Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Магнитогорский государственный технический университет им. Г.И. Носова»

Многопрофильный колледж

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ ПРАКТИЧЕСКИХ И ЛАБОРАТОРНЫХ РАБОТ

по учебной дисциплине ОП.10 Теплотехника для студентов специальности 44.02.06 Профессиональное обучение (по отраслям). Обработка металлов давлением (углубленной подготовки)

ОДОБРЕНО:

Предметно-цикловой комиссией Обработка металлов давлением Председатель О.В. Шелковникова Протокол № 1 от 07.09.2016 г.

Методической комиссией МпК

Протокол №1 от 22.09.2016 г.

Составитель:

преподаватель ФГБОУ ВО «МГТУ им. Г.И.Носова» МпК Миронова О.А

Методические указания по выполнению практических/лабораторных работ разработаны на основе рабочей программы учебной дисциплины «Теплотехника».

Содержание практических работ ориентировано на подготовку обучающихся к освоению профессионального(ых) модуля(ей) программы подготовки специалистов среднего звена по специальности <u>44.02.06 Профессиональное обучение (по отраслям)</u>. Обработка металлов давлением и овладению профессиональными компетенциями.

СОДЕРЖАНИЕ

1 ВВЕДЕНИЕ	2
2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ	6
Практическая работа № 1	6
Лабораторная работа № 1	10
Лабораторная работа №2	12
Лабораторная работа №3	15
Практическая работа №2	16
Лабораторная работа № 4	21
Практическая работа №3	23
Практическое занятие №4	25
Практическая работа №5	26
Практическая работа № 6	28
Практическое занятие №7	34
Практическое занятие №8	37

1 ВВЕДЕНИЕ

Важную часть теоретической и профессиональной практической подготовки обучающихся составляют практические и лабораторные занятия.

Состав и содержание практических и лабораторных занятий направлены на реализацию Федерального государственного образовательного стандарта среднего профессионального образования.

Ведущей дидактической целью практических и лабораторных занятий является формирование профессиональных практических умений (умений выполнять определенные действия, операции, необходимые в последующем в профессиональной деятельности) или учебных практических умений необходимых в последующей учебной деятельности.

Ведущей дидактической целью является экспериментальное подтверждение и проверка существенных теоретических положений (законов, зависимостей).

В соответствии с рабочей программой учебной дисциплины «Теплотехника » предусмотрено проведение практических и лабораторных занятий.

В результате их выполнения, обучающийся должен:

уметь:

- производить расчеты процессов горения и теплообмена в металлургических печах

Содержание практических и лабораторных занятий ориентировано на подготовку обучающихся к освоению профессионального модуля программы подготовки специалистов среднего звена по специальности и овладению *профессиональными компетенциями*:

- ПК 4.1 Участвовать в планировании деятельности первичного структурного подразделения.
- ПК 4.2 Участвовать в разработке и внедрении технологических процессов.
- ПК 4.3 Разрабатывать и оформлять техническую и технологическую документацию.
- ПК 4.4 Обеспечивать соблюдение технологической и производственной дисциплины.
- ПК 4.5 Обеспечивать соблюдение техники безопасности.

А также формированию общих компетенций:

- ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес;
- ОК 2. Организовывать собственную деятельность, определять методы решения профессиональных задач, оценивать их эффективность и качество.
 - ОК 3 Оценивать риски и принимать решения в нестандартных ситуациях
- OK 4. Осуществлять поиск, анализ и оценку информации, необходимой для постановки и решения профессиональных задач, профессионального и личностного развития;
- ОК5.Использовать информационно коммуникационные технологии для совершенствования профессиональной деятельности;
- ОК 6 . Работать в коллективе и команде, взаимодействовать с руководством, коллегами и социальными партнерами;
- ОК 8 Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации
- OК 9. Осуществлять профессиональную деятельность в условиях обновления ее целей, содержания, смены технологий;
 - ОК 11. Строить профессиональную деятельность с соблюдением правовых норм, ее регулирующих.

Выполнение обучающихся практических/лабораторных работ по учебной дисциплине «Теплотехника» направлено на:

- обобщение, систематизацию, углубление, закрепление, развитие и детализацию полученных теоретических знаний по конкретным темам учебной дисциплины;
- формирование умений применять полученные знания на практике, реализацию единства интеллектуальной и практической деятельности;
- формирование и развитие умений: наблюдать, сравнивать, сопоставлять, анализировать, делать выводы и обобщения, самостоятельно вести исследования, пользоваться различными приемами измерений, оформлять результаты в виде таблиц, схем, графиков;
- приобретение навыков работы с различными приборами, аппаратурой, установками и другими техническими средствами для проведения опытов;
- развитие интеллектуальных умений у будущих специалистов: аналитических, проектировочных, конструктивных и др.;
- выработку при решении поставленных задач профессионально значимых качеств, таких как самостоятельность, ответственность, точность, творческая инициатива.

Практические и лабораторные занятия проводятся после соответствующей темы, которая обеспечивает наличие знаний, необходимых для ее выполнения.

2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Тема 1.2. Теория горения различных видов топлива в печах

Практическая работа № 1

Расчет горения топлива

Цель: <u>с помощью теоретических расчетов по формулам определить необходимое количество</u> воздуха для горения, количество продуктов сгорания и калориметрическую температуру.

Выполнив работу, Вы будете:

уметь:

- пересчитывать сухой газ на влажный;
- определять необходимое количество воздуха для горения;
- определять количество продуктов сгорания;
- рассчитывать калориметрическую и действительную температуру

Материальное обеспечение: методические указания

Задание:

No							
варианта	CH ₄ , %	C ₂ H ₆ , %	C ₃ H ₈ , %	C ₄ H ₁₀ , %	CO ₂ , %	W, Γ/M ³	n
1	91	1,2	2,0	1,0	0,8	14,5	1,2
2	94	2,5	1,8	0,7	0,4	15	1,1
3	97	1,1	0,9	0,6	0,2	13	1,05
4	94,4	1,4	1,4	-	-	12	1,05
5	87,7	1,4	2,2	1,5	1,3	16	1,05
6	91,8	2,2	0,4	0,6	-	12	1,1
7	83,4	2,5	0,8	1,5	1,8	10	1,15
8	79,9	1,5	1,7	2,1	2,9	14	1,1
9	94,1	1,5	-	3,0	-	10	1,15
10	80	2,1	3,0	4,0	5,0	20	1,05
11	91,1	1,0	1,0	1,0	1,0	18	1,2

12	93,6	2,6	-	-	2,3	16	1,1
13	85,5	4,2	3,7	2,8	2,0	14	1,05
14	91,6	1,6	2,0	1,6	0,6	12	1,15
15	80	2,5	3,5	4,5	5,5	14	1,05
16	91,2	0,8	0,9	1,6	2,4	16	1,1
17	93	1,1	2,1	3,1	-	18	1,05
18	85,5	4,5	2,5	1,5	3,0	20	1,1
19	82,7	-	5,0	3,0	4,0	10	1,15
20	90	2,2	3,3	1,6	-	12	1,15
21	97	0,5	0,5	0,3	0,5	14	1,1
22	87,8	1,7	1,8	2,9	4,1	16	1,05
23	74,8	4,5	3,3	-	3,2	18	1,15
24	77,6	2,4	4,4	1,1	1,1	20	1,1
25	83,3	-	3,9	3,2	-	10	1,2
26	89,7	4,5	-	2,2	2,2	12	1,15
27	92,2	0,9	0,7	1,1	0,8	14	1,2
28	93,3	1,4	-	-	1,4	16	1,15
29	88,8	3,1	1,1	1,1	1,1	18	1,05
30	95,5	-	1,5	1,5	-	20	1,1
31	92,2	2,2	-	1,2	1,2	10	1,2
32	95,7	2,1	1,03	0,47	0,2	15,55	1,1
33	96	2	1,0	0,3	0,3	16	1,15
34	93,2	0,7	0,6	0,6	1,9	15,3	1,05
35	92	0,9	1,0	1,1	0,3	15,5	1,05

Порядок выполнения работы:

Изучить методические указания к данной практической работе.

- 1. Пересчитать сухой газ на влажный
- 2. Определить расход кислорода на горение
- 3.Определить расход воздуха, необходимого для горения
- 4. Определить состав продуктов сгорания

- 5. Рассчитать количество продуктов сгорания по методике, приведенной в разработке.
- 6. Определить процентный состав продуктов сгорания.
- 7. Определить плотность продуктов сгорания
- 8. Рассчитать колориметрическую и действительную температуру Расчеты выполнить по методике, приведенной в разработке.

Ход работы:

1. Пересчет сухого газа на влажный

$$x^{\text{B.I.}} = x^{\text{cyx.}} \frac{100}{100 + 0,1242W};$$

$$x^{\text{B.I.}} = x^{\text{cyx.}} \frac{100}{100 + 0,1242 \cdot 15,55};$$

$$x^{\text{B.I.}} = x^{\text{cyx.}} \cdot 0.98.$$

2. Расход кислорода на горение при n=1,0

$$\begin{split} V_{_{\mathcal{O}_2}} = &0,01(0,5(CO + H_2 + 3H_2S) + \Sigma(m + \frac{n}{4})C_mH_n); \\ V_{_{\mathcal{O}_2}} = &0,01[(m + \frac{n}{4})CH_4 + (m + \frac{n}{4})C_2H_6 + (m + \frac{n}{4})C_3H_8 + (m + \frac{n}{4})C_4H_{10}]; \\ V_{_{\mathcal{O}_2}} = &0,01[(1 + \frac{4}{4})94 + (2 + \frac{6}{4})2 + (3 + \frac{8}{4})1 + (4 + \frac{10}{4})0.4]; \\ V_{_{\mathcal{O}_2}} = &2,026 \text{ m}^3/\text{m}^3. \end{split}$$

3. Расход воздуха на горение при n=1,1.

$$V_B=n(1+k)V_{o_2};$$

 $V_B=1,1(1+3,76)\cdot 2,026;$
 $V_B=10,61 \text{m}^3/\text{m}^3.$

4. Состав продуктов сгорания.

$$\begin{split} \mathbf{V}_{CO_2} = &0.01(\mathbf{CO_2} + \mathbf{SO_2} + \mathbf{CO_2} + \mathbf{H_2S_1} + \mathbf{mC_mH_n}); \\ \mathbf{V}_{CO_2} = &0.01(\mathbf{CO_2} + \mathbf{CH_4} + \mathbf{mC_2H_6} + \mathbf{mC_3H_8} + \mathbf{mC_4H_{10}}); \\ \mathbf{V}_{CO_2} = &0.01(0.2 + 94 + 2 \cdot 2 + 3 \cdot 1 + 4 \cdot 0.4); \\ \mathbf{V}_{CO_2} = &1.028 \, \mathrm{m}^3 / \mathrm{m}^3; \\ V_{H_2O} = &0.01(\mathbf{H_2O_1} + \mathbf{H_2} + \mathbf{H_2S_2} + 0.5 \, \mathbf{\Sigma nC_mH_n}); \\ V_{H_2O} = &0.01(\mathbf{H_2O_2} + 0.5(\mathbf{nCH_4} + \mathbf{nC_2H_6} + \mathbf{nC_3H_8} + \mathbf{nC_4H_{10}})); \\ V_{H_2O} = &0.01(1.9 + 0.5(4 \cdot 94 + 6 \cdot 2 + 8 \cdot 1 + 10 \cdot 0.4)); \\ V_{H_2O} = &2.019 \, \mathrm{m}^3 / \mathrm{m}^3; \\ V_{N_2} = &0.01 \, \mathrm{N_2} + \, \mathrm{nk} \, \, \mathrm{V}_{O_2}; \\ V_{N_2} = &0.01 \cdot 0.5 + 1.1 \cdot 3.76 \cdot 2.026; \\ V_{N_2} = &8.385 \, \mathrm{m}^3 / \mathrm{m}^3; \\ V_{O_2}' = &(\mathrm{n-1}) \, \mathrm{V}_{O_2}; \\ V_{O_2}' = &(\mathrm{n-1}) \, \mathrm{V}_{O_2}; \end{split}$$

$$V_{O_2}' = 0.203 \,\mathrm{m}^3/\mathrm{m}^3$$
.

5. Определение общего количества продуктов сгорания (дыма).

$$\begin{aligned} \mathbf{V}_{\text{n.c.}} = & V_{RO_2} + V_{H_2O} + V_{N_2} + V_{O_2}; \\ \mathbf{V}_{\text{n.c.}} = & V_{CO_2} + V_{H_2O} + V_{N_2} + V_{O_2}; \\ \mathbf{V}_{\text{n.c.}} = & 1,028 + 2,019 + 8,385 + 0,203; \\ \mathbf{V}_{\text{n.c.}} = & 11,635 \,\text{m}^3/\text{m}^3. \end{aligned}$$

6. Определение процентного состава продуктов сгорания.

$$CO_{2} = \frac{V_{CO_{2}}}{V_{n.c.}} \cdot 100\%; \qquad N_{2} = \frac{V_{N_{2}}}{V_{n.c.}} \cdot 100\%;$$

$$CO_{2} = \frac{1,028}{11,635} \cdot 100\%; \qquad N_{2} = \frac{8,385}{11,635} \cdot 100\%;$$

$$CO_{2} = 8,83\%; \qquad N_{2} = 72,07\%;$$

$$H_{2}O = \frac{V_{H_{2}O}}{V_{n.c.}} \cdot 100\%; \qquad O_{2} = \frac{V_{O_{2}}}{V_{n.c.}} \cdot 100\%.$$

$$H_{2}O = 17,35\%. \qquad O_{2} = 1,75\%.$$

7. Определение плотности продуктов сгорания

$$\rho_{\text{n.c.}} = \frac{44CO_2 + 28N_2 + 18H_2O + 32O_2}{22,4 \cdot 100};$$

где 44;28;18;32 – молекулярная масса; 22,4 – 1моль;

$$\rho_{\pi.c}\!\!=\!\!\frac{44\cdot\!8,\!83+28\cdot\!72,\!07+18\cdot\!17,\!35+32\cdot\!1,\!075}{22,\!4\cdot\!100};$$

$$\rho_{\text{n.c}} = 1,24 \text{kg/m}^3$$
.

8. Теплота сгорания газа составит.

$$Q_H^P$$
=358CH₄+636C₂H₆+913C₃H₈+1185C₄H₁₀;
$$Q_H^P$$
=358·94+636·2+913·1+1185·0,4;
$$Q_H^P$$
=36327кДж/м³.

- 9. Определение калориметрической температуры.
 - 9.1. При горении природного газа в обычном воздухе энтальпия продуктов сгорания определяется:

$$i_0 = \frac{Q_H^P}{V_{n.c.}};$$

$$i_0 = \frac{36327}{11,635};$$

$$i_0=3122,22$$
кДж/м³.

9.2. Для определения калориметрической температуры природного газа зададимся сначала $\mathbf{t}_{\kappa}' = 2000\,^{0}\mathrm{C}$ и определим при этой калориметрической температуре энтальпию.

$$\begin{split} \mathbf{i}_{2000} = & \frac{i_{CO_2}^{2000} \cdot V_{CO_2} + i_{H_2O}^{2000} \cdot V_{H_2O} + i_{N_2}^{2000} \cdot V_{N_2} + i_{O_2}^{2000} \cdot V_{O_2'}}{V_{n.c.}};\\ & \mathbf{i}_{2000} = & 3249,41 \text{ кДж/м}^3, \end{split}$$

т.к. $i_{2000} > i_0$, принимаем температуру $t_K^* = 1900^0$ С и рассчитаем энтальпию при этой температуре

$$i_{1,000} = 3119,88$$
кДж/м³,

т.к. $i_{1900} < i_0$ определим t_K

$$t_{K} = t_{K}^{"} + \frac{i_{0} + i_{K}^{"}}{i_{K}^{'} - i_{K}^{"}};$$

$$t_{K} = 1900 + \frac{3122,22 + 3119,88}{3249,41 - 3119,88};$$

$$t_{K} = 1949^{0} \text{ C}.$$

10. Определение действительной температуры в печи.

$$t_{\mathcal{I}} = \eta \cdot t_{\mathcal{K}},$$

где η =0,65÷0,80 – коэффициент, зависящий от конструкции печи.

$$t_{\Pi}=0,70\cdot1949;$$

 $t_{\Pi}=1364,3^{0}$ C.

Форма представления результата:

Расчеты выполнить и оформить на формате А4 по ГОСТам.

Критерии оценки: правильность выполнения расчета

Тема 1.2. Теория горения различных видов топлива в печах

Лабораторная работа № 1

Основные методы и приборы измерения температуры

Цель работы: ознакомиться с устройством приборов, используемых в теплотехнических измерениях; экспериментально определить термодинамические параметры воздуха в сосуде; рассчитать калорические параметры.

Содержание работы.

Объектом исследования является сжатый воздух в баллоне высокого давления, предметом – значения термодинамических и калорических параметров воздуха.

В процессе выполнения работы необходимо:

- познакомиться с устройством и принципом действия установки;
- измерить давление и температуру воздуха;
- вычислить массу воздуха в баллоне;
- рассчитать удельные значения внутренней энергии и энтальпии;
- оценить погрешность измерения давления в баллоне;
- сделать выводы по работе.

Теоретические положения.

Устройство и принцип действия установки. Схема установки (рисунок 1) включает:

- вентили В1, В2, В3;
- газовый редуктор 1;
- манометры M1, M2, M3;
- объект исследования (баллон высокого давления)2;
- милливольтметра mV 3;
- трехспайную термопару 4;
- кювету с тающим льдом 5.

Исходное состояние установки: вентили В1, В2 и В3 закрыты; редуктор 1 разгружен; термопара 4 подсоединена к милливольтметру; стрелки манометров показывают избыточное давление, равное нулю. При открытом вентиле В1 манометр М1 показывает давление воздуха в ресивере. Нагружая редуктор, по манометру М2 устанавливается необходимое давление в системе. Открытием вентиля 2, подается воздух в сосуд 2. Давление воздуха в сосуде и его температура измеряются соответственно манометром М3 и термопарой 4.

Порядок выполнения работы:

- открыть вентиль В1;
- редуктором 1 установить по манометру М2 равное 7·105 Па;
- открыть вентиль 2 и по манометру M3 определить давление воздуха в сосуде, записать его;
- при помощи милливольтметра и тарировочного графика определить температуру воздуха и записать ее;
 - закрыть вентиль 1;
 - вентилем В3 стравить воздух из системы;
 - привести установку в исходное состояние.

Исходные данные: Объем сосуда V= 2,4 л.

Ход работы:

- 1. Используя выражение рабс = ризб + рбар, вычислить абсолютное давление в сосуде.
- 2. Перевести температуру из 0C в градусы Кельвина: T = t + 273.
- 3. Вычислить массу газа в сосуде, используя формулу: p V = m R T.
- 4. Вычислить удельный объем и плотность воздуха в сосуде.
- 5. Определить удельную энтальпию воздуха: i = cp (T 273).
- 6. Определить удельную внутреннюю энергию воздуха:

$$u = cv (T - 273)$$
. Здесь $cv = cp - R$.

Газовая постоянная воздуха $R = 287 \, \text{Дж/(кг}$. K).

7. Оценить относительную погрешность, допущенную при определении давления в баллоне.

Содержание отчета.

Отчет оформляется согласно требованиям, изложенным в приложении 1. Кроме оформленного заголовка отчет должен содержать:

- 1. Схему и состав установки.
- 2. Исходные данные.
- 3. Результаты измерений и вычисления.
- 4. Выводы по работе.

Вопросы для самоконтроля

- 1. Сформулируйте цель и содержание работы.
- 2. Перечислите приборы для замера давления газов, расскажите их устройство и принцип действия.
 - 4. Назовите известные способы измерения температур.
 - 5. Дайте определение давления как термодинамического параметра.
 - 6. Дайте определение температуры как термодинамического параметра.
 - 7. Запишите и проанализируйте уравнение состояния идеального газа.
 - 8. Дайте определение удельного объема и плотности газа.
 - 9. Поясните сущность внутренней энергии и энтальпии термодинамической системы.
 - 10. Что понимается под абсолютной и относительной погрешностью измерения?

Тема 2.2 Динамика газов

Лабораторная работа №2

Исследование термодинамического процесса

Цель работы: ознакомиться с экспериментальным методом исследования процессов расширения газов; закрепить знания по термодинамическому анализу процессов.

Содержание работы:

Объектом исследования является сжатый воздух в цилиндре переменного объема, предметом – характер изменения параметров воздуха при его расширении.

В процессе выполнения работы необходимо:

- познакомиться с принципом действия и устройством установки;
- -осуществить в сосуде процесс расширения воздуха с регистрацией его термодинамических параметров минимум в трех состояниях;
 - провести термодинамический анализ этого процесса и сделать выводы.

Теоретические положения

Установка состоит из толстостенного металлического баллона 1, являющегося объектом исследования; гидростатического уровнемера 2; гидроаккумулятора 3 с мембраной 5; газового редуктора 4; кюветы с тающим льдом 6; милливольтмет- ра 7; трехспайной термопары 8; манометров М1, М2 и М3; вентилей В1, В2, В3, В4, В5 и В6.

Гидроаккумулятор — это герметичная металлическая емкость с размещенным внутри резиновым мешком (мембраной). Резиновый мешок предварительно заполняется водой. В полость над мембраной из ресивера через редуктор 4 и вентиль В1 подается сжатый воздух. Вода под действием разности давления при открытом вентиле В3 может перетекать из гидроаккумулятора в цилиндр, либо в обратном направлении. Баллон 1 через вентиль В3 заполняется водой из гидроаккумулятора 3. При увеличении количества воды объем воздуха в баллоне уменьшается, что приводит к увеличению давления, которое измеряется манометром М1. Объем воды определяется по помощи тарировочного графика по показаниям гидростатического уровнемера 2.

Порядок выполнения работы:

- подается из ресивера компрессора сжатый воздух к редуктору;
- путем настройки редуктор 4 создается давление 9·105 Па, контролируя его по манометру M 3;
- открывается вентиль B1 и создается давление в гидроаккумуляторе, показания манометров M2 и M3 должны быть практически одинаковыми;
- плавно открывая вентиль B3, провести четыре замера термодинамических параметров в объекте исследования (последовательно при 2-х, 4-х, 6-ти и 8-ми барах по манометру М1);

- в каждом опыте показания манометра M, милливольтметра 7 и гидростатического уровнемера 2.
 - закрытый вентиль В1 и открытый вентиль В2;
 - плавно открывается вентиль ВЗ,
 - записать показания давления, температуры и уровня жидкости в каждом опыте;
 - закрытые вентили В3 и В2;

Исходные данные: рабочим телом в эксперименте является воздух. Объем сосуда V = 2,7 **Ход работы:**

- 1. Определить абсолютные значения давления и температуры в экспериментальных точках.
 - 2.Вычислить массу воздуха в сосуде: m = p1V1 / RT1.
- 3. Провести термодинамический анализ экспериментального процесса расширения (или сжатия) воздуха в цилиндре, а именно: вычислить показатель процесса расширения: $n = \ln / \ln$;
 - определить значение теплоемкости процесса: cn = cv
 - записать соотношения между параметрами для двух произвольных точек процесса;
- вычислить количество теплоты, подведенной к воздуху при расширении: $Q = m \ cn \ (T4 T1)$;
 - определить изменения внутренней энергии: U = m cv (T4 T1);
- определить изменение энтальпии: $I = m \ cp \ (T4 T1)$; вычислить работу расширения и работу техническую: Lpac.= $m \ (T1 T4)$ и LTex.= $n \ Lpac$.;

Содержание отчета

- 1. Схему и состав установки.
- 2. Исходные данные.
- 3. Результаты измерений и вычисления для четырех опытов.
- 4. Таблицу расчетных данных для всех опытов.
- 5. Выводы.

Вопросы для самоконтроля

- 1. Определение политропного процесса.
- 2. Вывод уравнения политропного процесса.
- 3. Вывод выражения работы расширения политропного процесса.
- 4. Вывод выражения технической работы.
- 5. Термодинамический анализ изобарного процесса.
- 6. Термодинамический анализ изохорного процесса.
- 7. Термодинамический анализ изотермического процесса.

Тема 2.2 Динамика газов

Лабораторная работа №3

Исследование истечения газа из канала

Цель работы: - ознакомится с работой газодинамической установки; по исходным данным выявить особенности изменения параметров газового потока в канале переменного сечения.

Содержание работы:

Объектом исследования является геометрическое сверхзвуковое сопло, предметом – характер изменения параметров газового потока вдоль сопла.

В процессе выполнения лабораторной работы необходимо:

- изучить устройство и принцип работы установки;
- измерить величины давлений в сечениях, где установлены манометры;
- вычислить в каждом сечении сопла значения температуры, скорости потока и местной скорости звука;
 - рассчитать массовый расход газа через сопло;
 - вычертить график изменения параметров газа по длине сопла;
 - сделать выводы по результатам работы.

Теоретические положения:

Установка состоит из вентиля 1, электропневмоклапана (ЭПК) 2, сверхзвукового геометрического сопла 3 и манометров M вх, M1, M2, M3, M4, M5 и M6. М 6 М 5 М4 М 3 М 2 М 1 М. Воздух высокого давления из ресивера через вентиль 1 поступает через электропневмоклапан 2 в сверхзвуковое сопло 3. Для определения статического давления воздуха при его расширении по длине канала установлены манометры (манометр М3 измеряет давление в критическом сечении сопла)

Исходные данные: барометрическое давление и температура ; давления в сечениях сопла и температура в ресивере, которую принимаем равной температуре воздуха. Рабочее тело – воздух, для которого $\kappa = 1,4$; $R = 287 \ \text{Дж/(кг K)}$ и $A(\kappa) = 0,685$.

Ход работы:

- 1. Задача расчета состоит в определении величин температуры, скорости потока, местной скорости звука по длине сопла и массового расхода газа через сопло.
 - 2. Предлагается следующая последовательность расчета:
 - вычислить значение давления торможения по давлению в критическом сечении сопла;
- принять температуру воздуха в ресивере за заторможенную и вы числить величину скорости в сечениях сопла:

- определить температуру в сечениях сопла:
- вычислить местную скорость звука в каждом сечении: ai = k RT;
- вычислить теоретический расход газа через канал: А(К).

параметр	Сечение канала								
	вход	1	2	3	4	5	6		
P _{изг} , 10 ⁵ Па									
P _{aδc} , 10 ⁵ Πa									
T _i K									
C _i K									
A _i K									

Содержание отчета

Кроме оформленного заголовка отчет должен содержать:

- 1. Схему и состав установки.
- 2 Исходные данные.
- 3. Результаты вычисления для одного из сечений.
- 4. Заполнить таблицу расчетных данных для всех сечений сопла.
- 5. График изменения параметров газового потока по длине сопла.
- 6. Выводы.

Вопросы для самоконтроля

- 1. Проанализируйте уравнения энергии в тепловой и механической формах.
- 2. Поясните, какие параметры называются параметрами торможения.
- 3. Какие параметры потока считаются критическими и как они вычисляются?
- 4. Выведите и проанализируйте уравнение скорости движения газа в канале

переменного сечения

5. Можно ли в сужающемся канале разогнать поток газа до сверхзвуковой скорости?

Тема 2.2 Динамика газов

Практическая работа №2

Расчет высоты дымовой трубы

Цель работы: научиться применять закон Бернулли при расчетах истечения газа через отверстия и насадки; определять сопротивление дымового тракта; определять разряжение у основания дымовой трубы и высоту дымовой трубы.

Выполнив работу, Вы будете:

уметь:

- применять закон Бернулли в теплотехнических расчетах;
- определять сопротивление дымового тракта;
- определять высоту дымовой трубы

Материальное обеспечение:

Раздаточный материал.

Задание:

Рассчитать высоту дымовой трубы

Порядок выполнения работы:

- 1. Повторить теоретический материал.
- 2. Рассчитать сопротивление дымового тракта у основания дымовой трубы.
- 3. Рассчитать высоту дымовой трубы

Ход работы:

Истечение газов через отверстия и насадки наблюдается при работе горелок, форсунок, при выбивании газа через отверстия в стенах печи и в других случаях.

Количество истекающей из рассматриваемого отверстия среды (${\rm M}^3/{\rm c}$) можно определить по формуле: ${\rm V}=\omega_2 f_2$, где ${\rm f}_2$ —сечение струи, ${\rm M}^2$, ω_2 —скорость истечения газа.

Количество истечения газа через насадки, учитывая, что насадка — это короткий патрубок, присоединённый к отверстию в тонкой стенке, длина последнего обычно составляет 3-4 его диаметра, можно определить по формулам:

Для насадки с открытыми кромками:

V=0,85F₃
$$\sqrt{\frac{2(P_1-P_2)}{\rho}}$$
,

где F₃-площадь выходного сечения;

 $P_1,\, P_2$ - соответственно давление в сосуде и давление среды; ρ -плотность газа.

Для насадки с закруглёнными кромками:

$$V=F_3\sqrt{\frac{2(P_1-P_2)}{\rho}}.$$

Данные для расчета:

1. Температура

№ вар.	t ₁ , ⁰ C	t ₂ , ⁰ C	t ₃ ,	t ₄ , ⁰ C	t ₅ ,	t ₆ , ⁰ C	t ₁₋₂ , ⁰ C	t ₂₋₃ , ⁰ C	t ₃₋₄ , ⁰ C	t ₄₋₅ , ⁰ C	t ₅₋₆ , OC
1	770	680	380	340	320	300	700	560	360	330	310
2	790	690	390	350	350	330	740	540	380	360	340
3	810	770	600	500	400	305	790	610	550	450	320

4	720	650	490	370	360	310	680	510	400	365	320
5	910	810	550	480	590	300	870	700	420	350	310
6	850	740	400	370	310	280	800	500	350	320	300
7	860	750	390	320	290	270	790	400	340	300	280
8	800	710	390	310	290	230	760	370	340	300	250
9	830	740	400	330	300	260	780	410	350	310	270
10	730	670	390	350	340	320	740	400	360	350	330
11	800	690	410	310	270	240	710	340	300	280	260
12	870	800	600	550	540	530	830	590	560	530	520
13	1200	1100	850	720	660	310	1000	910	730	690	350
14	845	738	297	270	250	230	790	390	290	260	240
15	1350	1200	800	650	470	290	1250	970	700	500	300
16	1110	990	710	600	470	290	1000	860	660	500	280
17	810	690	400	300	280	250	700	450	350	290	270
18	790	670	370	340	310	300	750	550	350	330	310
19	800	710	400	340	300	280	760	500	370	310	290
20	820	730	390	330	300	250	770	400	350	310	280
21	1280	1120	720	610	570	300	1200	750	650	600	350
22	700	600	400	350	350	320	650	500	380	360	330
23	850	750	450	300	300	280	800	500	390	370	310
24	700	650	400	370	370	340	750	530	380	360	350
25	900	800	500	470	470	450	850	670	520	500	400
26	810	710	410	370	370	350	760	560	400	380	360
27	900	810	400	370	320	290	870	420	390	340	200
28	650	600	300	280	240	170	630	330	290	260	200
29	600	570	310	280	210	180	590	330	300	240	200
30	870	790	600	500	400	290	800	650	510	410	300
31	830	700	410	350	330	300	780	430	330	320	305
32	640	600	290	260	210	170	620	300	250	220	180
33	890	700	400	350	310	280	750	500	370	320	300
34	990	830	500	400	370	300	880	600	400	350	250
35	1000	900	700	600	400	280	910	650	360	280	210

2. Длина участков и начальная скорость движения газа

	2. Ashma y laerkob h ha lasibhan ekopoetb Abhikelihn tasa											
$N_{\underline{o}}$	l_{1-2} ,	l_{2-3} ,	l_{3-4} ,	l_{4-5} ,	<i>l</i> ₅₋₆ ,	V,						
варианта	М	М	М	М	М	м/c						
1	4	4	6	3	10	4,5						
2	7	6	8	5	12	4,1						
3	5	4	6	3	9	4,6						
4	3	2	3	1	7	4,5						
5	6	5	4	3	12	4,4						
6	5	6	5	3	11	4						
7	4	5	6	4	12	4,4						
8	6	5	4	3	9	4,6						

9 5 5 4 4 11 4,4 10 6 5 6 3 11 4,1 11 7 6 6 5 12 4,3 12 7 6 7 5 11 4,5 13 8 6 8 4 12 4,3 14 3,5 4,2 5,2 4 13 4,4 15 7 6 7 5 14 4,5 16 7,5 6 6,8 5 14 5,5 17 7 6 6 5 13 4,2 18 8 6 4 4 11 4,2 19 6 5 3 4 10 4,3 20 5 5 4 3 12 4	
11 7 6 6 5 12 4,3 12 7 6 7 5 11 4,5 13 8 6 8 4 12 4,3 14 3,5 4,2 5,2 4 13 4,4 15 7 6 7 5 14 4,5 16 7,5 6 6,8 5 14 5,5 17 7 6 6 5 13 4,2 18 8 6 4 4 11 4,2 19 6 5 3 4 10 4,3	
12 7 6 7 5 11 4,5 13 8 6 8 4 12 4,3 14 3,5 4,2 5,2 4 13 4,4 15 7 6 7 5 14 4,5 16 7,5 6 6,8 5 14 5,5 17 7 6 6 5 13 4,2 18 8 6 4 4 11 4,2 19 6 5 3 4 10 4,3	
13 8 6 8 4 12 4,3 14 3,5 4,2 5,2 4 13 4,4 15 7 6 7 5 14 4,5 16 7,5 6 6,8 5 14 5,5 17 7 6 6 5 13 4,2 18 8 6 4 4 11 4,2 19 6 5 3 4 10 4,3	
14 3,5 4,2 5,2 4 13 4,4 15 7 6 7 5 14 4,5 16 7,5 6 6,8 5 14 5,5 17 7 6 6 5 13 4,2 18 8 6 4 4 11 4,2 19 6 5 3 4 10 4,3	
15 7 6 7 5 14 4,5 16 7,5 6 6,8 5 14 5,5 17 7 6 6 5 13 4,2 18 8 6 4 4 11 4,2 19 6 5 3 4 10 4,3	
16 7,5 6 6,8 5 14 5,5 17 7 6 6 5 13 4,2 18 8 6 4 4 11 4,2 19 6 5 3 4 10 4,3	
17 7 6 6 5 13 4,2 18 8 6 4 4 11 4,2 19 6 5 3 4 10 4,3	
18 8 6 4 4 11 4,2 19 6 5 3 4 10 4,3	
19 6 5 3 4 10 4,3	
20 5 5 4 2 12	
20 5 5 4 3 12 4,6	
21 7 5 7 4 12 4,0	
22 4 3 4 2 8 5,0	
23 7 6 7 5 12 4,5	
24 5 4 5 3 10 4,0	
25 6 5 6 4 10 5,0	
26 6 5 6 4 11 5,5	
27 6 5 4 3 11 4,6	
28 5 4 2 1 7 3,0	
29 4 4 3 2 7 4,4	
30 7 7 6 4 13 3,0	
31 7 6 5 5 11 5,1	
32 5 5 4 3 8 2,9	
33 6 5 3 2 10 4,3	
34 9,5 9 7 8 12 3,0	
35 8 8 6 6 10 4,3	

3.Поперечные размеры дымовых каналов

№	1-2,	3-4,	4-5,	5-6,
варианта	мхм	мхм	мхм	мхм
1	1,3x1,9	<i>1,1x1,6</i>	1,1x1,6	1,1x1,6
2	1,3x1,9	1,1x1,6	1,1x1,6	1,1x1,6
3	1,3x1,9	1,1x1,6	1,1x1,6	1,1x1,6
4	1,3x1,9	1,1x1,6	1,1x1,6	1,1x1,6
5	1,4x2,0	1,2x1,7	1,2x1,7	1,2x1,7
6	1,3x1,9	1,1x1,6	1,1x1,6	1,1x1,6
7	1,2x1,8	1,0x1,5	1,0x1,5	1,0x1,5
8	1,5x2,3	1,4x2,0	1,4x2,0	1,4x2,0
9	1,4x2,0	1,3x1,7	1,3x1,7	1,3x1,7
10	1,2x1,8	1,1x1,6	1,1x1,6	1,1x1,6
11	1,3x2,0	1,2x1,6	1,2x1,6	1,2x1,6
12	1,3x1,9	1,0x1,5	1,0x1,5	1,0x1,5
13	1,4x1,3	1,3x1,1	1,3x1,1	1,3x1,1

14	1,3x1,2	1,1x1,6	1,1x1,6	1,1x1,6
15	1,4x1,9	1,3x1,8	1,3x1,8	1,3x1,8
16	1,5x1,5	1,2x1,4	1,2x1,2	1,2x1,2
17	1,4x2,0	1,2x1,7	1,2x1,7	1,2x1,7
18	1,3x1,9	1,1x1,6	1,1x1,6	1,1x1,6
19	1,4x2,1	1,2x1,7	1,2x1,7	1,2x1,7
20	1,4x2,0	1,2x1,7	1,2x1,7	1,2x1,7
21	1,3x1,25	1,1x0,9	1,1x0,9	1, 1x0,9
22	1,2x1,8	1,0x1,5	1,0x1,5	1,0x1,5
23	1,2x1,8	1,0x1,5	1,0x1,5	1,0x1,5
24	1,2x1,8	1,0x1,5	1,0x1,5	1,0x1,5
25	1,2x1,8	1,0x1,5	1,0x1,5	1,0x1,5
26	1,3x1,9	1,1x1,6	1,1x1,6	1,1x1,6
27	1,4x2,0	1,2x1,7	1,2x1,7	1,2x1,7
28	1,1x1,7	0,5x1,0	0,5x1,0	0,5x1,0
29	1,1x1,7	0,5x1,0	0,5x1,0	0,5x1,0
30	1,4x2,0	1,2x1,7	1,2x1,7	1,2x1,7
31	1,4x2,0	1,2x1,7	1,2x1,7	1,2x1,7
32	1,1x1,7	0,5x1,0	0,5x1,0	0,5x1,0
33	1,2x1,8	1,0x1,5	1,0x1,5	1,0x1,5
34	1,4x2,0	1,2x1,7	1,2x1,7	1,2x1,7
35	1,4x2,0	1,2x1,7	1,2x1,7	1,2x1,7

Определение плотности.

$$\rho_t = \rho_0 \frac{1}{(1 + \alpha t)} ,$$

где $\alpha = 1/273$, град $^{-1}$ – коэффициент объемного расширения.

Определение местного сопротивления

$$h_{M} = \xi \frac{\rho_{0} w_{0}^{2}}{2} (1 + \alpha t),$$

где w_{01} =2,04м/c; w_{02} =2,04м/c; w_{03} =2,94м/c; w_{04} =2,94м/c; w_{05} =2,94м/c; w_{06} =2,94м/c.

Определение сопротивления трению.

$$h_{\rm T} = \lambda \frac{l w_0^2}{d_2 2} \rho_0 (1 + \alpha t),$$

где λ =0,04 для металлической трубы, λ =0,05 для кирпичной трубы.

Определение геометрического напора

$$h_{\Gamma} = gH(\rho_0 - \rho_t),$$

где g=9,81м/ c^2 ; H=1.

Определение общих потерь напора

$$h_{AB}\!\!=\!\!\Sigma h_{\Pi}-\Sigma h_{\Gamma};$$
 $h_{AB}\!\!=\!\!(h_{T}\!\!+\!h_{M})\!\!-\!\!h_{\Gamma}.$ $h_{r}\!\!=\!gH(\rho_{0}\!\!-\!\!\rho_{t}),$ где $g\!\!=\!\!9,\!81$ м/с $^{2};$ $H\!\!=\!\!1.$

Определить общие потери у основания дымовой трубы

$$h_{AB} = \Sigma h_{TT} - \Sigma h_{TT}$$

Сделать вывод с указанием величины разряжения у основания дымовой трубы и общих потерь при движении продуктов сгорания по дымовому тракту.

Изучить методические указания к данной работе.

Определить действительное разряжение у основания дымовой трубы.

Принимаем, что труба с 25% запасом прочности, т.е. действительное разряжение должно быть на 20%--40% больше потерь давления при движении дыма.

$$h_{\text{E.pacq.}} = h_{\text{AB}} \cdot 1,25;$$

Рассчитать падение температуры в трубе

$$\Delta T=1.3H$$

Рассчитать диаметр устья трубы

$$d_B = \sqrt{\frac{V_0 \cdot 4}{w_{OB} \cdot \pi}}$$

Рассчитать высоту дымовой тубы по методике, приведенной в данном пособии

$$H = \frac{h_{B.pacu} + \frac{\rho_0 w_{OB}^2}{2} (1 + \alpha t_B)}{(\rho_a - \rho_{4-5}) g - 0.5 \frac{\xi}{d_B} \left[\frac{\rho_0 w_{OB}^2}{2} (1 + \alpha t_B) + \frac{\rho_0 w_{OB}^2}{2} (1 + \alpha t_B) \right]};$$

Сделать вывод с указанием высоты дымовой трубы и ее запас прочности.

Форма представления результата:

Расчеты выполнить и оформить на формате А4 по ГОСТам

Критерии оценки: правильность выполненного расчета

Тема 3.1 Теплопроводность

Лабораторная работа № 4

Определение коэффициента теплопроводности металла

Цель работы: ознакомиться с одним из методов определения коэффициента теплопроводности твердых тел; определить коэффициент теплопроводности изделия, изготовленного из неизвестного сплава.

Содержание работы:

Объектом исследования является изделие, представляющее собой круглую металлическую пластину, предметом – величина коэффициента теплопроводности образца.

- определить коэффициент теплопроводности;

- выявить качественную зависимость коэффициента λ от температуры для исследуемого сплава.
 - сделать выводы.

Исходные данные: пластина эталона выполнена из материала Бр А5 (алюминиевая бронза состава: 95% Gu, 5% Al). Для пластины зависимость коэффициента теплопроводности от температуры выражается эмпирической формулой: $\lambda t = \lambda 0 + \alpha t = 78 + 0$, 07 t (Bт/м·K).

Ход работы:

1. Метод пластины основан на применении расчетной формулы для теплового потока через плоскую стенку:

$$Q=F \Delta T$$
,

где δ - толщина пластины, м;

45 ΔT – разность температуры на поверхностях пластины , К.

Отсюда находим, что

$$\lambda = O\delta /F * \Delta T$$
.

Следовательно, для определения необходимо знать геометрические размеры пластины (ее площадь F и толщину), перепад температуры T по толщине пластины и величину теплового потока . Для нахождения используется тот же метод, только теперь известными являются коэффициент теплопроводности и размеры другой пластины (назовем ее эталонной), находящейся в плотном контакте с исследуемой. По величине перепада температур определяется величина:

$$Q_T = \lambda_{\mathfrak{I}} * F_{\mathfrak{I}} T$$
.

При одинаковых площадях испытуемой и эталонной пластин и допущении, что потери тепла через торцы эталона и образца незначительны, можно записать равенство:

$$Q_T = Qoop$$
.

Тогда коэффициент теплопроводности материала определяется из выражения

$$\lambda o \delta p = \lambda o m$$
.

Так как в данной установке толщины эталона и образца одинаковы, то выражение для расчета коэффициента теплопроводности образца при обозначении температуры по шкале Цельсия будет иметь вид:

$$\lambda o \delta p = \lambda m$$
.

По результатам измерений вычислить значение λобр для трех степеней нагрева и построить график зависимости коэффициента теплопроводности образца от температуры.

Содержание отчета:

- 1. Схему и состав установки.
- 2. Исходные данные.
- 3. Результаты измерений и вычисления.
- 4. Таблицу расчетных данных для всех степеней нагрева.
- 5. График зависимости температуры.
- 6. Выводы.

Вопросы для самоконтроля

- 1. Что понимается под теплообменом и какие виды теплообмена Вам известны?
- 2. Поясните, что понимается под температурным полем?

- 3. Дайте определение градиента температуры.
- 4. Запишите основной закон теплопроводности и проанализируйте его.
- 5. Раскройте физическую сущность коэффициента теплопроводности.
- 6. Перечислите, как осуществляется передача тепла теплопроводностью в металлах, жидких и газообразных телах.
 - 7. Поясните, как изменяется температура по толщине плоской многослойной стенки.

Тема 3.1 Теплопроводность

Практическая работа №3

Расчет теплового потока и распределение температур в стенках печи

Цель работы: с помощью теоретических расчетов по формулам определить количество переданного тепла через стенку печи

Выполнив работу, Вы будете:

уметь:

- применять для расчетов законы теплопередачи

Материальное обеспечение:

Методические указания для расчета количества тепла, переданного через многослойную стенку **Задание:**

Рассчитать тепловой поток, переданный через многослойную стенку

Порядок выполнения работы:

- 1. Изучить методические указания к данной практической работе.
- 2. Решить задачи теплопроводности при стационарном состоянии
- 3. Расчеты выполнить по методике, приведенной в разработке.

Ход работы:

Определить потери тепла через стенку печи при стационарном тепловом режиме, если температура внутренней поверхности кладки $t_{\kappa n}=t_n=1300~^0C$, температура окружающей среды $t_{\text{ок.}}=0~^0C$. Толщина шамотной кладки $\delta_{\text{ш.}}=0,46$ м, толщина изоляционной кладки из диатомитового кирпича $\delta_{\text{д.}}=0,115$ м и толщина изоляции из вермикулитовых плит $\delta_{\text{в.}}=0,05$ м. Определить температуры на границах слоев. Температура наружной поверхности кладки $t_{\text{нар.}}=100~^0C$

Теплопроводность шамотного кирпича $\lambda_{\text{III.}}$ =0,88+0,00023t Bt/(м K); диатомитового кирпича $\lambda_{\text{II.}}$ =0,163+0,00023t Bt/(м K); вермикулитовых плит $\lambda_{\text{II.}}$ =0,081+0,00023t Bt/(м K).

1. Принимаем в первом приближении распределение температур по толщине кладки линейным. Найдем температуры на границах раздела слоев.

$$t_{III-I\!\!/} = t_{{\scriptscriptstyle MAP.}} + \left(t_{{\scriptscriptstyle KII.}} - t_{{\scriptscriptstyle MAP.}}\right) \frac{\delta_{I\!\!/} + \delta_{B}}{\delta_{III} + \delta_{I\!\!/} + \delta_{B}};$$

2. Средняя температура слоя шамота

$$t_{III}^{cp} = \frac{t_{\kappa n.} + t_{III-II}}{2};$$

3. Коэффициент теплопроводности шамота

$$\lambda_{III} = 0.88 + 0.00023 \cdot 858.4 = 1.077 \left(Bm / (M \cdot K) \right)$$

4. Средняя температура слоя диатомита

$$t_{\mathcal{A}}^{cp} = \frac{t_{\mathcal{U}-\mathcal{A}} + t_{\mathcal{A}-\mathcal{B}}}{2};$$

5. Коэффициент теплопроводности диатомита

$$\lambda_{II} = 0.163 + 0.00023 \cdot 306, 4 = 0.29 \left(Bm / (M \cdot K) \right)$$

6. Средняя температура слоя вермикулита

$$t_B^{cp} = \frac{t_{\mathcal{A}-B} + t_{HAP}}{2};$$

7. Коэффициент теплопроводности вермикулита

$$\lambda_B = 0.081 + 0.00023 \cdot 148 = 0.115 \left(Bm / (M \cdot K) \right)$$

8. Плотность теплового потока через трехслойную стенку

$$q = \frac{t_{KII.} - t_{OK}}{\sum_{i=1}^{3} \frac{\delta_i}{\lambda_i} + \frac{1}{\alpha_2}},$$

где α_2 - коэффициент теплоотдачи конвекцией от наружной поверхности футеровки в окружающую среду

$$\alpha_2 = 10 + 0.06t_{HAP};$$

 $\alpha_2 = 10 + 0.06 \cdot 100 = 16 (Bm/M^2 \cdot K)$

тогда

$$q = \frac{1300 - 0}{\frac{0,46}{1,077} + \frac{0,115}{0,29} + \frac{0,05}{0,115} + \frac{1}{16}} = 984,8 \left(\frac{Bm}{M^2} \right)$$

9. Найдем уточненные значения температур на границах раздела слоев футеровки

$$t'_{III-II} = t_{KII.} - q \frac{\delta_{III}}{\lambda_{III}};$$

$$t'_{III-II} = 1300 - 984, 8 \frac{0,46}{1,077} = 875, 3(^{\circ}C)$$

$$t'_{III-II} = t_{KII.} - q \left(\frac{\delta_{III}}{\lambda_{III}} + \frac{\delta_{II}}{\lambda_{II}} \right);$$

$$t'_{II-II} = 1300 - 984, 8 \left(\frac{0,46}{1,077} + \frac{0,115}{0,29} \right) = 484, 1(^{\circ}C)$$

$$t'_{III-II} = t_{OK} + \frac{q}{\alpha_{2}};$$

$$t'_{HAP} = 0 + \frac{984,8}{16} 61,7({}^{\circ}C)$$

10. Определяем уточненные значения средних температур слоев и коэффициентов теплопроводности

при
$$t_{III}^{cp'} = \frac{t_{KJ} + t_{III-J}^{\prime}}{2}$$
;

 $t_{III}^{cp'} = \frac{1300 + 875,3}{2} = 1087,6({}^{\circ}C)$
 $\lambda_{III}^{\prime} = 0,88 + 0,00023 \cdot 1087,6 = 1,13(Bm/M \cdot K)$

при $t_{II}^{cp'} = \frac{t_{III-J}^{\prime} + t_{IJ-B}^{\prime}}{2}$;

 $t_{II}^{cp'} = \frac{875,3 + 484,1}{2} = 679,7({}^{\circ}C)$
 $\lambda_{II}^{\prime} = 0,163 + 0,00023 \cdot 679,7 = 0,45(Bm/M \cdot K)$

при $t_{B}^{cp'} = \frac{t_{IJ-B}^{\prime} + t_{IAAP}^{\prime}}{2}$;

 $t_{B}^{cp'} = \frac{484,1 + 61,7}{2} 272,9({}^{\circ}C)$
 $\lambda_{B}^{\prime} = 0,081 + 0,00023 \cdot 272,9 = 0,144(Bm/M \cdot K)$
 $\alpha_{2}^{\prime} = 10 + 0,06t_{IAAP}^{\prime}$
 $\alpha_{2}^{\prime} = 10 + 0,06 \cdot 61,7 = 13,7(Bm/M^{2} \cdot K)$

11. Найдем уточненное значение плотности потока тепла через стенку

$$q' = \frac{t_{RM} - t_{OK}}{\sum_{i=1}^{3} \frac{\delta_{i}}{\lambda_{i}'} + \frac{1}{\alpha_{2}'}};$$

$$q' = \frac{1300 - 0}{\frac{0,46}{1,13} + \frac{0,115}{0,45} + \frac{0,05}{0,144} + \frac{1}{13,7}} = 1214,9(Bm/m^{2})$$

Вывод: распределение температур по толщине стенки будет:

$$t_{\text{KJL}} = 1300^{\circ}\text{C}; t_{\text{III-}\mathcal{A}} = 875,3^{\circ}\text{C}; t_{\text{A}-B} = 484,1^{\circ}\text{C}; t_{\text{HAP}} = 61,7^{\circ}\text{C}.$$

Форма представления результата:

Расчеты выполнить в тетради для практических работ.

Критерии оценки: правильность выполненного расчета

Тема 3.3 Теплообмен излучением

Практическое занятие №4

Определение коэффициента теплоотдачи в условиях конвекции и теплового излучения Цель работы: с помощью теоретических расчетов по формулам определить коэффициент теплоотдачи

Выполнив работу, Вы будете:

уметь:

- определять коэффициент теплоотдачи при сложном теплообмене

Материальное обеспечение:

Раздаточный материал

Задание:

- 1.Определить количество переданного тепла в печи с конвективным теплообменом при нагреве заготовки размерами $0.1 \times 0.2 \times 0.9 \text{м}$ с температуры $t_{\text{нач.}} = 25^{\circ} \text{ C}$ до температуры $t_{\text{кон.}} = 1300^{\circ} \text{C}$ за 12мин. Температура кладки печи $t_{\text{нар.}} = 80^{\circ} \text{ C}$ (Задачу решать по закону Ньютона.)
- 2. Определить количество переданного тепла в печи с конвективным теплообменом при нагреве заготовки размерами $0.2 \times 0.3 \times 1.2 \text{м}$ с температуры $t_{\text{нач.}} = 0^0 \text{ C}$ до температуры $t_{\text{кон.}} = 1250 \, ^0 \text{C}$ за 7мин. Температура кладки печи $t_{\text{нар.}} = 120 \, ^0 \text{C}$. (Задачу решать по закону Ньютона.)

Порядок выполнения работы:

- 1. Повторение теоретического материала
- 2. Решение задач

Ход работы:

1. Средний по длине методической зоны коэффициент теплоотдачи излучением определяется:

$$\alpha_{\text{H3JT.}} = \frac{C_0 \xi_{np} \sqrt{\left[\left(\frac{T_z}{100}\right)^4 - \left(\frac{T_{_M}^{_{HAY.}}}{100}\right)^4\right] \left[\left(\frac{T_z}{100}\right)^4 - \left(\frac{T_{_M}^{_{KOH.}}}{100}\right)^4\right]}}{\sqrt{\left(T_z - T_{_M}^{_{HAY.}}\right) \left(T_z - T_{_M}^{_{KOH.}}\right)}} , \frac{Bm}{\left(m^2 \cdot K\right)},$$

2. α_2 - коэффициент теплоотдачи конвекцией от наружной поверхности футеровки в окружающую среду

$$\alpha_2 = 10 + 0.06t_{HAP}$$
;

3. Коэффициент теплоотдачи в данном случае будет суммарным $\alpha_{\Sigma} = \alpha_{\kappa} + \alpha_{\kappa}$

Форма представления результата:

Расчеты выполнить в тетради для практических работ.

Критерии оценки: правильность выполненного расчета

Тема 4.1 Дефекты нагрева металла

Практическая работа №5

Определение режимов нагрева тонких и массивных тел

Цель работы: научиться определять режимы нагрева тонких и массивных тел **Выполнив работу, Вы будете:**

уметь:

- определять тепловую массивность тел

Материальное обеспечение:

Раздаточный материал

Задание:

Решение задач

Порядок выполнения работы:

- 1. Повторение теоретического материала.
- 2. Решение задач для тонких тел
- 3. Решение задач для массивных тел

Ход работы:

1. Физический смысл и роль критерия Bi становятся ясными, если его значение записать в таком виде:

$$Bi = \frac{\alpha s}{\lambda} = \frac{s/\lambda}{1/\alpha}.$$

- 2. Большую роль играет критерий БиО. С теплотехнической точки зрения весь металл подразделяется на «тонкий» и «массивный». Если критерий Bi > 0,25, тело «массивное», если Bi < 0,25 тело «тонкое».
- 3. Методы расчета «тонкого» и «массивного» металла различны, поэтому в первую очередь необходимо определить значение критерия БиО. Наиболее простым методом расчета времени нагрева металла является графо аналитический метод с применением номограмм Будрина.

Задачи:

- 1. Определить температурный критерий поверхности пластины толщиной 150 мм, если известно, что критерий Био равен 6, коэффициент температуропроводности равен $5,56\cdot10^{-6}$ м 2 /с, время нагрева 1 час.
- 2. Определить температурный критерий центра цилиндра, если известно, что Fo=8, Bi=0,7; Fo=12, Bi=0,14.

Определить температурный критерий поверхности пластины, если известно, что Fo=8, Bi=0,2; Fo=6, Bi=0,3.

- 3. Определить критерий Био для поверхности пластины, если известно, что температурный критерий поверхности равен 0,1, а критерий Фурье
- 4. Рассчитать время нагрева массивного тела, если известно: температура газа 1125^{0} C; начальная температура металла 20^{0} C; толщина металла 0,066м; λ =40,8 Bt/(м K); $\alpha_{\text{изл}}$ =122,3 Bt/(м 2 K); конечная температура металла 450^{0} C Определение температурного критерия θ и критерия Bi

$$\Theta = \frac{t_z - t_{MDOB.}^{KOH}}{t_z - t_{u}^{HAV.}} ; \qquad Bi = \frac{\alpha_{usn} \cdot S}{\lambda};$$

$$\Theta = \frac{1125 - 450}{1125 - 20};$$
 $Bi = \frac{122,3 \cdot 0,066}{40,8};$

$$\Theta = 0.61.$$
 Bi = 0.198.

где λ – коэффициент теплопроводности, BT/(MK)

Так же находится коэффициент температуропроводности $a = 8,05 \cdot 10^{-6} \text{ m}^2/\text{c}$.

По номограммам в находится критерий Фурье Fo=2,5

Время нагрева массивного тела определяется:

$$\tau_{M} = \text{Fo} \frac{S^{2}}{a};$$

$$\tau_{M} = 2.5 \frac{0.066^{2}}{8.05 \cdot 10^{-6}};$$

$$\tau_{M} = 3822.4c (1.14)$$

Форма представления результата:

Расчеты выполнить в тетради для практических работ.

Критерии оценки: правильность выполненного расчета

Тема 4.2 Основы рациональной технологии нагрева металла

Практическая работа № 6

Расчет времени нагрева металла в металлургической печи

Цель работы: с помощью теоретических расчетов по формулам научиться определять время нагрева металла в методической зоне нагревательной печи.

Выполнив работу, Вы будете:

уметь:

- рассчитывать время нагрева металла по технологическим зонам

в методической печи

Материальное обеспечение:

Методическая разработка по выполнению расчета времени нагрева металла в методической печи, справочная литература, номограммы для определения степени черноты газов, номограммы Д.В. Будрина для расчета времени нагрева пластины

Задание:

Данные для расчетов:

<u>№</u> вариан та	Р, т	δ, мм	b, мм	1, мм	t _{кон. Ме,} С	t _{окр. ср,} С ⁰	Материал металла
1	72	210	1400	10500	1250	30	Ст 35
2	83	250	250	11000	1200	20	08 кп
3	80	230	1450	11500	1200	0	C _T 0
4	85	240	1350	10000	1150	10	Ст 45
5	73	220	220	10500	1200	10	Ст 55
6	75	190	1150	9000	1100	0	Ст 1
7	75	195	1150	9500	1150	15	Ст 15
8	85	300	1500	11000	1300	25	Ст 45
9	82	210	210	10500	1250	30	Ст 5
10	70	185	1100	9000	1150	10	08 пс(ж)

11	77	240	1400	12000	1300	20	08 Ю
12	90	255	1500	12000	1300	15	Ст 20
13	87	245	1450	11500	1250	10	Ст 3
14	85	230	230	10000	1200	0	09 Γ 2C
15	67	180	1000	8500	1150	10	08 кп
16	82	220	220	9500	1250	15	20 XHA
17	72	200	200	9000	1200	20	Ст 0
18	85	195	1100	10000	1250	30	Ст 2
19	75	240	1000	9500	1250	15	Ст 65
20	73	240	240	10500	1200	25	Ст 70
21	87	250	1250	5600	1250	0	Ст 65 Г
22	83	250	1300	7000	1250	5	18 ЮА
23	86	250	1580	8500	1200	10	08 пс(ж)
24	70	250	1080	7600	1250	10	Ст 2
25	80	250	1500	7500	1250	15	Ст 45
26	90	250	1850	8800	1350	5	Ст 50
27	75	250	1350	9000	1200	20	Ст 20
28	73	250	250	10000	1200	25	09 Г 2 С
29	83	250	1380	5700	1250	30	08 кп
30	85	250	1800	6500	1300	35	Ст 15
31	72	230	1080	8000	1250	0	Ст 65
32	82	200	200	8500	1300	15	Ст 70
33	87	240	240	9500	1250	5	Ст 0
34	86	250	1500	7000	1200	40	18 ЮА
35	90	195	1000	10500	1350	50	20 XHA

Порядок выполнения работы:

Изучить методические указания к данной работе.

- 1. Определить ориентировочные размеры методической печи
- 2. Рассчитать степень развития кладки методической печи
- 3. Определить эффективную длину луча в методической печи
- 4. Определить время нагрева металла в методической печи используя номограммы Д.В. Будрина

$$\tau_{\scriptscriptstyle M} = Fo \frac{S^2}{a}$$

Ход работы:

Температура уходящих из печи дымовых газов принимаем равной t_{yx} =1050 0 C; температура в печи в томильной зоне на 50 0 C выше температуры нагрева металла, т.е. t_{κ} +50 0 , значит 1150+50=1200 0 C. В методической зоне и при переходе из нее в сварочную зону температура в центре металла должна быть порядка 400 – 500 0 C.

Разность температур между поверхностью и серединой заготовки для методической зоны

$$\Delta t = t_{\text{пов.}} - t_{\text{п}} = (700 \div 800) \text{S},$$

где $S = \mu \delta$ – расчетная толщина изделия,

 μ =0,55 – коэффициент несимметричности нагрева, определяется по таблице S=0,55 · 0,12;

S=0.066M

тогда

$$\Delta t = 700 \cdot 0,066;$$
 $\Delta t = 46,2^{0}C$
 $t_{\text{IIOB.}} = \Delta t + t_{\text{II}};$
 $t_{\text{IIOB.}} = 46,2 + 400;$
 $t_{\text{IIOB.}} = 446,2^{0}C \approx 450^{0}C,$

следовательно, температура поверхности сляба в конце методической зоны равна 450 $^{0}\mathrm{C}$ Ориентировочные размеры печи

При однорядном расположении заготовок ширина печи будет:

где – a = 0,2 м – зазор между слябами и стенками печи.

В соответствии с рекомендациями [3] высоту печи принимаем равной:

в томильной зоне $H_T=1,5$ м;

в сварочной зоне Н_{св.}=2,6 м;

в методической зоне $H_{\rm M}$ =2,2 м.

Степень развития кладки (на 1м длины печи) для:

методической зоны $\omega_{\rm M}$ =(2H_M+B)/l;

$$\omega_{\rm M} = (2\cdot 2, 2+2, 4)/2;$$

$$\omega_{M}=3,4;$$

сварочной зоне: $\omega_{cB} = (2$

$$\omega_{cB} = (2H_{cB} + B)/1;$$

$$\omega_{\text{CB}} = (2.2,6+2,4)/2;$$

$$\omega_{cr}=3.8$$

томильной зоне:

$$\omega_{\text{T.}} = (2H_{\text{T.}} + B)/l;$$

 $\omega_{\text{T.}} = (2 \cdot 1, 5 + 2, 4)/2;$

$$\omega_{\rm T}=2,7$$
.

Определение эффективной длины луча.

$$S_{9\phi}=3,6\frac{V}{F}$$
 - формула А.С.Невского

$$S_{9\Phi} = 3.6 \frac{B \cdot H}{2B + 2H};$$

методическая зона: $S_{\frac{M}{9\dot{\phi}}}^{M} = 3,6 \frac{2,4 \cdot 2,2}{2 \cdot 2,4 + 2 \cdot 2,2}$;

$$S_{9\phi}^{M} = 0,57 \text{ m};$$

сварочная зона: $S_{3\phi}^{cs.} = 3,6 \frac{2,4 \cdot 2,6}{2 \cdot 2.4 + 2 \cdot 2.2};$

$$S_{ab}^{ce.} = 0.62 \text{ m};$$

томильная зона: $S_{\frac{m}{2}, \frac{2}{4}, \frac{2}{4}, \frac{2}{1,5}}^{m}$;

$$S_{9\phi}^{m} = 0,46 \text{ M}$$

Определение времени нагрева в методической зоне

Степень черноты дымовых газов ξ_{ε}^{M} при средней температуре t_r =0,5(1200⁰+1050⁰)=1125⁰С Парциальное давление CO₂ и H₂O:

$$p_{CO_2}$$
 =98,1·0,088;
 p_{co_2} =8,66κΠα;
 p_{n_2o} =98,1·0,174;
 p_{n_2o} =17,07κΠα,

где - 98,1-абсолютное давление смеси;

0,088 и 0,174 соответственно берется из расчета горения топлива при определении процентного состава продуктов сгорания ($CO_28,83\%$; $H_2O17,35\%$) и делится на 100%.

Определяем $p_{co_2} \cdot S_{3\phi} = 8,66 \cdot 0,57 = 4,9 к \Pi a \cdot M;$

$$p_{_{_{\mathit{H}_2O}}}$$
 · S_{эф}=17,07·0,57=9,7кПа·м.

$$\xi_{co_2} = 0.07, \ \xi_{H_2o} = 0.09, \ \beta = 1.09,$$

тогля

$$\xi_{c}^{M} = \xi_{co_{2}} + \beta \xi_{n_{2}o}^{e};$$

$$\xi_{c}^{M} = 0,07 + 1,09 \cdot 0,09;$$

$$\xi_{c}^{M} = 0,168.$$

Определение приведенная степень черноты

$$\xi_{\text{mp}} = \xi_{\text{M}} \frac{\omega_{\text{M}} + 1 - \xi_{\text{P}}^{\text{M}}}{\left[\xi_{\text{Me}} + \xi_{\text{P}}^{\text{M}} \left(1 - \xi_{\text{Me}}\right)\right] \frac{1 - \xi_{\text{P}}^{\text{M}}}{\xi_{\text{P}}^{\text{M}}} + \omega_{\text{M}}},$$

где $\xi_{\text{ме}}$ – степень черноты металла $\xi_{\text{ме}}$ =0,8

$$\xi_{\text{inp}} = 0.8 \frac{3.4 + 1 - 0.168}{\left[0.8 + 0.168\left(1 - 0.8\right)\right] \frac{1 - 0.168}{0.168} + 3.4};$$

$$\xi_{\text{пр.}}=0,44.$$

Средний по длине методической зоны коэффициент теплоотдачи излучением определяется:

$$\alpha_{\text{H3JI.}} \!=\! \frac{C_0 \xi_{np} \sqrt{\left[\left(\frac{T_z}{100}\right)^4 - \!\left(\frac{T_{\frac{N}{M}}}{100}\right)^4\right] \! \left[\left(\frac{T_z}{100}\right)^4 - \!\left(\frac{T_{\frac{N}{M}}}{100}\right)^4\right]}}{\sqrt{\left(T_z - T_{\frac{N}{M}}^{\text{HAVI.}}\right) \! \left(T_z - T_{\frac{N}{M}}^{\text{KOH.}}\right)}}$$

где C_0 =5,7 Bт/(м²K) - константа излучения черного тела. Принимаем $t_{\rm M}^{\rm Hau.}$ =20 $^{\rm 0}$ C; $t_{\rm M}^{\rm Koh.}$ =450 $^{\rm 0}$ C - считали в 1) пункте.

$$\alpha_{\text{изл.}}=122,3 \text{ BT/(M}^2\text{K}).$$

Определение температурного критерия θ и критерия Bi

$$\Theta = \frac{t_{z} - t_{MNOB.}^{KOH}}{t_{z} - t_{M}^{Haqs.}}; \qquad \text{Bi} = \frac{\alpha_{usn} \cdot S}{\lambda};$$

$$\Theta = \frac{1125 - 450}{1125 - 20}; \qquad \text{Bi} = \frac{122,3 \cdot 0,066}{40,8};$$

 $\Theta = 0.61.$ Bi = 0.198.

где λ – коэффициент теплопроводности, Вт/(м К)

Так же находится коэффициент температуропроводности $a = 8.05 \cdot 10^{-6} \,\mathrm{m}^2/\mathrm{c}$.

По номограммам находится критерий Фурье Fo=2,5 Время нагрева металла в методической зоне печи определяется:

$$\tau_{\rm M} = \text{Fo} \frac{S^2}{a};$$

$$\tau_{\rm M} = 2.5 \frac{0.066^2}{8.05 \cdot 10^{-6}};$$

$$\tau_{\rm M} = 3822.4c (1.14)$$

Время нагрева металла в сварочной зоне.

Найдем степень черноты дымовых газов при t_r =1200 0 C

По номограммам находим

$$\xi_{co_2} = 0.07; \; \xi_{H_2O} = 0.09; \; \beta = 1.08.$$

Из этого следует

$$\xi_{z}^{cs} = 0.07 + 1.08 \cdot 0.09$$

 $\xi_{z}^{cs} = 0.17$

Принимаем температуру поверхности металла в конце сварочной зоны 950 ⁰C Приведенная степень черноты определяется по формуле

$$\xi_{np}^{c6} = 0.8 \frac{3.8 + 1 - 0.17}{\left[0.8 + 0.17\left(1 - 0.8\right)\right] \frac{1 - 0.17}{0.17} + 3.8}$$

$$\xi_{np}^{ce} = 0.59$$

По формуле 67,б [1] определим $\alpha_{_{_{_{_{_{_{_{_{33}}}}}}}}^{_{_{_{_{_{_{_{_{_{13}}}}}}}}}}$

$$\alpha_{u_{33}}^{c_6} = 76.4 \text{ (BT/(M}^2 \cdot \text{K))}$$

Находим среднюю по сечению температуру металла в начале сварочной зоны (в конце методической зоны)

$$t_{ce}^{cp.hau.} = t_{noe} - \frac{2}{3} (t_{noe} - t_{u});$$

 $t_{ce}^{cp.hau.} = 450 - \frac{2}{3} (450 - 351);$
 $t_{ce}^{cp.hau.} = 384 \, {}^{0}C.$

Находим температурный критерий для поверхности заготовки

$$\Theta_{\text{HOB}} = \frac{1200 - 950}{1200 - 384};$$

$$\Theta_{\text{HOB}} = 0.31$$

Примем температуру в центре заготовки в конце зоны $800\,^{0}$ С, тогда средняя температура металла в сварочной зоне будет:

$$t_{ce}^{cp} = 0.25 \left(t_{M}^{\kappa o H} + t_{u}^{\kappa o H} + t_{noe}^{ce} + t_{u}^{ce} \right);$$

$$t_{ce}^{cp} = 0.25 (450 + 384 + 950 + 800);$$

$$t_{ce}^{cp} = 646 \, {}^{0}\text{C}.$$

находим: λ =37,1 Вт/(м·К); α =6,39·10⁻⁶ м²/с, далее следует

$$Bi = \frac{76,4 \cdot 0,066}{37,1};$$

$$Bi = 0.14$$
.

По номограмме находим критерий Fo

$$F_0 = 8,1$$

Время нагрева в сварочной зоне

$$\tau_{\text{CB}} = \text{Fo} \frac{S^2}{a};$$

$$\tau_{\text{CB}} = 8.1 \frac{0.066^2}{6.39 \cdot 10^{-6}};$$

$$\tau_{\text{CB}} = 7236.0 \text{ c } (2.01 \text{ yac.})$$

Время нагрева в томильной зоне.

Перепад температур по толщине в начале томильной зоны

$$\Delta t_{\text{Hau}} = 1200-914,4;$$

 $\Delta t_{\text{Hau}} = 285,6 \, ^{0}\text{C}.$

Допустимый перепад температур в конце нагрева $\Delta t_{\text{кон.}} = 50 \, ^{0}\mathrm{C}$ Степень выравнивания температур

$$\delta_{\text{выр.}} = \frac{\Delta t_{\kappa o \mu}}{\Delta t_{\nu a \nu}};$$

$$\delta_{\text{выр.}} = \frac{50}{285.6}$$
;

$$\delta_{\text{выр.}} = 0.18$$

При коэффициенте несимметричности нагрева, равном μ=0,55 критерий Fo для томильной зоны согласно номограмме равен Fo=2,5

При средне температуре металла в томильной зоне

$$t_T^{cp.} = 0.25(t_{\Gamma} + t_H^{ce} + t_M^{noe_{ce}} + t_M^{koh});$$

$$t_T^{cp.} = 0.25(1200 + 914.4 + 950 + 1200);$$

$$t_{T}^{cp} = 1066, 1^{0}$$
C.

 $\lambda = 28.5 \text{ BT/(M·K)}; a = 83 \cdot 10^{-6} \text{ m}^2/\text{c}.$

Время томления

$$\tau_{\rm T} = \text{Fo} \frac{S^2}{a}$$
;

$$\tau_{\rm T} = 2.5 \frac{0.066^2}{83 \cdot 10^{-6}};$$

$$\tau_T = 1964,25c (0,554).$$

Полное время пребывания металла в печи равно

$$\tau = \tau_{M} + \tau_{CB} + \tau_{T};$$

 $\tau = 3822,4+7236,0+1964,25;$

 $\tau = 13022,65c (3,6 \text{ y}).$

Вывод: время нагрева металла в трехзонной методической печи садкой 74 т составляет 13022,65с или 3,6 часа.

Форма представления результата:

Расчеты выполнить и оформить на формате А4 по ГОСТам.

Критерии оценки: правильность выполненного расчета

<u>Тема 6.1 Теплотехнические основы утилизации тепла отходящих дымовых газов.</u> Устройства для утилизации тепла в печах

Практическое занятие №7

Расчет теплообменника

Цель работы: научиться применять расчетные соотношения теплообменников **Выполнив работу, Вы будете:**

уметь:

- применять расчетные соотношения теплообменников

Материальное обеспечение:

Методическая разработка по выполнению расчета регенератора,

Задание:

- 2. Определить степень утилизации тепла дымового газа составом 14%CO₂ ; 9,91%H $_2$ O; 1,73%O $_2$; 74,36%N $_2$, выходящего из печи с температурой t_Γ =2000 0 C. Температура подогрева воздуха t_R =1300 0 C.
- 3. Определить процент экономии топлива плавильной печи, если температура горения топлива 1900 0 C, температура дыма 1800 0 C, состав дымовых газов: 13%CO₂; 9,1%H $_{2}$ O; 2%O₂; 75,9%N₂, температура подогрева воздуха t $_{B}$ =1200 0 C.
- 4. Определить процент экономии топлива плавильной печи, если температура горения топлива 1800^{0} C, температура дыма 1700^{0} C, состав дымовых газов 14,4%CO₂; 9,5%H₂O; 1,7%O₂; 74,4%N₂, температура подогрева воздуха t_{B} = 1100^{0} C.

No	Садка	Теплов.	Темп-ра	Темп-ра	Начальная	Скорость воздуха в
вар	печи,	нагрузка,	дыма,	подогрева	темп-ра	регенераторе, w _в
иан	T	Q _{max} ,	входящег	воздуха,	воздуха,	M/C
та		10 ⁸ кДж/ч	ОВ	$t_e^{\kappa 0}C$	$t_{\epsilon}^{\kappa 0}C$	
		, ,	регенерат	6	- 6	
			op $t_{\partial}^{\scriptscriptstyle H}$, ${}^{\scriptscriptstyle 0}C$			
1	400	2	1400	750	0	0,6
2	600	3	1700	850	0	0,7
3	300	2	1450	700	0	0,6
4	200	3	1500	800	0	0,6
5	200	2	1450	780	0	0,7
6	900	3	1650	900	10	0,7
7	850	3	1700	900	10	0,6
8	400	2	1400	800	5	0,6
9	300	2	1600	800	0	0,7
10	600	3	1600	650	5	0,6
11	400	3	1550	800	10	0,7
12	900	4	1800	900	10	0,8
13	300	2	1500	600	5	0,5
14	200	2	1400	600	0	0,5
15	600	3	1750	700	0	0,7
16	300	2	1600	750	5	0,7
17	900	2	1500	850	0	0,6
18	200	3	1200	500	0	0,5
19	300	2	1100	510	0	0,5
20	400	2	800	200	5	0,4

21	600	3	1300	400	10	0,5
22	400	2	1200	400	0	0,5
23	900	3	1600	850	10	0,7
24	600	3	1500	800	5	0,6
25	900	5	1350	900	0	0,7
26	600	4	1250	850	10	0,6
27	600	3	1200	700	0	0,6
28	400	3	1200	800	5	0,7
29	300	2	1300	700	5	0,6
30	400	3	1400	600	0	0,6
31	900	4	1700	870	10	0,8
32	200	2	1210	630	0	0,5
33	300	2	1330	740	5	0,6
34	600	3	1550	750	0	0,6
35	900	5	1800	900	10	0,8

Для всех вариантов: тип насадки "Сименс";

топливо – природный газ.

Порядок выполнения работы:

- 1. Повторение теоретического материала.
- 2. Решение задач
- 3. Расчет размеров теплообменника

Ход работы:

Определение тепловой нагрузки теплообменника

Для нормальной работы печи надо обеспечить требуемую тепловую нагрузку, т.е.

ежечасную подачу определенного количества тепла в печь.

В это количество пепла входят:

- Химически связанное тепло топлива (Q_x) это тепло от сгорания топлива.
- Тепло подогретого газа и воздуха (Qфиз.).

$$Q_{\Sigma} = Q_{x} + Q_{\Phi u_{3}} - \text{общее (суммарное) тепло.}$$

Из уравнения ясно, что при Q_{Σ} =const увеличение $Q_{\Phi^{\text{из.}}}$ Позволит уменьшить Q_{x} .

Иными словами, утилизация тепла отходящих дымовых газов позволяет экономить топливо.

Степень утилизации тепла дымовых газов определяется:

$$R = \frac{I_s}{I_a}$$

Надо помнить, что R < 1, т.е. утилизация не может быть 100%.

 $I_{B}(i_{B})$ – теплосодержание (энтальпия) подогретого воздуха (берется по таблице)

 $I_{\pi}(i_{\pi})$ – теплосодержание (энтальпия) отходящих дымовых газов.

КПД (η) теплообменника:

$$\eta = \frac{I_{e}}{I_{a}} 100\%$$

Определить экономию топлива в %

$$\Im = R \frac{I_{\partial}/I_{\partial}'}{1 - I_{\partial}/I_{\partial}'(1 - R)} 100\%$$

 $I_{\text{д}}$ –теплосодержание (энтальпия) дымовых газов покидающих печь;

 I_{δ}^{\prime} - теплосодержание (энтальпия) дымовых газов при температуре горения.

Снижение расхода топлива при утилизации тепла отходящих дымовых газов является одним из путей снижения стоимости нагрева металла.

Определить объем решетки регенератора

$$V_{pem} = \frac{F_{pem}}{13}$$

Определить коэффициент стройности

$$K = \frac{H}{\sqrt{F_{cev}}}$$

Форма представления результата:

Расчеты выполнить и оформить на формате А4 по ГОСТам.

Критерии оценки: правильность выполненного расчета

Тема 7.2

Металлургические печи и конвертеры

Практическое занятие №8

Расчет статей теплового баланса печи

Цель работы: научиться рассчитывать тепловой баланс нагревательной печи **Выполнив работу, Вы будете:**

уметь:

- применять расчетные формулы для определения баланса

Материальное обеспечение:

Методическая разработка по выполнению расчета баланса печи

Тепловой поток, воспринятый водяным паром в печи (полезная тепловая нагрузка):

$$Q_{max} = G(H_{ex2} - H_{ex1}) \cdot 10^3$$
,

где G - количество перегреваемого водяного пара в единицу времени, кг/с;

 H_{Bn1} и H_{Bn2} - энтальпии водяного пара на входе и выходе из печи соответственно, кДж/кг;

$$Q_{non} = 3.3 \cdot (4036,42 - 2783,3) \cdot 10^3 = 4.1 \cdot 10^6 _{BT}$$

Принимаем температуру уходящих дымовых газов равной 320 °C (593 K). Потери тепла излучением в окружающую среду составят 10 %, причем 9 % из них теряется в радиантной камере, а 1 % - в конвекционной. КПД топки η_T = 0,95.

Потерями тепла от химического недожога, а также количеством теплоты поступающего топлива и воздуха пренебрегаем.

Определим КПД печи:

$$\eta_{\rm m} = 1 - \frac{H_{\rm ym}}{Q_{\rm m}^{\rm m}} - q_{\rm nom}, \label{eq:eta_mom}$$

где H_{yx} - энтальпия продуктов сгорания при температуре дымовых газов, покидающих печь, t_{yx} ; температура уходящих дымовых газов принимается обычно на 100 - 150 °C выше начальной температуры сырья на входе в печь; q_{not} - потери тепла излучением в окружающую среду, % или доли от Q_{not} ;

$$\eta_{\rm N} = 1 - \frac{7971,84}{48.97 \cdot 1000} - 0.1 = 0.737.$$

Расход топлива, кг/с:

$$B = \frac{Q_{non}}{10^3 \cdot Q_p^n \cdot \eta_n},$$

$$B = \frac{4.1 \cdot 10^6}{10^3 \cdot 48.97 \cdot 0.737} = 0.114$$
KG/c.

2.3 Расчет радиантной камеры и камеры конвекции

Задаемся температурой дымовых газов на перевале: $t_{\rm n}$ = 750 - 850 °C, принимаем $t_{\rm n}$ = 800 °C (1073 K). Энтальпия продуктов сгорания при температуре на перевале

$$H_{\rm II} = 21171,8 \text{ кДж/кг}.$$

Тепловой поток, воспринятый водяным паром в радиантных трубах:

$$Q_{\mathbf{p}} = B(Q_{\mathbf{p}}^{\mathbf{n}} \cdot \eta_{\mathbf{r}} - H_{\mathbf{n}}) \cdot 10^{3},$$

где $H_{\text{п}}$ - энтальпия продуктов сгорания при температуре дымовых газов па перевале, кДж/кг; η_{T} - коэффициент полезного действия топки; рекомендуется принимать его равным 0,95 - 0,98;

$$Q_y = 0.114 \cdot (48.97 \cdot 10^3 \cdot 0.95 - 21171.8) \cdot 10^3 = 2.9 \cdot 10^6 \frac{1}{Br}$$

Тепловой поток, воспринятый водяным паром в конвекционных трубах:

$$\begin{aligned} Q_{x} &= Q_{non} - Q_{p}, \\ Q_{x} &= 4.1 \cdot 10^{6} - 2.9 \cdot 10^{6} = 1.2 \cdot 10^{6} \\ \text{Bt.} \end{aligned}$$

Энтальпия водяного пара на входе в радиантную секцию составит:

$$H_{\rm m}=H_{\rm en2}-\frac{\mathcal{Q}_{\rm p}}{G\cdot 10^3},$$

$$H_{\rm m}=4036,42-\frac{2.9\cdot 10^6}{3.3\cdot 10^3}=3157,64$$
 кДж/кг.

Принимаем величину потерь давления в конвекционной камере $\Delta P_{\kappa} = 0,1$ МПа, тогда:

$$\mathbf{P}_{\text{K}} = \mathbf{P} - \mathbf{P}_{\text{K}},$$
 $\mathbf{P}_{\text{K}} = 1,2-0,1=1,1 \text{ M}\Pi a.$

Температура входа водяного пара в радиантную секцию t_{κ} = 294 °C, тогда средняя температура наружной поверхности радиантных труб составит:

$$\Theta = \frac{t_{en2} + t_{x}}{2} + \Delta t + 273,$$

где Δt - разность между температурой наружной поверхности радиантных труб и температурой водяного пара (сырья), нагреваемого в трубах; $\Delta t = 20$ - 60 °C;

$$\Theta = \frac{720 + 294}{2} + 20 = 527^{\circ}C = 800$$
 K

Максимальная расчетная температура горения:

$$t_{\max} = t_0 + \frac{Q_p^N \cdot \eta_T}{c_{\pi \epsilon}},$$

где t_0 - приведенная температура исходной смеси топлива и воздуха; принимается равной температуре воздуха, подаваемого на горение;

 $c_{\text{п.с.}}$ - удельная теплоемкость продуктов сгорания при температуре $t_{\text{п}}$;

$$t_{\text{max}} = 15 + \frac{48,97 \cdot 10^3 \cdot 0,95}{26,465} = 1772,8$$
°C.

При t_{max} = 1772,8 °C и t_{n} = 800 °C теплонапряженность абсолютно черной поверхности q_{s} для различных температур наружной поверхности радиантных труб имеет следующие значения: Θ , °C 200 400 600

$$q_s, B_T/m^2 1,50 \cdot 10^5 1,30 \cdot 10^5 0,70 \cdot 10^5$$

Строим вспомогательный график (рис. 2) см. Приложение, по которому находим теплонапряженность при $\Theta = 527$ °C: $q_s = 0.95 \cdot 10^5 \; \mathrm{Bt/m^2}$.

Рассчитываем полный тепловой поток, внесенный в топку:

$$Q = B \cdot Q_p^{\text{N}} \cdot \eta_m \cdot 10^3,$$

$$Q = 0.114 \cdot 48.97 \cdot 10^3 \cdot 0.95 \cdot 10^3 = 5303451 \text{ Bt.}$$

Предварительное значение площади эквивалентной абсолютно черной поверхности:

$$H_s = \frac{Q}{q_s},$$

$$H_s = \frac{5303451}{0,95 \cdot 10^5} = 55,83$$
 M^2

Принимаем степень экранирования кладки $\Psi=0,45$ и для $\alpha=1,25$ находим, что $H_s/H_\pi=0,73$.

Величина эквивалентной плоской поверхности:

$$H_{A} = \frac{H_{s}}{H_{s}/H_{A}},$$

$$H_{A} = \frac{55,83}{0,73} = 76,48$$
 $M^{2}.$

Принимаем однорядное размещение труб и шаг между ними:

 $S = 2d_H = 2 \cdot 0,152 = 0,304$ м. Для этих значений фактор формы K = 0,87. Величина заэкранированной поверхности кладки:

$$H = \frac{H_A}{K},$$

$$H = \frac{76,48}{0,87} = 87,9$$

$$M^2.$$

Поверхность нагрева радиантных труб:

$$F_y = \frac{\pi}{2} \cdot H,$$

$$F_y = \frac{\pi}{2} \cdot 87,9 = 138,0$$

$$M^2.$$

 $\frac{180}{2}$

Выбираем печь ББ2 $\overline{\ ^9}$, ее параметры: поверхность камеры радиации, м 2 180, поверхность камеры конвекции, м 2 180, рабочая длина печи, м 9, ширина камеры радиации, м 1,2, способ сжигания топлива беспламенное, горение диаметр труб камеры радиации, мм 152×6 диаметр труб камеры конвекции, мм 114×6 Число труб в камере радиации:

$$n_p = \frac{F_p}{\pi \cdot d_n \cdot l_{non}},$$

где $d_{\scriptscriptstyle H}$ - наружный диаметр труб в камере радиации, м;

 ${
m l}_{
m non}$ - полезная длина радиантных труб, омываемая потоком дымовых газов, м,

$$l_{\text{пол}} = 9 - 0.42 = 8.2 \text{ M},$$

 $n_p = \frac{180}{\pi \cdot 0.152 \cdot 8.2} = 46$

Теплонапряженность поверхности радиантных труб:

$$q_y = \frac{Q_y}{F_y},$$

$$q_y = \frac{2.9 \cdot 10^6}{180} = 16111.1 \text{ BT/M}^2.$$

Определяем число труб камеры конвекции:

$$n_{x} = \frac{F_{x}}{\pi \cdot d_{x} \cdot l_{xox}},$$

$$n_{x} = \frac{180}{\pi \cdot 0.114 \cdot 8.2} = 62.$$

Располагаем их в шахматном порядке по 3 в одном горизонтальном ряду. Шаг между трубами $S = 1.7d_{\rm H} = 0.19$ м.

Средняя разность температур определяем по формуле:

$$\Delta t_{cp} = \frac{(t_n - t_n) - (t_{yx} - t_{exl})}{\ln \frac{t_n - t_n}{t_{yx} - t_{exl}}} = \frac{(t_n - t_n) - (t_{yx} - t_{exl})}{2.3 \lg \frac{t_n - t_n}{t_{yx} - t_{exl}}},$$

$$\Delta t_{sp} = \frac{(800 - 294) - (320 - 187)}{\ln \frac{800 - 294}{320 - 187}} = 278,4$$
°C.

Коэффициент теплопередачи в камере конвекции:

$$K = \frac{Q_{x}}{\Delta t_{cp} \cdot F_{x}},$$

$$K = \frac{1.2 \cdot 10^{6}}{278.4 \cdot 180} = 23.95$$
Bt/(m² · K).

Теплонапряженность поверхности конвекционных труб определяем по формуле:

$$q_{x} = \frac{Q_{x}}{F_{x}},$$

$$q_{x} = \frac{1.2 \cdot 10^{6}}{180} = 6666.6$$
BT/M².

Форма представления результата:

Расчеты выполнить и оформить на формате А4 по ГОСТам.

Критерии оценки: правильность выполненного расчета