Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г. И. Носова» Многопрофильный колледж

УТВЕРЖДАЮ Директор С.А. Махиовский 623» марти 2017 г.

КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ЕН.03 Физика

программы подготовки специалистов среднего звена по специальности СПО 44.02.06 Профессиональное обучение (по отраслям) Строительство и эксплуатация зданий и сооружений углубленной подготовки

ОДОБРЕНО:

Предметной

комиссией математических

естественнонаучных

дисциплин

Председатель / С.С.Корытникова/

Протокол №7 от 14.03.2017 г.

Метолической комиссией МпК Протокол №4 от 23.03.2017 г.

Разработчики:

Корнеева Н.В., преподаватель МпК ФГБОУ ВО «МГТУ» Оренбуркина М.В., преподаватель МпК ФГБОУ ВО «МГТУ»

Комплект контрольно-оценочных средств для текущего контроля и промежуточной аттестации по учебной дисциплине составлен на основе ФГОС СОО, утвержденного Приказом Министерства образования и науки Российской Федерации от 27.10. 2014 г. N 1386, рабочей программы учебной дисциплины «Физика»

общие положения

Учебная дисциплина Физика относится к математическому и общему естественнонаучному циклу.

В результате освоения дисциплины обучающийся *должен уметь*: Y_1 рассчитывать и измерять основные параметры простых электрических и магнитных цепей;

- V_2 применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ, практического использования физических знаний;
- ${
 m Y_3}$ использовать приобретенные знания и умения для решения практических задач повседневной жизни, рационального природопользования и охраны окружающей среды.

В результате освоения дисциплины обучающийся должен знать:

- 31 законы равновесия и перемещения тел;
- 32 физические процессы в электрических цепях;
- 33 методы преобразования электрической энергиИ.
- В результате освоения учебной дисциплины у обучающегося должны сформироваться *следующие профессиональные и общие компетенции:*
- ПК 4.2 Участвовать в разработке и внедрении технологических процессов
- ОК 1Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- OК 3. Оценивать риски и принимать решения в нестандартных ситуациях.
- ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- OK 5 Использовать информационно-коммуникационные технологии для совершенствования профессиональной деятельности.
- ОК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
- OК 9. Осуществлять профессиональную деятельность в условиях обновления её целей, содержания, смены технологий.

В качестве форм и методов текущего контроля используются домашние контрольные работы, практические работы, тестирование, самостоятельная работа, дискуссия, деловая игра, анализ конкретных ситуаций и др.

Промежуточная аттестация в форме дифференцированного зачета.

Оценка индивидуальных образовательных достижений по результатам текущего контроля успеваемости и промежуточной аттестации производится в соответствии с универсальной шкалой:

Процент	Качественная оценка индивидуальных		
результативности	образовательных достижений		
(правильных ответов)	балл (отметка)	вербальный аналог	
90 ÷ 100	5	отлично	
80 ÷ 89	4	хорошо	
70 ÷ 79	3	удовлетворительно	
менее 70	2	не удовлетворительно	

Таблица 1

Паспорт оценочных средств

		Контролир	Контроли	Наименов	ание
№	Контролируемые разделы (темы) учебной дисциплины*	уемые умения, знания	руемые компетен ции	оценочного с Текущий	редства Промежу- точная
	учеоной дисциплины			контроль	аттест- ция
1	Раздел 1. Основы механики Тема 1.13аконы равновесия тел. Законы движения.	31, У2, У3	OK 3, OK 4. OK 8 OK 9 IIK.4.2	Практическая работа, Лабораторная работа Тест Самостоятельна я работа	устный опрос/пр актическ ое задание
2	Раздел2. Основы молекулярно- кинетической теории	31, У2, У3	ОК 3, ОК 4. ОК 8 ОК 9 ПК.4.2	Лабораторная работа Самостоятельна я работа	
3	Раздел 3.Основы термодинамики Тема 3.1 Основы термодинамики	31, У2, У3	ОК 3, ОК 4. ОК 8 ОК 9 ПК.4.2	Самостоятельна я работа	
4	Раздел 4. Электродинамика Тема 4.1. Электростатика. Закон Кулона	31, Y1, Y2, Y3	OK.1, OK 3, OK 4, OK 8	Практическая работа Самостоятельна я работа	
5	Раздел 4. Электродинамика Тема 4.2. Электрическое поле. Его характеристики.	У1, У2, У3	ОК 3, ОК 4 ОК 8 ОК 9 ПК4.2	Практическая работа Самостоятельна я работа	
6	Раздел 4. Электродинамика Тема 4.3. Законы постоянного тока	32,Y1, Y2, Y3	OK.1, OK 3, OK 4, OK 8	Практическая работа Лабораторная работа	

				,	
			ПК 4.2		
7	Раздел 4. Электродинамика Тема 4.4 Электрический ток в различных средах	32,Y1, Y2, Y3	OK 3, OK 4, OK 8 OK 9	Самостоятельна я работа Тест	
8	Раздел 4. Электродинамика Тема 4.5. Магнитное поле	У1	OK 3, OK 4, OK 8 OK 9	Практическая работа Лабораторная работа Контрольная работа Самостоятельна я работа	
9	Раздел 4. Электродинамика Тема 4.6 Переменный ток	32, 33, Y1, Y2, Y3	OK 3, OK 4, OK 8 OK 9	Практическая работа Самостоятельна я работа Тест	
10	Тема 4.7 Понятие об устройстве индукционных генераторов, трансформаторов	32,Y1, Y2, Y3	OK 3, OK.1, OK 4 OK 8 OK 9 IIK,4.2	Лабораторная работа Самостоятельна я работа	
11	Раздел 4. Электродинамика Тема 4.8 Трёхфазные системы	32,Y1, Y2, Y3	OK 3, OK.1, OK 4 OK 8 OK 9 IIK,4.2	Практическая работа Самостоятельна я работа	
12	Раздел 5 Оптика Тема 5.1 Основные законы оптики	У2, У3	OK 3, OK 4, OK.5 OK 8 OK 9	Самостоятельна я работа Лабораторная работа	
13	Раздел 6 Физика атома и атомного ядра	У2, У3	OK 3, OK 4,	Самостоятельна я работа	

Тема 6.1 Развитие представлений о природе атома	OK 5 OK 8 OK 9	Лабораторная работа	

1. ВХОДНОЙ КОНТРОЛЬ

Спецификация

Входной контроль проводится с целью определения готовности обучающихся к освоению учебной дисциплины.

По результатам входного контроля планируется осуществление в дальнейшем дифференцированного и индивидуального подхода к обучающимся. При низком уровне знаний проводятся корректирующие курсы, дополнительные занятия, консультации.

Примеры заданий входного контроля

- 1. Единица измерения перемещения:
- а) Вт; б) В; в) кг; г) м.
- 2. За 10 мин равномерного движения поезд проехал путь 15 км. С какой скоростью двигался поезд?
 - а) 5 км/ч; б) 3 м/с; в) 25 м/с; г) 1,5 км/ч.
 - 3. Формула для определения ускорения тела имеет вид ...
 - a) a = v t;
 - б) $a = (v v_0) / t$;
 - B) a = v / t;
 - Γ) $a = t / (v v_0)$.
 - 4. Прибор для измерения силы называется ...
 - а) спидометр; б) вольтметр; в) динамометр; г) амперметр.
- 5. Формула для вычисления перемещения при равноускоренном движении имеет вид ...

Критерии оценки

За каждый правильный ответ – 1 балл.

За неправильный ответ – 0 баллов.

Процент	Качественная оценка индивидуальных		
результативности	образовательных достижений		
(правильных ответов)	балл (отметка) вербальный аналог		
90 ÷ 100	5	ОТЛИЧНО	
80 ÷ 89	4	хорошо	
70 ÷ 79	3	удовлетворительно	
менее 70	2	неудовлетворительно	

2. ТЕКУЩИЙ КОНТРОЛЬ

Текущий контроль успеваемости осуществляется холе повседневной учебной работы по курсу дисциплины. Данный вид стремление должен стимулировать К систематической самостоятельной работе ПО изучению vчебной дисциплины, учебных формированию универсальных действий. позволяет отслеживать положительные/отрицательные результаты и планировать предупреждающие/ корректирующие мероприятия.

Формы текущего контроля

2.1 ТЕСТОВЫЙ КОНТРОЛЬ

Спецификация

Тест входит в состав комплекта контрольно-оценочных средств и предназначается для текущего контроля и оценки умений и знаний, обучающихся 2 курса по специальности 44.02.06 «Профессиональное обучение (по отраслям) Строительство и эксплуатация зданий и сооружений»

Тест выполняется в письменном виде после изучения соответствующих разделов.

Время выполнения:

- подготовка 20 мин.;
- выполнение 65 мин.;
- оформление и сдача 5 мин.;
- всего 90 мин.

Раздел 1 Основы механики Примеры тестовых заданий для самоконтроля

- 1. Механическое движение. Материальная точка. Система отсчета.
- 2. Законы Ньютона.
- 3. Импульс тела.
- 4. Автомобиль массой 103 кг движется со скоростью 10 м/с. Чему равна кинетическая энергия автомобиля?
- 1) $10^5 \,\mathrm{Дж}$ 2) $10^4 \,\mathrm{Дж}$ 3) $5 \cdot 10^4 \,\mathrm{Дж}$ 4) $5 \cdot 10^3 \,\mathrm{Дж}$
- 5. Период колебаний пружинного маятника 1 с. Каким будет период колебаний, если массу груза маятника и жесткость пружины увеличить в 4 раза?
- 1) 1 c 2) 2 c 3) 4 c 4) 0,5 c

Раздел 4 Электродинамика Тема 4.4 «Электрический ток в различных средах»

Примеры тестовых заданий для самоконтроля

- 1. Определить массу выделившейся меди, если на ванну подавалось напряжение 6 В при электролизе раствора медного купороса и было затрачено 720 МДж энергии ($k=0.33\cdot10^{-3}\,\frac{k\Gamma}{K\pi}$)
- **A)** $\approx 18 \text{ kg.}$ **B)** $\approx 39.5 \text{ kg.}$ **C)** $\approx 36.5 \text{ kg.}$ **D)** $\approx 0.18 \text{ kg.}$ **E)** $\approx 42 \text{ kg.}$
- 2. Определить силу тока, проходящего через железный проводник с площадью поперечного сечения 20 мм 2 . Скорость дрейфа электронов составляет 0,02 мм/с, молярная масса железа М=0,0568кг/моль, плотность $^{7,9\cdot 10^3}$ кг/м 3 . Число электронов проводимости равно числу атомов в металле ($N_A=6,02\cdot 10^{-3}$ моль $^{-1}$)
 - **A)** 5,35 A **B)** 53,5 A **C)** 0,28 A **D)** 0,53 A **E)** 2,8 A
- 3. Связь между массой вещества, выделяющегося на электроде, и валентностью этого вешества
- А) масса пропорциональна валентности
- В) масса обратно пропорциональна валентности
- С) масса пропорциональна квадрату валентности
- **D**) не существует
- 4. Ток в водном растворе соли создается...
- А) только ионами
- В)электронами, ионами
- C) электронами и «дырками»
- **D**) только электронами
- E) ионами и «дырками»
- 5. Полупроводниковые материалы без примесей обладают...
- А) в равной степени электронной и дырочной проводимостью
- В) только электронной проводимостью
- С) только дырочной проводимостью
- **D**) ионной и электронной проводимостью
- 6. При электролизе воды через ванну проходит заряд 5000 Кл. Выделившейся кислород занимает объем 0,5 л и находится под давлением 130 кПа. При этом его температура равна:
- **A)** 300 К **B)** 371 К **C)** 351 К **D)** 603 К **E)** 361 К **Tema 4.6** «Переменный ток»

Примеры тестовых заданий для самоконтроля

- 1. Каков будет период электромагнитных колебаний колебательного контура, состоящего из конденсатора электроемкостью 1 н Φ и катушки индуктивностью 4 к Γ н?
- 1) $4\pi 10^{-2}$ c; 2) $4\pi 10^{-3}$ c; 3) $2\pi 10^{-6}$ c; 4) $\pi 10^{-7}$ c.
- 2. Расположите перечисленные ниже виды электромагнитных излучений в порядке увеличения длины волны.
- 1)видимый свет;

- 2)ультрафиолетовое излучение;
- 3)инфракрасное излучение;
- 4)радиоволны.
- 3. Какой ток бывает в технике постоянным?
- 1)Всякий ток, который с течением времени изменяет свою величину;
- 2)Ток, который с течением времени изменяет и величину и направление;
- 3)Ток, который с течением времени не меняет ни величину, ни направление.
- 4. Найдите соответствие между названиями физических величин и единицами их измерения

 1)энергия
 а)Ф

 2)частота
 б)Дж

 3)напряжение
 в)В

 4)электроемкость
 г)Гц

- 5.Как изменится период электромагнитных колебаний в контуре, если емкость конденсатора увеличить в 4 раза?
- 1)Уменьшится в 4 раза;
- 3) Увеличится в 4 раза;
- 2)Уменьшится в 2 раза;
- 4) Увеличится в 2 раза.

Критерии оценки:

За правильный ответ на вопросы или верное решение задачи выставляется положительная оценка — 1 балл.

За неправильный ответ на вопросы или неверное решение задачи выставляется отрицательная оценка -0 баллов.

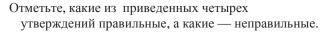
Процент результативности	Качественная оценка индивидуальных образовательных достижений	
(правильных ответов)	балл (отметка)	вербальный аналог
90 ÷ 100	5	отлично
80 ÷ 89	4	хорошо
60 ÷ 79	3	удовлетворительно
менее 60	2	неудовлетворительно

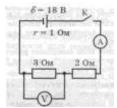
2.2 КОНТРОЛЬНЫЕ РАБОТЫ СПЕЦИФИКАЦИЯ

Контрольная работа выполняется на основании знаний, полученных на теоретических и практических занятиях, в результате самостоятельной работы. Защита выполненной работы может осуществляться как на теоретическом, так и на практическом занятии. Время выполнения: выполнение- 2 часа; сдача – 5 мин.

Раздел 4 Электродинамика Тема 4.5 Магнитное поле

Примеры заданий домашней контрольной работы


- 1. Какова индукция магнитного поля, в котором на проводнике с током силой 30A действует сила Ампера 300 мН? Поле и ток взаимно перпендикулярны. Длина активной части проводника 20см
- 2. Какова сила тока в проводнике, находящемся в однородном магнитном поле с индукцией 2 Тл, если длина активной части проводника 20см, сила, действующая на проводник 0,75H, а угол между направлением линий индукции и током 49⁰? (sin 49⁰ = 0,75).
- 3. Протон движется со скоростью 10Mм/с перпендикулярно однородному магнитному полю с индукцией 1,0Тл. Найдите силу Лоренца, действующую на протон.
- 4. Магнитный поток внутри контура, площадь поперечного сечения которого 10_{CM}^2 , равен $0,1_{\rm M}$ Вб. Найти индукцию поля внутри контура. Поле считать однородным.
- 5. Какую работу совершает ток 5A, если проводник с током пересечет магнитный поток, равный 10Вб?
- 6. В чем заключается правило буравчика?
- 7. Что называется силой Лоренца? Как ее определить и по какой формуле вычислить?
- 8. Почему магнитное поле называют вихревым? Изобразите вихревое магнитное поле.
- 9. Какие вещества называют диамагнитными?


10. Что такое точка Кюри?

Процент	Качественная оценка индивидуальных	
результативности	образовательных достижений	
(правильных ответов)	балл (отметка)	вербальный аналог
90 ÷ 100	5	отлично
80 ÷ 89	4	хорошо
70 ÷ 79	3	удовлетворительно
менее 70	2	неудовлетворительно

Раздел 4 Электродинамика Примеры заданий контрольной работы Часть 1

- 1. Отметьте, какие из следующих четырех утверждений касающиеся свойствэлектромагнитнойволны (ЭМВ) правильные, а какие неправильные.
- А. Для распространения ЭМВ нужна упругая среда.
- Б. Скорость ЭМВ в вакууме зависит от длины волны.
- В. Период волны обратно пропорционален ее частоте
- Г. Частота колебаний электрического поля ЭМВ в два раза выше частоты колебаний ее магнитного поля.
- 2. На рисунке приведена схема электрической цепи.

Часть 2 (по вариантам)

- 1. Что называют электромагнитными колебаниями?
- **2.** Запишите формулу максимальной энергии Электрического и магнитного поля колебательного контура
- **3.** Дифференциальное уравнение, описывающее свободные колебания в контуре (формула).
- **4.** Запишите зависимость от времени силы тока в контуре (i=i(t));
- **5.** Запишите зависимость мгновенной ЭДС от времени для переменного тока.

Критерии оценок

За каждый правильный ответ – 1 балл.

За неправильный ответ – 0 баллов.

Процент	Качественная оценка индивидуальных		
результативности	образовательных достижений		
(правильных ответов)	балл (отметка)	вербальный аналог	
90 ÷ 100	5	отлично	
80 ÷ 89	4	хорошо	
70 ÷ 79	3	удовлетворительно	
менее 70	2	неудовлетворительно	

2.3 САМОСТОЯТЕЛЬНАЯ РАБОТА

Самостоятельная работа входит в состав контрольнооценочных средств и предназначена для текущего контроля и оценки знаний и умений обучающихся .

Виды самостоятельных работ

- 1. Составление докладов, сообщений
- 2. Составление презентаций
- 3. Выполнение домашней контрольной работы

Общие критерии оценки самостоятельной работы

Самостоятельная работа студентов оценивается согласно следующим критериям:

Оценка «5» выставляется студенту, если:

- тематика работы соответствует заданной, студент показывает системные и полные знания и умения по данному вопросу;
- работа оформлена в соответствии с рекомендациями преподавателя;
 - объем работы соответствует заданному;
 - работа выполнена точно в сроки, указанные преподавателем.

Оценка «4» выставляется студенту, если:

- тематика работы соответствует заданной,
- студент допускает небольшие неточности или некоторые ошибки в данном вопросе;
 - работа оформлена с неточностями в оформлении;
 - объем работы соответствует заданному или чуть меньше;
- работа сдана в сроки, указанные преподавателем, или позже, но не более, чем на 1-2 дня.

Оценка «3» выставляется студенту, если:

- тематика работы соответствует заданной, но в работе отсутствуют значительные элементы по содержанию работы или тематика изложена нелогично, не четко представлено основное содержание вопроса;
 - работа оформлена с ошибками в оформлении;
 - объем работы значительно меньше заданного;
 - работа сдана с опозданием в сроках на 5-6 дней.

Оценка «2» выставляется студенту, если:

- не раскрыта основная тема работы;
- работа оформлена не в соответствии с требованиями преподавателя;
 - объем работы не соответствует заданному;
 - работа сдана с опозданием в сроках больше 7 дней.

2.3 ПРАКТИЧЕСКАЯ / ЛАБОРАТОРНАЯ РАБОТА

Практическая и лабораторная работа входит в состав контрольно-оценочных средств и предназначена для текущего контроля и оценки знаний и умений обучающихся

Разделы/темы	Темы практических и лабораторных работ		
Раздел 1 ОСНОВЫ МЕХ	ХАНИКИ		
Тема1.1Законы	Лабораторная работа № 1 Изучения условия		
равновесия тел.	равновесия рычага		
Законы движения	Лабораторная работа № 2 Определение КПД		
	при подъёме тела по наклонной плоскости		
	Практическая работа № 1Движение тел под		
	действием нескольких сил		
	Практическая работа № 23аконы статики		
Тема 2.1 Агрегатные	Лабораторная работа №3 Определение		
состояния вещества и	коэффициента поверхностного натяжения		
фазовые переходы	жидкости		
Раздел 4 ЭЛЕКТРОДИН			
Тема4.1	Практическая работа № 3 Закон Кулона.		
Электростатика. Закон	Взаимодействие зарядов		
Кулона			
Тема 4.2	Практическая работа №4Силовая		
Электрическое поле.	характеристика электрического поля.		
Его характеристики	Напряжённость		
	Практическая работа №5 Принцип		
	суперпозиции электрических полей		
	Практическая работа № 6 Потенциал. Разность		
	потенциалов. Работа электрического поля по		
	перемещению электрического заряда		
Тема 4.3 Законы	Лабораторная работа № 4 Смешанное		
постоянного тока	соединение проводников		
	Практическая работа № 7 Законы постоянного		
	тока		
	Практическая работа №8 Законы соединения		
	проводников		

-				
	Практическая работа № 9 Смешанное			
	(комбинированное) соединение проводников			
	Практическая работа №10 Работа тока.			
	Тепловое действие тока. Закон Джоуля-Ленца			
Тема4.5 Магнитное	Лабораторная работа №5Изучение явления			
поле	ЭМИ			
	O.M.			
	Практическая работа №11 Магнитное поле.			
	Силы, действующие в магнитном поле на			
	проводник и электрический заряд			
	Практическая работа № 12 ЭДС индукции,			
	самоиндукции			
Тема4.6 Переменный	Практическая работа № 13 Характеристики			
ток	переменного тока			
	Практическая работа № 14 Сопротивление в			
	1 1			
	цепи переменного тока			
	Практическая работа№ 15 Колебания в сети			
T 47 H	переменного тока			
Тема4.7 Понятие об	Лабораторная работа №6Изучение устройства			
устройстве	и принципа работы генератора переменного			
индукционных	тока			
генераторов,				
трансформаторов				
Тема4.8 Трехфазные	Практическая работа №16 Трехфазный ток			
системы				
Тема 5.1 Основные	Лабораторная работа № 7 Определение			
законы оптики	фокусного расстояния собирающей линзы			
Тема 6.1Развитие	Лабораторная работа №8 Изучение треков			
представлений о	заряженных частиц по готовым фотографиям			
природе атома				

Критерии оценки лабораторных работ

Оценка «отпично» ставится, если студент:

- выполнил работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений;
- б) в представленном отчете правильно и аккуратно выполнил все записи, таблицу, вычисления и сделал выводы;
- в) правильно выполнил анализ погрешностей;
- г) соблюдал требования безопасности труда;
- д) ответил на контрольные вопросы (устно или письменно).

Оценка «*хорошо*» ставится в том случае, если выполнены требования к оценке «отлично», но:

- а) опыт проводился в условиях, не обеспечивающих достаточной точности измерений;
- б) допущено два-три недочета, или не более одной негрубой ошибки и одного недочета;
- в) ответил на контрольные вопросы (устно или письменно).

Оценка *«удовлетворительно»* ставится, если работа выполнена не полностью, но объем выполненной части таков, что позволяет получить правильные результаты и выводы, или если в ходе проведения опыта и измерений были допущены следующие ошибки:

- а) опыт проводился в нерациональных условиях, что привело к получению результатов с большей погрешностью;
- б) или в отчете были допущены в общей сложности не более двух ошибок (в записях единиц, измерениях, в вычислениях, таблицах, анализе погрешностей и т.д.), не принципиального для данной работы характера, но повлиявших на результат выполнения;
- в) или не выполнен совсем или выполнен неверно анализ погрешностей;
- L) или работа выполнена не полностью. однако объем выполненной части получить таков, что позволяет основным, правильные результаты выводы ПО принципиально важным задачам работы;
- д) частично ответил на контрольные вопросы (устно или письменно).

Оценка *«неудовлетворительно»* ставится в том случае, если:

а) работа выполнена не полностью, и объем выполненной части

- работы не позволяет сделать правильных выводов;
- б) или опыты, измерения, вычисления, наблюдения производились неправильно;
- в) не ответил на контрольные вопросы.

Критерии оценки практических работ

Оценка **«отлично»** выставляется, если выполнены все задания, допущены 1-2 недочеты, исправленные по требованию преподавателя.

Оценка «**хорошо**» выставляется, если работа выполнена в полном объеме, допущены одна ошибка или более двух недочетов при выполнении задания, исправленные по замечанию преподавателя.

Оценка «удовлетворительно» выставляется, если задания выполнены не в полном объеме, допущены 1-2 ошибки при выполнении заданий но продемонстрированы умения, достаточные для дальнейшего усвоения программного материала.

Оценка «**неудовлетворительно**» выставляется, если выполнено менее половины заданий, не продемонстрированы умения, достаточные для дальнейшего усвоения программного материала

3. ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ

Промежуточная аттестация обучающихся по учебной дисциплине, осуществляется по завершении изучения данной дисциплины и позволяет определить качество и уровень ее освоения. Предметом оценки освоения учебной дисциплины являются умения и знания.

Спецификация

Промежуточная аттестация форме проводится в дифференцированного зачета.

Обучающиеся устно отвечают на 1 теоретический вопрос и письменно выполняют 1 практическое задание.

Время выполнения: 40 минут

Теоретические вопросы			
Контрольные вопросы	Тема		
Способы описания движения	Раздел 1. Законы		
материальной точки. Тангенциальное и	равновесия тел. Законы		
нормальное ускорения. Уравнение	движения.		
движения.			
Виды движения: равномерное,			
равноускоренное, свободное падение тел,			
движение тела под углом к горизонту.			
Законы Ньютона. Принцип суперпозиции			
сил.			
Виды сил в механике. Силы упругости.			
Сила всемирного тяготения. Вес тела.			
Закон Гука. Сила Архимеда.			
Импульс тела. Импульс силы. Закон			
сохранения импульса. Работа силы.			
Потенциальная энергия тела, поднятого			
на высоту и упруго деформированной			
пружины. Мощность. Закон сохранения			
энергии.			
Агрегатные состояния вещества и	Раздел 2. Основы		
фазовые переходы. Точка росы и её учёт	молекулярно-кинетической		
в строительстве. Расчёт высоты подъёма	теории Тема 2.1		
жидкости в капиллярах.	Агрегатные состояния		
	вещества и фазовые		
	переходы.		
Основные тепловые процессы	Раздел 3. Основы		
(обратимые и необратимые). Тепловое	термодинамики. Тема 3.1.		
расширение тел., его виды.	Основы термодинамики		
Закон Кулона. Электрическое поле.	Раздел 4. Электродинамика		

Цопраженності попа топенного сорало	Тама 4.1. Энактростатика
Напряженность поля точечного заряда, бесконечной плоскости. заряженной	Тема 4.1. Электростатика.
,r	Закон Кулона.
суперпозиции полей.	D 4 D
Электрическая емкость. Энергия	Раздел 4. Электродинамика
заряженного конденсатора. Объемная	Тема 4.2.Электрическое
плотность энергии.	поле. Его характеристики.
Сила тока и плотность тока. Зависимость	Раздел 4. Электродинамика
сопротивления проводника от	Тема 4.3.Законы
температуры. Сверхпроводимость.	постоянного тока
Соединение источников тока. Правила	
Кирхгофа.	
Вектор магнитной индукции и	Раздел 4. Электродинамика
напряженность. Магнитное поле прямого,	Тема 4.5. Магнитное поле.
кругового тока и соленоида. Закон	
Ампера. Сила Лоренца. Ускорители	
заряженных частиц.	
Колебательное движение. Гармонические	Раздел 4. Электродинамика
колебания и их характеристики.	Тема 4.6 Переменный ток
Гармонический осциллятор.	
Математический и пружинный маятник.	
Скорость колебания. Ускорение.	
Переменный ток и его уравнение.	
Превращение энергии в колебательном	
контуре. Формула Томсона.	
Электрический резонанс	
Основные законы геометрической	Раздел 5. Оптика Тема 5.1.
оптики. Законы фотометрии.	Основные законы оптики.
Излучение атома водорода. Квантовый	Раздел 6. Физика атома и
генератор. Приборы для регистрации	атомного ядра
заряженных частиц.	Тема 6.1. Развитие
Элементарные частицы. Радиационный	представлений о природе
пояс Земли. Защита от космического	атома
излучения.	
11501 1 10111111.	

Практические задания

No	Практические задания	Тема
1	Автомобиль массой 6 тонн трогается с места с	Раздел 1. Законы
	ускорением 0.5 м/ c^2 . Какую силу тяги	равновесия тел.
	развивает его двигатель, если коэффициент	Законы движения.
	сопротивления движению равен 0,05?	

2	На веревке висит груз массой 10 кг.	
1 ~	Определить силу натяжения верёвки при	
	подъёме груза с ускорением 1,5 м/с ² .	
3	Через подвижный блок перекинута нить, к	
	концу которой подвешены грузы массами 3 и	
	1,9 кг соответственно. Найти ускорение при	
	движении грузов и силу натяжения нити.	
	Трение в блоке отсутствует, массой нити и	
	блока пренебречь.	
4	Движение тела задано уравнением V=4+4t.	
	Определить начальную скорость и ускорение.	
5	Движение тела задано уравнением: x(t)=10+4t-	
	t ² . Определите начальную координату,	
	начальную скорость и ускорение при	
	движении.	
6	Два корабля массой 30 тонн каждый стоят на	
	рейде на расстоянии 0,5 км один от другого.	
	Какова сила притяжения между ними?	
7	Определить массу каждого из двух	
	одинаковых автомобилей, если на расстоянии	
	0,1 км на них действует сила притяжения 6,67	
	мН.	
8	Электровоз при движении по	
	горизонтальному пути развивает силу тяги	
	$150 \cdot 10^3$ Н. На участке пути длиной 600 м	
	скорость поезда возросла с 32,4 до 54 км/ч.	
	Определите силу сопротивления движению	
	поезда, если его масса равна 10000 ³ кг.	
9	Определить массу кислорода, находящегося в	Раздел 2. Основы
7	баллоне вместимостью 1л под давлением	молекулярно-
		, ,
	$0,093$ МПа при температуре 17^{0} С?	кинетической
10	Определить абсолютную влажность воздуха,	теории
	если его температура 15°C, относительная	Тема 2.1
	влажность воздуха 80%.	Агрегатные
		состояния
		вещества и
		фазовые переходы
11	В железный котёл массой 10 кг налита вода	Раздел 3. Основы
	массой 20 кг. Какое количество теплоты	термодинамики
	нужно передать котлу с водой при изменении	Тема 3.1. Основы
	их температуры от 10 до 100 °C?	термодинамики
12	Какой должна быть температура нагревателя	

	для того, чтобы в принципе стало возможным достижение значения КПД тепловой машины 70%, если температура холодильника 27°C.	
13	Во сколько раз надо изменить расстояние между зарядами при увеличении одного из них в 4 раза, чтобы сила взаимодействия осталась прежней?	Раздел 4. Электродинамика Тема 4.1. Электростатика.
14	Во сколько раз надо изменить величину каждого из двух одинаковых зарядов, чтобы при погружении их в воду сила взаимодействия на том же расстоянии между ними была такая же, как в воздухе? ($\varepsilon_{\text{возд}}=1$, $\varepsilon_{\text{воды}}=81$)	Закон Кулона.
15	Во сколько раз сила электрического отталкивания между двумя электронами больше силы их гравитационного притяжения друг к другу? (Отв.: в $4.2 \cdot 10^{-42} pas$).	
16	Шесть резисторов по два последовательно соединили в 3 параллельные ветви. Сопротивление каждого резистора 6 Ом. Найти общее сопротивление всех резисторов.	Раздел 4. Электродинамика Тема 4.3. Законы
17	Шесть резисторов по 3 последовательно соединили в 2 параллельные ветви. Определить общее сопротивление всех резисторов, если сопротивление каждого резистора 30 Ом.	постоянного тока
18	Работа выхода электрона для вольфрамовой нити равна 4,5 эВ. Какую минимальную скорость должны иметь электроны, способные выйти за пределы металла? $(m_e = 9.1 \cdot 10^{-31} \text{кг}).$	Раздел 4. Электродинамика Тема 4.4 Электрический ток в различных средах.
19	При серебрении изделия на катоде за 30 минут отложилось серебро массой 4,55 грамм. Определите силу тока при электролизе.	средих.
20	Прямолинейный проводник длиной 10 см находится в однородном магнитном поле с индукцией 4 Тл и расположен под углом 30° к вектору магнитной индукции. Чему равна сила, действующая на проводник со стороны магнитного поля, если сила тока в проводнике 3 А?	Раздел 4. Электродинамика Тема 4.5. Магнитное поле.

		1
21	Электрон, пройдя ускоряющую разность потенциалов U=400B, попал в однородное магнитное поле с индукцией B=1,5 Тл. Определить: 1) радиус R кривизны траектории; 2) частоту вращения электрона в магнитном поле. Вектор скорости электрона перпендикулярен линиям индукции.	
22	Определить период колебаний контура, состоящего из конденсатора ёмкостью 4 мкФ и катушки индуктивностью 9 Гн.	Раздел 4. Электродинамика Тема 4.6
23	Каков диапазон частот собственных колебаний в контуре, если его индуктивность можно изменять в пределах от 0,1 до 10 мкГн, а емкость — в пределах от 50 до 5000 пФ?	Переменный ток
24	Колебательный контур состоит из конденсатора емкостью $C = 1$ мк Φ и катушки индуктивностью $L = 0.01$ Гн. Вычислить период колебаний в контуре. Можно ли возникшие колебания считать высокочастотными?	
25	Понижающий трансформатор с коэффициентом трансформации 10 включен в сеть с напряжением 127 В.Сопротивление вторичной обмотки 2 Ом, сила тока 3 А. Определить напряжение на клеммах вторичной обмотки. Потерями энергии в первичной обмотке пренебречь.	
26	Луч падает на поверхность воды под углом 40° . Под каким углом должен упасть луч на поверхность стекла, чтобы угол преломления оказался таким же? (Отв.: $\alpha' = 52^{\circ}$).	Раздел 5. Оптика Тема 5.1. Основные законы оптики.
27	Найти разность скоростей света в воде и стекле, если $n_{воды}$ =1,33, $n_{cтек}$ =1,5.	
28	Период полураспада радия $T=1600$ лет. Определить, сколько молекул вещества N останется через $t=3200$ лет, если $N_0=10^{20}$	Раздел 6. Физика атома и атомного ядра
29	Написать пропущенную частицу в уравнении следующих ядерных реакций: a) ${}^9_4Be + ? \rightarrow {}^{12}_6C + {}^1_0n$; 6) ${}^7_3Li + ? \rightarrow {}^{10}_5B + {}^1_0n$;	Тема 6.1. Развитие представлений о природе атома

- B) ${}_{5}^{11}B + {}_{1}^{1}H \rightarrow {}_{4}^{8}Be + ?$;
- $\Gamma) \stackrel{235}{_{92}}U + {}_{0}^{1}n \rightarrow {}_{40}^{95}Zn + ? + 3{}_{0}^{1}n$

Критерии оценки

Оценка "отлично" выставляется студенту, обнаружившему систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой. Студент изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику. Показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания. Усвоил взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии. Отвечал самостоятельно без наводящих вопросов преподавателя. Возможны одна - две неточности при освещении второстепенных вопросов или в выкладках, которые студент легко исправил по замечанию преподавателя.

Оценка "хорошо" выставляется студенту, обнаружившему полное знание учебно-программного материала, успешно выполняющему предусмотренные в программе задания, показавшему систематический характер знаний по дисциплине и способному к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности. В изложении могут быть допущены небольшие пробелы, не исказившие математическое содержание ответа; допущены один — два недочета при освещении основного содержания ответа, исправленные по замечанию преподавателя; допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные по замечанию преподавателя.

"удовлетворительно" заслуживает студент, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по справляющийся выполнением специальности, c предусмотренных программой. Неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями математической подготовке учащихся»); имелись затруднения или допущены ошибки определении понятий, В использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов преподавателя; студент не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме; при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

"неудовлетворительно" выставляется обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. He раскрыто основное учебного материала; обнаружено непонимание студентом большей или наиболее важной части учебного материала; допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов преподавателя.

входной тест

Вариант 1

- 1. Единица измерения перемещения:
- а) Вт; б) В; в) кг; г) м.
- 2. За 10 мин равномерного движения поезд проехал путь 15 км. С какой скоростью двигался поезд?
 - а) 5 км/ч; б) 3 м/с; в) 25 м/с; г) 1,5 км/ч.
 - 3. Формула для определения ускорения тела имеет вид ...
 - a) a = v t; 6) $a = (v v_0) / t$; B) a = v / t; Γ) $a = t / (v v_0)$.
 - 4. Прибор для измерения силы называется ...
 - а) спидометр; б) вольтметр; в) динамометр; г) амперметр.
- 5. Формула для вычисления перемещения при равноускоренном движении имеет вид ...
 - a) $s = at^2/2$; 6) s = vt; B) $s = v_0t + at^2/2$; r) $s = v_0 + at^2/2$.
 - 6. Формула закона всемирного тяготения имеет вид ...
 - a) $F = G m_1 m_2 / R$;
 - б) $F = G m_1 m_2 R$;
 - B) $F = G m_1 m_2 / R^2$;
 - Γ) $F = G m_1 m_2 R^2$.
- 7. Груз на пружине совершает колебания (рис. 1). Определите характеристики колебаний: амплитуду A, период T.
 - a) A = 8 cm, T = 20 c;
 - б) A = 20 см, T = 8 с;
 - B) A = 40 cm, T = 8 c;
 - Γ) A = 20 cm, T = 4 c.

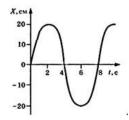


Рис. 1.

- 8. Как изменится интенсивность испарения жидкости при её охлаждении?
 - а) не изменится;
 - б) увеличится;
 - в) уменьшится;
 - г) для ответа на вопрос недостаточно данных.
- 9. На рисунке 2 изображено преломление света на границе двух сред. Какая среда является оптически более плотной?

Рис 2

- а) первая;
- б) вторая;
- в) их оптические плотности одинаковы;
- г) для решения задачи недостаточно данных.

- 10. При изменении магнитного потока, пронизывающего замкнутый контур, в нём возникает электрический ток. Это явление называется ...
 - а) электростатической индукцией;
 - б) индуктивностью;
 - в) самоиндукцией;
 - г) электромагнитной индукцией.

Вариант 2

- 1. Единица измерения силы:
- а) Па; б) $\kappa \Gamma / M^3$; в) H; г) В.
- 2. За 10 мин равномерного движения машина прошла 30 км. Вычислите скорость её движения.
 - а) 4 км/ч; б) 25 м/с; в) 5 км/ч; г) 50 м/с.
 - 3. Второй закон Ньютона:
 - a) a = m / F; 6) a = m F; B) F = m / a; Γ) F = m a.
 - 4. Прибор для измерения массы тела:
 - а) весы; б) термометр; в) амперметр; г) динамометр.
- 5. Координата тела, движущегося равноускоренно, определяется по формуле:
 - a) $x = x_0 + v_0 t + a t^2 / 2$;
 - $6) x = v t + a t^2 / 2;$
 - \mathbf{B}) x = v t;
 - $\Gamma) x = x_0 + v_0 t.$
 - 6. Формула закона Ома имеет вид ...
 - a) I = q/t; 6) U = A/q; B) I = U/R; r) $A = I^2 R t$.
- 7. Груз на пружине совершает колебания (рис. 3). Определите характеристики колебаний: амплитуду A, период T.
 - a) A = 10 cm, T = 4 c;
 - б) A = 20 см, T = 2 с;
 - в) A = 10 см, T = 2 с;
 - Γ) A = 20 cm, T = 4 c.

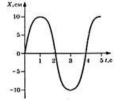


Рис. 3.

- 8. Какое физическое явление лежит в основе работы спиртового термометра?
 - а) расширение жидкости при нагревании;
 - б) испарение жидкости при нагревании;
 - в) излучение при нагревании;
 - г) диффузия.
- 9. На рисунке 4 изображено преломление света на границе двух сред. Какая среда является оптически более плотной?
 - а) первая;
 - б) вторая;

- в) их оптические плотности одинаковы;
- г) для решения задачи не хватает данных.

Рис. 4

- 10. Магнитные свойства электрической цепи характеризует величина, называемая...
 - а) самоиндукцией;
 - б) магнитной индукцией;
 - в) индуктивностью;
 - г) электромагнитной индукцией.

Критерии оценки

За каждый правильный ответ – 1 балл.

За неправильный ответ – 0 баллов.

Процент	Качественная оценка индивидуальных	
результативности	образовательных достижений	
(правильных ответов)	балл (отметка) вербальный анал	
90 ÷ 100	5	отлично
80 ÷ 89	4	хорошо
70 ÷ 79	3	удовлетворительно
менее 70	2	неудовлетворительно

ТЕСТОВЫЙ КОНТРОЛЬ

Раздел 1 Основы механики

Вариант 1

1. Механическое движение.	Материальная точ	чка. Система отсчета.
---------------------------	------------------	-----------------------

- 2. Законы Ньютона.
- 3. Импульс тела.
- 4. Автомобиль массой 103 кг движется со скоростью 10 м/с. Чему равна кинетическая энергия автомобиля?
- 1) $10^5 \,\mathrm{Дж}$ 2) $10^4 \,\mathrm{Дж}$ 3) $5 \cdot 10^4 \,\mathrm{Дж}$ 4) $5 \cdot 10^3 \,\mathrm{Дж}$
- 5. Период колебаний пружинного маятника 1 с. Каким будет период колебаний, если массу груза маятника и жесткость пружины увеличить в 4 раза?
- 1) 1 c 2) 2 c 3) 4 c 4) 0,5 c

Вариант 2

- 1. Характеристика равномерного движения.
- 2. Закон Гука.
- 3. Определение потенциальной и кинетической энергии.
- 4. Два тела движутся по взаимно перпендикулярным пересекающимся прямым. Модуль импульса первого тела p1 = 4 кг·м/с, а второго тела p2 = 3 кг·м/с. Чему равен модуль импульса системы этих тел после их абсолютно неупругого удара?
 - 1) 1 кг·м/с 2) 4 кг·м/с 3) 5 кг·м/с 4) 7 кг·м/с
- Легковой автомобиль и грузовик движутся со скоростями v1 = 108 км/ч и v2 = 54 км/ч. Масса легкового автомобиля m = 1000 кг. Какова масса грузовика, если отношение импульса грузовика к импульсу легкового автомобиля равно 1,5?

	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		• • • • • • • • • • • • • • • • • • •				
1)	3000 кг	2)	4500 кг	3)	1500 кг	4)	1000 кг

Вариант 3

- 1. Характеристика равнопеременного движения.
- 2. Явление инерции и инертности.
- 3. Закон сохранения полной механической энергии системы.
- 4. Тело равномерно движется по плоскости. Сила давления тела на плоскость равна 20 H, сила трения 5 H. Коэффициент трения скольжения равен

1)	0,8	2)	0,25	3)	0,75	4)	0,2

5. Если и длину математического маятника, и массу его груза увеличить в 4 раза, то период свободных гармонических колебаний маятника

1)	увеличится в 2 раза
----	---------------------

2)	увеличится в 4 раза
3)	уменьшится в 4 раза
4)	уменьшится в 2 раза

Вариант 4

- 1. Понятия массы и силы.
- 2. Сила тяжести и вес тела.
- 3. Определение волны и ее параметров.
- 4. На рисунке представлен график зависимости скорости υ автомобиля от времени t. Найдите путь, пройденный автомобилем за 5 с.
 - 1) 0 m 2) 20 m 3) 30 m 4) 35 m
- 5. Санки массой m тянут в гору с постоянной скоростью. Когда санки поднимутся на высоту h от первоначального положения, их полная механическая энергия

1)	не изменится
2)	увеличится на mgh
3)	будет неизвестна, так как не задан наклон горки
4)	будет неизвестна, так как не задан коэффициент трения

Критерии оценки

Баллы суммируются по количеству правильных ответов, что и соответствует получаемой оценке.

Раздел 2 Электродинамика Тема 4.4 «Электрический ток в различных средах» Вариант 1

- 1. Определить массу выделившейся меди, если на ванну подавалось напряжение 6 В при электролизе раствора медного купороса и было затрачено 720 МДж энергии ($k=0,33\cdot 10^{-6}\ \frac{k\Gamma}{K\pi}$)
- **A)** $\approx 18 \text{ Kr. } \mathbf{B}) \approx 39.5 \text{ Kr. } \mathbf{C}) \approx 36.5 \text{ Kr. } \mathbf{D}) \approx 0.18 \text{ Kr. } \mathbf{E}) \approx 42 \text{ Kr.}$
- 2. Определить силу тока, проходящего через железный проводник с площадью поперечного сечения 20 мм². Скорость дрейфа электронов составляет 0,02 мм/с, молярная масса железа M=0,0568 кг/моль, плотность 7900 кг/м³. Число электронов проводимости равно числу атомов в металле ($N_A = 6.02 \cdot 10^{23}$ моль¹)
- **A)** 5,35 A **B)** 53,5 A **C)** 0,28 A **D)** 0,53 A **E)** 2,8 A
- 3. Связь между массой вещества, выделяющегося на электроде, и валентностью этого вещества
- А) масса пропорциональна валентности

- В) масса обратно пропорциональна валентности
- С) масса пропорциональна квадрату валентности
- **D**) не существует
- 4. Ток в водном растворе соли создается...
- **А**) только ионами
- В)электронами, ионами
- C) электронами и «дырками»
- **D**) только электронами
- E) ионами и «дырками»
- 5. Полупроводниковые материалы без примесей обладают...
- А) в равной степени электронной и дырочной проводимостью
- В) только электронной проводимостью
- С) только дырочной проводимостью
- **D**) ионной и электронной проводимостью
- 6. При электролизе воды через ванну проходит заряд 5000 Кл. Выделившейся кислород занимает объем 0,5 л и находится под давлением 130 кПа. При этом его температура равна

$$(k = {}^{0},083 \cdot 10^{-6} \text{ кг/Кл; } M = 0,032 \text{ кг/моль; } R = 8,31 \xrightarrow{\text{моль } \text{к}})$$

A) 300 K **B)** 371 K **C)** 351 K **D)** 603 K **E)** 361 K

Вариант 2

- 1. Какая из частиц является электрически нейтральной?
- а) протон б) нейтрон в) электрон
- 2. В каких единицах измеряется электрический заряд?
- а) е б) Кл в) Дж г) Дж/кг
- 3. Чему равен численно элементарный электрический заряд?
- а) $3.2*10^{-19}$ Кл б) $1.6*10^{-19}$ Кл в) $1.6*10^{19}$ Кл
- 4. Заряды могут передаваться от одного тела к другому при взаимодействии. Такой процесс называется...
- а) электрическим током б) электризацией в) трением г) передачей
- 5. Выразите из закона Кулона квадрат расстояния между двумя точечными зарядами

a)
$$r^2 = \frac{F \mathcal{E}}{k|q_1||q_2|}$$
 $r^2 = \frac{k|q|^2}{F \mathcal{E}}$ B) $r^2 = \frac{k\mathcal{E}}{F|q|^2}$

- 6. Происходит ли перенос вещества при прохождении тока через жидкость?
- а) да б) нет в) иногда да, иногда нет

Тема 4.6 «Переменный ток»

Вариант 1

2. Расположите перечисленные ниже виды электромагнитных излучений в

3) $2\pi 10^{-6}$ c; 4) $\pi 10^{-7}$ c.

1. Каков будет период электромагнитных колебаний колебательного контура, состоящего из конденсатора электроемкостью 1нФ и

катушки индуктивностью 4 к Гн?

2)ультрафиолетовое излучение; 3)инфракрасное излучение;

2) $4\pi 10^{-3}$ c;

порядке увеличения длины волны.

1) $4\pi 10^{-2}$ c;

1)видимый свет;

4)радиоволны.

3. Какой ток бывает в технике постоянным?				
1)Всякий ток, который с течением времени изменяет свою величину;				
2)Ток, который с течением времени изменяет и величину и				
направление;				
3)Ток, который с течением времени не меняет ни величину, ни направление.				
4.Найдите соответствие между названиями физических величин и				
единицами их измерения				
 энергия а)Ф 				
2)частота б)Дж				
3)напряжение в)В				
4)электроемкость г)Гц				
5.Как изменится период электромагнитных колебаний в контуре, если				
емкость конденсатора увеличить в 4 раза?				
1)Уменьшится в 4 раза;				
3) Увеличится в 4 раза;				
2)Уменьшится в 2 раза;				
4) Увеличится в 2 раза.				
6. При каких условиях движущийся электрический заряд излучает				
электромагнитные волны?				
1)Только при гармонических колебаниях;				
2)Только при движении по окружности;				
3)При любом движении с большой скоростью;				
4)При любом движении с ускорением.				
7. Радиостанция работает на частоте 100 МГц. Найдите соответствующую				
длину волны.				
$1)0,3m;$ $2)0,03m;$ $3)3m;$ $4) 1m;$ $5)3 10^3m.$				
8. Какое из приведенных ниже выражений определяет индуктивное				
сопротивление катушки индуктивностью L в цепи переменного тока				
частотой ω?				
1)1/ ω L; 2) ω L; 3) ω /L; 4) \sqrt{LC}				

Вариант 2 1. Каков будет период электромагнитных колебаний колебательного

контура, состоящего из конденсатора электроемкостью 1пФ и
катушки индуктивностью 4 м Γ н? 1)4 π 10 ⁻² c; 2) 4 π 10 ⁻³ c; 3) 2 π 10 ⁻⁶ c; 4)2 π 10 ⁻⁷ c.
2. Расположите перечисленные ниже виды электромагнитных
излучений в порядке уменьшения длины волны.
1)видимый свет;
2)ультрафиолетовое излучение;
3)инфракрасное излучение;
4)радиоволны.
3. Какой ток бывает в технике переменным?
1)Всякий ток, который с течением времени изменяет свою величину;
2)Ток, который с течением времени изменяет и величину и
направление;
3)Ток, который с течением времени не меняет ни величину, ни
направление.
4. Найдите соответствие между названиями физических величин и
единицами их измерения
1)работа а)с
2)период б)А
3)сила тока в)Дж
4)индуктивность г)Гн.
5. Существует ли такое движение электрического заряда, при котором
он не излучает электромагнитные волны?
1)Такого движения нет;
2)Существует, это равномерное прямолинейное движение;
3)Существует, это равномерное примолипенное движение,
4)Существует, это движение с ускорением.
6.Вычислите длину электромагнитной волны, распространяющейся в
воздухе с периодом 0,03мкс. 1)0,3м; 2)0,003м; 3)9м; 4) 1м; 5)3 10 ³ м.
7. Как изменится период электромагнитных колебаний в контуре, если
емкость конденсатора уменьшить в 4 раза?
1)Уменьшится в 4 раза;
3)Увеличится в 4 раза;
2)Уменьшится в 2 раза;
4)Увеличится в 2 раза.
8. Какое из приведенных ниже выражений определяет емкостное
сопротивление конденсатора электроемкостью С в цепи
переменного тока частотой ω?
1) $\sqrt{\text{LC}}$; 2) C/) ω ; 3) ω /C; 4) ω C; 5) 1/ ω C.

КОНТРОЛЬНЫЕ РАБОТЫ

Раздел 4 Электродинамика Домашняя контрольная работа по теме «Магнитное поле» Вариант 1

- 1) Какова индукция магнитного поля, в котором на проводнике с током силой 30A действует сила Ампера 300 мН? Поле и ток взаимно перпендикулярны. Длина активной части проводника 20см.
- 2) Какова сила тока в проводнике, находящемся в однородном магнитном поле с индукцией 2 Тл, если длина активной части проводника 20см, сила, действующая на проводник 0,75H, а угол между направлением линий индукции и током 49⁰? (sin 49⁰ = 0,75).
- 3) Протон движется со скоростью 10Mm/с перпендикулярно однородному магнитному полю с индукцией 1,0Tл. Найдите силу Лоренца, действующую на протон.
- 4) Магнитный поток внутри контура, площадь поперечного сечения которого $10cm^2$, равен 0,1мВб. Найти индукцию поля внутри контура. Поле считать однородным.
- 5) Какую работу совершает ток 5A, если проводник с током пересечет магнитный поток, равный 10В6?
- 6) В чем заключается правило буравчика?
- Что называется силой Лоренца? Как ее определить и по какой формуле вычислить?
- 8) Почему магнитное поле называют вихревым? Изобразите вихревое магнитное поле.
- 9) Какие вещества называют диамагнитными?
- 10) Что такое точка Кюри?

Вариант № 2

- На провод обмотки якоря электродвигателя при силе тока 50А действует сила Ампера 8Н. Определите магнитную индукцию в месте приложения провода; если длина провода 20см. Поле и ток взаимно перпендикулярны.
- 2) Какая сила действует на проводник длиной 10см в однородном магнитном поле с индукцией 2,6 Тл, если ток в проводнике 12A, а угол между направлением тока и линиями индукции 30°?
- 3) Какая сила действует на электрон, летящий в однородном магнитном поле с индукцией 1Тл перпендикулярно линиям магнитной индукции со скоростью 30 Мм/с.
- 4) Магнитный поток внутри контура, площадь поперечного сечения которого $50cm^2$, равен 0,5мВб. Найти индукцию поля внутри контура. Поле считать однородным.

- 5) Какую работу совершает ток 4A, если проводник с током пересечет магнитный поток, равный 1Вб?
- 6) От каких двух условий зависит направление движений проводника с током в магнитном поле?
- 7) Что называется магнитной индукцией?
- 8) Как можно определить направление силы Ампера?
- 9) Что называется магнитным потоком?
- 10) Какие вещества называют ферромагнетиками?

Вариант № 3

- 1) Определите силу, действующую на проводник длиной 0,5м при токе силой 2A в магнитном поле с индукцией 0,5 Тл, если угол между направлением вектора индукции поля и тока составляет 30⁰?
- Проводник с силой тока 5А помещен в однородное магнитное поле с индукцией 10 мкТл. Угол между направлениями тока и поля 60°.
 Определите длину проводника, если поле действует на него с силой 2мН.
- 3) Протон движется со скоростью 10 Мм/с перпендикулярно однородному магнитному полю с индукцией 10м Тл. Найдите силу Лоренца, действующую на протон.
- 4) Магнитный поток внутри контура, площадь поперечного сечения которого 70*см*², равен 0,7мВб. Найти индукцию поля внутри контура. Поле считать однородным.
- 5) Какую работу совершает ток 4A, если проводник с током пересечет магнитный поток, равный 10Вб?
- 6) Как определить направление силы Лоренца?
- 7) Что такое домены?
- 8) Что такое точка Кюри?
- 9) Что называется магнитным потоком?
- 10) Какие вещества являются димагнетиками?

Вариант № 4

- 1) В однородном магнитном поле с индукцией 0,1 Тл перпендикулярно линиям индукции находится проводник длиной 70см, по которому течет ток силой 70А. Определите силу, действующую на проводник.
- 2) В однородном магнитном поле с индукцией 0,8 Тл на проводник с током в 30A, длина активной части которого 10см, действует сила 1,5H. Под каким углом к вектору индукции расположен проводник?

- 3) Протон движется со скоростью 15Mm/с перпендикулярно однородному магнитному полю с индукцией 10 Тл. Найдите силу Лоренца, действующую на протон.
- 4) Магнитный поток внутри контура, площадь поперечного сечения которого $80cm^2$, равен 0,8мВб. Найти индукцию поля внутри контура. Поле считать однородным.
- 5) Какую работу совершает ток 4А, если проводник с током пересечет магнитный поток, равный 1Вб?
- 6) Какое поле называют вихревым?
- 7) Что такое магнитный поток? В каких единицах измеряется магнитный поток?
- 8) Сформулируйте правило левой руки.
- 9) Какую форму имеют линии магнитного поля? Изобразите их у полосового магнита.
- 10) Что такое ферромагнетики?

Раздел 4 Электродинамика Контрольная работа по разделу

Часть 1

- 1. Отметьте, какие из следующих четырех утверждений касающиеся свойствэлектромагнитнойволны (ЭМВ) правильные, а какие неправильные.
- А. Для распространения ЭМВ нужна упругая среда.
- Б. Скорость ЭМВ в вакууме зависит от длины волны.
- В. Период волны обратно пропорционален ее частоте
- Г. Частота колебаний электрического поля ЭМВ в два раза выше частоты колебаний ее магнитного поля.
- 2. На рисунке приведена схема электрической цепи. Отметьте, какие из приведенных четырех утверждений правильные, а какие неправильные.
- А. При замкнутом ключе вольтметр показывает 6 В.
- Б. При замкнутом ключе амперметр показывает больше 4 A.
- В. Если увеличить скорость изменения магнитного потока в 4 раза, ЭДС индукции увеличится в 2раза.
- Г. ЭДС индукции в одном витке больше 1 В.
 - 4. Проводник с током находится в однородном магнитном поле. При этом на проводник действует сила так, как показано

на рисунке. Отметьте, какие из приведенных четырех утверждений правильные, а какие — неправильные.

- А. Магнитное поле направлено к нам.
- Б. Если увеличить длину проводника в 3 раза, сила, действующая на проводник, увеличится в 9 раз
- В. Если силу тока в проводнике уменьшить в 3 раза, сила, действующая на проводник, уменьшится в 3 раза.
- Г. Сила Ампера действует только на движущийся проводник.
- 5. На рисунке показано направление индукционного тока, возникающего в короткозамкнутой проволочной катушке, когда относительно нее перемещают магнит.

Отметьте, какие из следующих четырех утверждений правильные, а какие —неправильные.

- А. Внутри катушки линии магнитной индукции поля магнита направлены вверх.
- Б. Внутри катушки магнитное поле индукционного тока направлено вверх.
- В. Магнит и катушка притягиваются друг к другу.
- Г. Магнит приближают к катушке.
- 6. В электрическом чайнике емкостью 5 л вода нагревается от 10° С до 100° С за 20 мин. Напряжение в сети 220 В. Считая КПД нагревателя равным 70%, отметьте, какие из следующих четырех

утверждений правильные, а какие — неправильные.

- А. Воде передано количество теплоты, численно равное работе силы тока в нагревателе.
- Б.Работа силы тока в нагревателя меньше 3 10⁶ Дж.
- В. Сила тока в нагревателе больше 9 А.
- Г. Мощность нагревателя меньше 2 кВт.

Часть 2 (по вариантам)

1 вариант	2 вариант
1. Что называют	1. Что представляет собой
электромагнитными колебаниями?	колебательный контур?
2. Запишите формулу	Чему равна энергия колебательного
максимальной энергии	контура в произвольный момент
Электрического и магнитного	времени? (формула)
поля колебательного контура	
3. Дифференциальное уравнение,	3. Решение дифференциального
описывающее свободные	уравнения, описывающего
колебания в контуре (формула).	свободные колебания в контуре.
	(q=q(t));

4. Запишите зависимость от	4. Запишите формулу Томсона
времени силы тока в контуре	
(i=i(t));	
5. Запишите зависимость	5. Как связаны сила переменного
мгновенной э.д.с. от времени для	тока и напряжение в цепи с
переменного тока.	резистором?
6. Запишите формулу средней	6. Запишите формулу
мощности для переменного тока	действующего значения силы тока и
	напряжения.