, 309.2, 310.5	Лабораторная работа №3 «Решение алгебраических и трансцендентных уравнений»	Защита лабораторной работы
<i>№</i> 4	Тема 4. Методы аналитического представления таблично заданной функции	OK 1, 2, 4, 5, 9, 10, ΠΚ 1.1, 1.2, 1.5, ΠΚ 11.1. У1, У2, У3, У4, У01.1, У02.2, У05.4, У09.1, У09.2 31, 32, 301.3, 302.2, 309.2, 310.5	Лабораторная работа №4 «Интерполирование функции».	Защита лабораторной работы
№5	Тема 5. Алгоритмы и методы численного интегрирования и дифференцирования	OK 1, 2, 4, 5, 9, 10, ΠΚ 1.1, 1.2, 1.5, ΠΚ 11.1. У1, У2, У3, У4, У01.1, У02.2, У05.4, У09.1, У09.2 31, 32, 301.3, 302.2, 309.2, 310.5	Лабораторная работа №5 «Численное интегрирование и дифференцирование» .	Защита лабораторной работы
№6	Тема 6. Численные методы решения обыкновенных дифференциальных уравнений	OK 1, 2, 4, 5, 9, 10, ΠΚ 1.1, 1.2, 1.5, ΠΚ 11.1. У1, У2, У3, У4, У01.1, У02.2, У05.4, У09.1, У09.2 31, 32, 301.3, 302.2,	Лабораторная работа №6 «Численное решение дифференциальных уравнений».	Защита лабораторной работы

Контро льная точка	Раздел/тема	Формируемые компетенции (ОК, ПК, У, 3)	Оценочные средства	
		309.2, 310.5		
Проме	Дифференцированн		Итоговый тест	Итоги
жуточн	ый зачет			тестирования
ая				Выполненное
аттеста				практическое
ция				задание

ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ

No	Раздел рабочей	Краткое содержание	Дата, №	Подпись
Π/Π	программы	изменения/дополнения	протокола	председателя
11/11	программы	полительный дополненый	заседания	ПК/ПЦК
			ПК/ПЦК	1110/111410
		Рабочая программа учебной	ППОППДТ	
		дисциплины «Численные методы»		
		актуализирована. В рабочую программу		
		внесены следующие изменения:		
1	3 УСЛОВИЯ	В связи с обновлением материально-	16.09.2020 г.	- 1
1	РЕАЛИЗАЦИИ	технического обеспечения п.	Протокол № 1	John
	ПРОГРАММЫ	Материально-техническое обеспечение	Tip or oncourt (2)	00
	ДИСЦИПЛИНЫ	читать в новой редакции:		
	A.10-A.111111111111111111111111111111111	Кабинет Математических дисциплин;		
		Учебная аудитория для проведения		
		учебных занятий, лабораторных		
		занятий, для групповых и		
		индивидуальных консультаций, для		
		текущего контроля и промежуточной		
		аттестации, для самостоятельной		
		работы.		
		Рабочее место преподавателя:		
		персональный компьютер, проектор,		
		экран;		
		рабочие места обучающихся, доска		
		учебная, учебная мебель;		
		Персональные компьютеры;		
2	3 УСЛОВИЯ	В связи с заключением контрактов со	16.09.2020 г.	20
	РЕАЛИЗАЦИИ	сторонними электронными	Протокол № 1	Tolur
	ПРОГРАММЫ	библиотечными системами ЭБС		
	ДИСЦИПЛИНЫ	ЗНАНИУМ (Контракт № К-60-20 от		
		13.08.2020 г. ООО «ЗНАНИУМ»,		
		01.09.2020 г. по 31.08.2021 г.) п.		
		Учебно-методическое и		
		информационное обеспечение		
		реализации программы читать в новой		
		редакции:		
		Основная литература		
		1. Колдаев, В. Д. Численные методы и		
		программирование [Электронный		
		ресурс] : учебное пособие / В. Д.		
		Колдаев ; под ред. проф. Л.Г.		
		Гагариной. — Москва : ИД		
		«ФОРУМ» : ИНФРА-М, 2018. —		
		336 с. — (Среднее		
		профессиональное образование)		
		Режим доступа:		
		https://znanium.com/read?id=309203 –		
		Загл. с экрана.		
		2. Пантелеев, А. В. Численные методы.		

АРГАМАК-МЕДИА, НИЦ ИНФРА-М, 2019 368 с (Прикладиая математика, информатика, информ. технологии) Режим доступа: https://znanium.com/read?id=342122 - 3агл. с экрана. 2. Савсикова, Н. П. Численные методы в математическом моделировании [Электронный ресурс]: учебное пособис / Н. П. Савсикова, О. Г. Проворова, А. Ю. Мокин. — 2-е изд., испр. и доп. — Москва: ИНФРА-М, 2017. — 176 с. — Режим доступа: https://znanium.com/read?id=81564 - 3агл. с экрана. 3 З УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ ДИСЦИПЛИНЫ 3 В связи с обновлением материальнотехнического обеспечения п. Протраммное обеспечения п. Протокол № 1 Потокол № 1 Протокол № 1 Потокол № 1 Потокол № 1 Потокол № 1 Потокол № 1 Протокол № 1 Потокол № 1 Пот		Практикум [Электронный ресурс] : учебное пособие / А. В. Пантелеев, И. А. Кудрявцева. — Москва : ИНФРА-М, 2017. — 512 с. — Режим доступа: https://znanium.com/read?id=11529 — Загл. с экрана. Дополнительная литература 1. Гулин, А. В. Введение в численные методы в задачах и упражнениях [Электронный ресурс] : учебное пособие / Гулин А.В., Мажорова О. С., Морозова В. А Москва :		
3 УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ ДИСЦИПЛИНЫ В связи с обновлением материальнотехнического обеспечения п. Программное обеспечение и Интернетресурсы читать в новой редакции: МЅ Windows (подписка Imagine Premium) договор Д-1227-18 от 08.10.2018, срок действия: 11.10.2021; Calculate Linux Desktop свободно распространяемое ПО (https://www.calculate-linux.org/ru/), срок действия: бессрочно; МЅ Оffice №135 от 17.09.2007, срок действия: бессрочно; 7 Zip свободно распространяемое (https://www.7-zip.org/), срок действия: бессрочно; Маthcad Education - University Edition (200 раск) договор Д-1662-13 от		М, 2019 368 с (Прикладная математика, информатика, информ. технологии) Режим доступа: https://znanium.com/read?id=342122 - Загл. с экрана. 2. Савенкова, Н. П. Численные методы в математическом моделировании [Электронный ресурс] : учебное пособие / Н. П. Савенкова, О. Г. Проворова, А. Ю. Мокин. — 2-е изд., испр. и доп. — Москва : ИНФРА-М, 2017. — 176 с. — Режим доступа:		
22.11.2013, срок денствил. оссерочно	РЕАЛИЗАЦИИ ПРОГРАММЫ	В связи с обновлением материальнотехнического обеспечения п. Программное обеспечение и Интернетресурсы читать в новой редакции: МЅ Windows (подписка Imagine Premium) договор Д-1227-18 от 08.10.2018, срок действия: 11.10.2021; Саlculate Linux Desktop свободно распространяемое ПО (https://www.calculate-linux.org/ru/), срок действия: бессрочно; МЅ Office №135 от 17.09.2007, срок действия: бессрочно; 7 Zip свободно распространяемое (https://www.7-zip.org/), срок действия: бессрочно; бессрочно; Маthcad Education - University Edition	Протокол №	3ofn