Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Магнитогорский государственный технический университет им. Г.И. Носова» Многопрофильный колледж

ПМ.01 Ведение технологического процесса производства черных металлов (чугуна, стали и ферросплавов)

МДК.01.01Управление технологическими процессами производства чугуна и контроль за ними
Тема 1.1 Технология производства чугуна для студентов специальности
22.02.01 Металлургия черных металлов. Доменное производство базовой полготовки

ОДОБРЕНО

Предметно-цикловой комиссией Металлургия черных металлов Председатель: И.В. Решетова Протокол №7 от 14 марта 2017 г.

Методической комиссией

Протокол №4 от 23 марта 2017 г.

Составитель:

преподаватель ФГБОУ ВО МГТУ МпК И.В. Решетова

Методические указания разработаны на основе рабочей программы модуля ПМ.01 Ведение технологического процесса производства черных металлов (чугуна, стали и ферросплавов).

СОДЕРЖАНИЕ

1 Введение	4
2 Методические указания	7
Практическое занятие 1	7
Практическое занятие 2	8
Практическое занятие 3	9
Практическое занятие 4	10
Практическое занятие 5	11
Практическое занятие 6	13
Практическое занятие 7	14
Практическое занятие 8	15
Практическое занятие 9	16
Практическое занятие 10	17
Практическое занятие 11	18
Практическое занятие 12	20
Практическое занятие 13	21
Практическое занятие 14	22
Практическое занятие 1 5	23
Практическое занятие 16	25
Практическое занятие 17	26
Практическое занятие 18	27
Практическое занятие 19	28
Практическое занятие 20	30
Практическое занятие 21	31
Практическое занятие 22	32
Практическое занятие 23	35
Практическое занятие 24	36
Практическое занятие 25	38
Практическое занятие 26	39
Практическое занятие 27	40

1 ВВЕДЕНИЕ

Важную часть теоретической и профессиональной практической подготовки студентов составляют практические занятия и лабораторные работы.

Состав и содержание практических занятий и лабораторных работ направлены на реализацию действующего федерального государственного образовательного стандарта среднего профессионального образования.

Ведущей дидактической целью практических занятий является формирование практических умений - профессиональных (умений выполнять определенные действия, операции, необходимые в последующем в профессиональной деятельности), необходимых в последующей учебной деятельности по профессиональным модулям.

В соответствии с рабочей программой ПМ.01 Ведение технологического процесса производства черных металлов (чугуна, стали и ферросплавов), МДК.01.01Управление технологическими процессами производства чугуна и контроль за ними, Темой 1.1 Технология производства чугуна предусмотрено проведение практических работ.

В результате их выполнения, обучающийся должен:

уметь:

- -- подбирать и рассчитывать состав шихтовых материалов;
- рассчитывать тепловой и материальный баланс выплавки черных металлов;
- осуществлять операции по подготовке шихтовых материалов к плавке;
- работать с технологической, конструкторской, организационнораспорядительной документацией, справочниками и другими информационными источниками;

Содержание практических и лабораторных работ ориентировано на формирование общих компетенций по профессиональному модулю основной профессиональной образовательной программы по специальности:

- OК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.

OК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.

И овладению профессиональными компетенциями:

- ПК 1.1. Осуществлять технологические операции по производству черных металлов.
- ПК 1.3. Эксплуатировать технологическое и подъемнотранспортное оборудование, обеспечивающее процесс производства черных металлов.
 - ПК 1.4. Анализировать качество сырья и готовой продукции.

Выполнение студентами практических работ по ПМ.01 Ведение технологического процесса производства черных металлов (чугуна, стали и ферросплавов), МДК.01.01Управление технологическими процессами производства чугуна и контроль за ними, Тема 1.1 Технология производства чугуна направлено на:

- обобщение, систематизацию, углубление, закрепление, развитие и детализацию полученных теоретических знаний по конкретным темам междисциплинарных курсов;
- формирование умений применять полученные знания на практике, реализацию единства интеллектуальной и практической деятельности;
- развитие интеллектуальных умений у будущих специалистов: аналитических, проектировочных, конструктивных и др.

Продолжительность выполнения практической работы составляет не менее двух академических часов и проводится после соответствующего занятия, которое обеспечивает наличие знаний, необходимых для ее выполнения.

2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Т 1.1.1 Топливо доменной плавки

Практическое занятие № 1 Изучение образцов кокса по внешним признакам

Формируемая компетенция:

ПК 1.4. Анализировать качество сырья и готовой продукции.

Цель работы: определить основные характеристики кокса

Выполнив работу, Вы будете:

уметь:

- определять основные характеристики кокса

Материальное обеспечение: конспект лекций, образцы кокса (недопеченный кокс, пережог кокса, нормальный кокс)

Задание: определить основные характеристики образцов кокса в соответствии с конспектом

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

Ход работы:

- 1. Получить образцы кокса у преподавателя.
- 2. Определить основные характеристики кокса в соответствии с примером, данном в конспекте лекций.
- 3. Заполнить сравнительную таблицу по данным образцам кокса, с указанием их основных характеристик.

Образец	Недопеченный кокс	Пережог кокса	Нормальный кокс
Внешний вид			330310
Пористость			
Macca			

Наличие	тре-		
щин			
Цвет			

Форма представления результата:

Заполнение сравнительной таблицы в тетради для практических работ

Т 1.1.1 Топливо доменной плавки

Практическое занятие № 2 Изучение оборудования коксовых печей

Формируемая компетенция:

ПК 1.1. Осуществлять технологические операции по производству черных металлов.

ПК 1.3. Эксплуатировать технологическое и подъемнотранспортное оборудование, обеспечивающее процесс производства черных металлов.

Цель работы:

Изучить устройство и принцип действия коксовой печи основании чертежей и схем КХП.

Выполнив работу, Вы будете:

уметь:

читать чертежи коксовых печей

Материальное обеспечение:

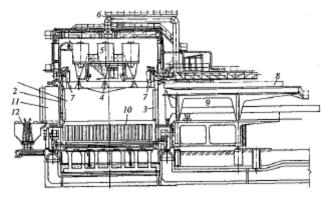
чертежи коксовой батареи, схема и принцип действия агрегата, ТИ по загрузке и спеканию кокса на КХП ОАО «ММК»

Задание:

Изучить конструкцию коксовой печи

Изучить принцип действия коксовой печи

Ознакомится с технологическим процессом спекания кокса в коксовой печи


Порядок выполнения работы:

1. Ознакомится с методическими указаниями по практическому заданию.

- 2. Выполнить задание.
- 3. Оформить работу в тетради для практических занятий.

Ход работы:

- 1. Получить папку с чертежами и схемами у преподавателя.
- 2. Ознакомится с конструкцией коксовой печи.

Кокс получают в коксовых печах, представляющих собой камеры из динасового кирпича высотой 5—7, длиной 15—17 и шириной 0,4— 0,45 м; их объем составляет 30—42 м 3 . В камеру объемом 30 м 3 загружают 22 т шихты.

3. Ознакомится с принципом действия коксовой печи.

Коксовый пирог, открыв торцевые двери камеры, выталкивают с помощью штанги 8 коксовыталкивателя 9 в тушильный вагон 4, доставляющий кокс в башню 13, где его заливают водой, либо на установку сухого тушения, где кокс охлаждают потоком азота. После водяного тушения кокс из тушильного вагона через рампу 3 выгружают на конвейер 2, доставляющий кокс в доменный цех. Сухое тушение, внедряемое в последние годы, предпочтительнее по следующим причинам: а) уменьшается растрескивание кокса, т.е. его потери в виде мелочи; б) снижается влажность кокса (0,5-1,0%) вместо 2-5% при тушении водой); в) тепло нагретого азота используется для выработки пара, а при тушении водой безвозвратно теряется.

4. Ознакомится с технологическим процессом спекания кокса.

Коксование загруженной в камеру порции шихты длится 14,5—16 ч. В процессе нагрева при температурах 350—500 °С происходит размягчение и плавление угля и начинается сильное выделение летучих ве-

ществ, которые вспучивают массу и делают ее пористой. При 500—600 °C масса интенсивно разлагается с выделением летучих; по мере их выделения в массе возрастает содержание углерода, увеличивается вязкость массы и она затвердевает, переходя в полукокс. При дальнейшем нагреве до 1100 °C выделяются все летучие, и аморфный углерод превращается в кристаллический графит, обладающий высокой твердостью и прочностью. (Формирование зон)

- 5. Выписать из инструкции основные этапы подготовки углей для коксования.
- 6. Выписать из инструкции основные этапы спекания кокса в косовой печи, а также обработки готового спека.

Форма представления результата:

В устной форме: ответы на вопросы преподавателя по конструкции и принципу действия агрегата, знание основных частей и позиций на чертежах.

В письменной форме: выписать основные этапы подготовки, спекания и транспортировки кокса в тетрадь для практических заданий для проверки.

Т 1.1.1 Топливо доменной плавки

Практическое занятие № 3 Изучение оборудования КХП

Формируемая компетенция:

ПК 1.1. Осуществлять технологические операции по производству черных металлов.

ПК 1.3. Эксплуатировать технологическое и подъемнотранспортное оборудование, обеспечивающее процесс производства черных металлов.

Цель работы:

Изучить устройство и принцип действия коксовой батареи на основании чертежей и схем КХП.

Выполнив работу, Вы будете: уметь:

читать чертежи коксовых батарей

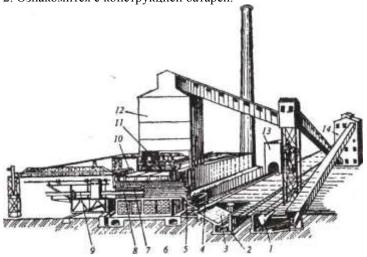
Материальное обеспечение:

чертежи коксовой батареи, схема и принцип действия агрегатов, ТИ по загрузке и спеканию кокса на КХП ОАО «ММК»

Задание:

Изучить конструкцию коксовой батареи

Изучить принцип действия коксовой батареи


Ознакомится с технологическим процессом спекания кокса в коксовой печи

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

Ход работы:

- 1. Получить папку с чертежами и схемами у преподавателя.
- 2. Ознакомится с конструкцией батареи.

Общий вид коксовой батареи:

1 - приемный бункер для сырого каменного угля; 2 — конвейер; 3 — рампа выгрузки охлажденного кокса; 4 - тушильный вагон; 5 - кокс; 6 - регенераторы; 7 — камера коксования; 8 — штанга коксовыталкива-

тееля; 9 — коксовыталкиватель; 10 — отвод коксового газа; 11 — загрузочный вагон; 12 — распределительная башня; 13 — тушильная башня; 14 — отделение для дробления и смешивания угля

3. Ознакомится с принципом действия коксовой батареи.

Плоские камеры объединены в коксовые батареи по 60—80 параллельно расположенных камер. С торцов каждая камера герметично закрыта съемными дверями, а в своде камер есть 3-4 люка для загрузки шихты из бункеров загрузочного вагона 11. Производительность батареи достигает 2000 т/сут

Коксовые печи отапливают доменным и коксовым газами, сжигаемыми в простенках между камерами — в вертикалах (рис. 19). Для получения в вертикалах высокой температуры пламени (1400 °C) воздух и доменный газ перед подачей в вертикалы нагревают в регенераторах *I*. Под каждым вертикалом расположено по два регенератора (камеры), которые заполнены решетчатой кладкой из огнеупорного кирпича. В каждую пару регенераторов поочередно с интервалом в 20—30 мин то направляют из вертикалов горячие дымовые газы, нагревающие насадку, то холодные воздух и доменный газ (раздельно), которые нагреваются, охлаждая насадку. Из регенераторов нагретые воздух и доменный газ поступают в вертикалы, а дымовые газы через борова уходят в трубу.

- 4. Ознакомится с технологическим процессом спекания кокса.
- 5. Выписать из инструкции основные этапы подготовки углей для коксования.
- 6. Выписать из инструкции основные этапы спекания кокса в коксовой печи, а также обработки готового спека.

Форма представления результата:

В устной форме: ответы на вопросы преподавателя по конструкции и принципу действия агрегатов, знание основных частей и позиций на чертежах.

В письменной форме: выписать основные этапы подготовки, спекания и транспортировки кокса в тетрадь для практических заданий для проверки.

Т 1.1.1 Топливо доменной плавки

Практическое занятие № 4 Определение состава кокса

Формируемая компетенция:

ПК 1.4. Анализировать качество сырья и готовой продукции.

Цель работы: определить состав кокса

Выполнив работу, Вы будете:

уметь:

определять состав металлургического кокса

Материальное обеспечение: методические указания по выполнению практического задания, калькулятор

Задание:

Определить состав сухой массы Определить состав горючей массы

Определить содержание вредных примесей

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

Ход работы:

- 1 Получить у преподавателя исходный вариант для выполнения практической работы
- 2 Определить состав сухой массы кокса учитывая влажность исходных шихтовых компонентов по следующей формуле:

$$Mc = M_1 \cdot (1-W/100),$$

где Мс – сухая масса кокса;

 M_1 – масса кокса исходная по лабораторному анализу;

W – влажность кокса.

3 Определить состав горючей массы кокса учитывая содержание углерода шихты по следующей формуле:

$Mc = M_1 \cdot (1-(W-C-N_2-S)/100),$ где

где Мс – сухая масса кокса;

 M_1 – масса кокса исходная по лабораторному анализу;

W – влажность кокса.

- $C,\ N_2,\ S$ содержание соответственно углерода, азота, серы в пробе кокса
- 4 Определить содержание вредных примесей кокса на основании эмпирических зависимостей.

Форма представления результата:

Отчет о проделанной работе

Т 1.1.1 Топливо доменной плавки

Практическое занятие № 5 Изучение ГОСТ на угли, кокс и другие виды топлива

Формируемая компетенция:

ПК 1.4. Анализировать качество сырья и готовой продукции.

Цель работы:

Изучить основные термины и определения на угли, требования, предъявляемые к коксу и другим видам топлива с помощью ГОСТ

Выполнив работу, Вы будете:

уметь:

применять основные термины и определения углей

Материальное обеспечение: ГОСТ на угли, ГОСТ на кокс и другие виды топлива

Задание:

Ознакомится с основными определениями и терминами на угли.

Изучить основные требования, предъявляемые к коксу и другим видам топлива.

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

Ход работы:

- 1. Получить папку с ГОСТами у преподавателя.
- 2. Ознакомится со структурой ГОСТа.
- 3. Ознакомится с основными определениями и терминами на угли для коксования.
- 4. Ознакомится с требованиями, предъявляемыми к коксу, природному и коксовому газу.
- 5. Выписать определения из общих понятий, видов углей, состава и свойств углей не менее 30 наименований.
- 6. Выписать требования, предъявляемые к твердому, жидкому и газообразному топливу.
- 7. Отметить из выписанных требований те, которые относятся к топливу КХП с указанием количественных отношений.

Форма представления результата:

Определения и требования выписать в тетрадь для практических работ.

T 1.1.2

Подготовка исходного сырья к доменной плавке

Практическое занятие № 6 Определение содержания железа в железных и марганцевых рудах

Формируемая компетенция:

ПК 1.4. Анализировать качество сырья и готовой продукции.

Цель работы: с помощью теоретических расчетов по формулам научиться определять содержание железа в железных и марганца в марганцевых рудах

Выполнив работу, Вы будете:

уметь:

рассчитывать содержание железа в железных и марганцевых рудах

Материальное обеспечение:

методические указания по выполнению расчетов, таблица Менделеева

Задание:

На основании исходных данных:

- определить содержание железа в магнетите, гематите, сидерите, лимните, лимоните, гетите, шпатовом железняке.
- определить содержание марганца в гаусманите, пиролюзите, брауните, псиломелане, родохрозите.

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

Ход работы:

- 1. Изучить методические указания для расчетов
- 2. Получить исходные данные для расчетов по вариантам.
- 3. Определить с помощью таблицы Менделеева атомные массы соединений. (MFe $_2O_3$: MMn $_2O_3$)
- 4. Определить атомную массу железа и марганца, входящих в состав соединений.
- 5. Определить содержание железа и марганца по формуле [Fe] = MFe $\,/\,$ M $\,$ Fe $_2O_3$

Форма представления результата:

Расчеты выполнить и оформить в виде решения задач в тетради для практических работ.

T 1.1.2

Подготовка исходного сырья к доменной плавке

Практическое занятие № 7 Определение руд по внешним признакам

Формируемая компетенция:

ПК 1.4. Анализировать качество сырья и готовой продукции.

Цель работы:

ознакомится с образцами железных руд, изучить характеристики образцов

Выполнив работу, Вы будете:

уметь:

определять основные характеристики железных руд по внешним признакам

Материальное обеспечение:

образцы железных руд (магнетитовая руда, гематитовая руда, шпатовый железняк, сидеритовая руда, полумартитовая руда)

Задание:

Изучить характеристики железных руд, используемых для производства агломерата.

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

Ход работы:

- 1. Получить образцы железных руд у преподавателя.
- 2. Ознакомиться с внешним видом железной руды.
- 3. Дать характеристику виды железной руды.
- 4. Выполнить эскиз полученных образцов руды.
- 5. Заполнить сравнительную таблицу по пяти образцам железной руды.

№ п/п	Название	Цвет об-	прочность	масса,	пористость
	руды	разца		плотность	

6. Сделать вывод о проделанной работе.

Форма представления результата:

Эскизы образцов и таблица выполняются в тетради для практических работ.

Т 1.1.2 Подготовка исходного сырья к доменной плавке

Практическое занятие № 8 Определение флюсующей способности флюса

Формируемая компетенция:

ПК 1.4. Анализировать качество сырья и готовой продукции.

Цель работы:

с помощью теоретических расчетов по формулам научиться определять флюсующую способность известняка и флюсующих материалов

Выполнив работу, Вы будете:

уметь:

определять флюсующую способность флюса

Материальное обеспечение:

методические указания по выполнению расчетов

Задание:

На основании исходных данных определить флюсующую способность известняка и флюсующих материалов

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

Ход работы:

- 1. Изучить методические указания для расчетов
- 2. Получить исходные данные для расчетов по вариантам.
- 3. Определить сумму основных оксидов
- 4. Определить сумму кислых оксидов
- 5. Найти основность получаемого шлака
- 6. Определить флюсующую способность, используя формулу:

$$\Phi = (CaO + MgO) - \beta \cdot (SiO_2 + Al_2O_3),$$
 где

Ф – флюсующая способность флюса

СаО – содержание оксида кальция, %;

MgO - содержание оксида магния, %;

в - основность шлака;

SiO₂ – содержание оксида кремния,%

Al₂O₃ – содержание оксида алюминия, %

Форма представления результата:

Расчеты выполнить и оформить в виде решения задач в тетради для практических работ.

T 1.1.2

Подготовка исходного сырья к доменной плавке

Практическое занятие № 9 Изучение ТУ на руды, флюсы

Формируемая компетенция:

ПК 1.4. Анализировать качество сырья и готовой продукции.

Цель работы:

Изучить ТУ на железные руды и флюсы, применяемые для производства чугуна

Выполнив работу, Вы будете:

уметь:

пользоваться техническими условиями на руды и флюсы

Материальное обеспечение:

ТУ на руды, флюсы

Задание:

по имеющимся техническим условиям изучить основные требования к привозным рудам и флюсам

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

Ход работы:

- 1. Получить папку с техническими условиями на руды и флюсы у преподавателя.
 - 2. Ознакомиться с ТУ на железные, марганцевые руды.
 - 3. Ознакомиться с ТУ на флюсы.
- 4. Выписать основные требования, предъявляемые к привозному сырью.
- 5. Заполнить таблицу «Химический состав привозного сырья», в которой указать состав основных типов железных, марганцевых руд и флюсов, применяемых на OAO «ММК».

Форма представления результата:

Требования и таблица заносятся в тетрадь для практических работ

Т 1.1.2 Подготовка исходного сырья к доменной плавке

Практическое занятие № 10 Изучение дробилок по чертежам

Формируемые компетенции:

ПК 1.1. Осуществлять технологические операции по производству черных металлов.

ПК 1.3. Эксплуатировать технологическое и подъемнотранспортное оборудование, обеспечивающее процесс производства черных металлов.

Цель работы: изучить конструкцию и устройство основного дробильного оборудования

Выполнив работу, Вы будете:

уметь:

пользоваться чертежами дробилок для разной крупности материалов

Материальное обеспечение: чертежи, схемы дробильного оборудования, презентация, лекции по дисциплине

Задание:

Изучить конструкцию и принцип действия основного дробильного оборудования

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

Ход работы:

- 1. Получить у преподавателя папку с чертежами и схемами оборудования. Просмотреть презентацию.
- 2. Ознакомиться с конструкциями щековой, конусной, валковой, молотковой дробилок, мельниц для помола материалов.

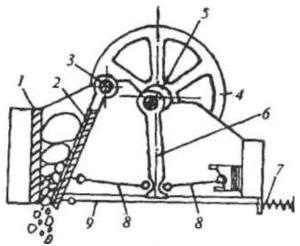


Рис 3 а - Щековая дробилка:

1 — неподвижная щека; 2 — подвижная щека; 3 — ось; 4 — шкив; 5 — эксцентриковый вал; 6 — шатун; 7 — пружина; 8 — распорные плиты; 9 — тяга

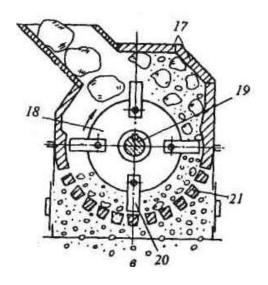


Рис 3 в - Молотковая дробилка:

17 – отбойные плиты; 18 – диски; 19 – вал; 20 – стальные молотки; 21 - колосниковая решетка

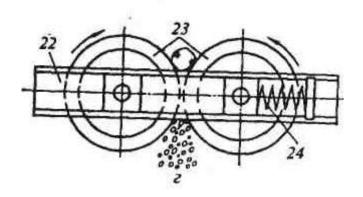


Рис 3 г- Валковая дробилка:

22 -рама; 23 - валки; 24 - пружина

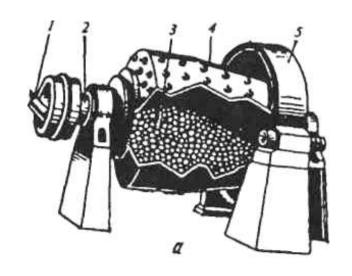
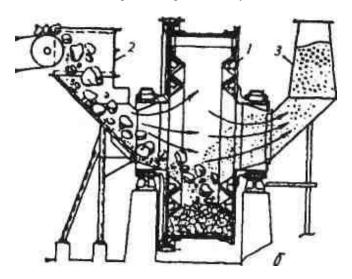



Рис 4 а - Шаровая мельница:

1 – устройство подачи материала; 2 - цапфы; 3 – стальные шары; 4 - барабан; 5 – зубчатый венец

Рис 4 б - Мельница бесшарового помола: 1 — барабан; 2 — питатель; 3 — шахта выдачи

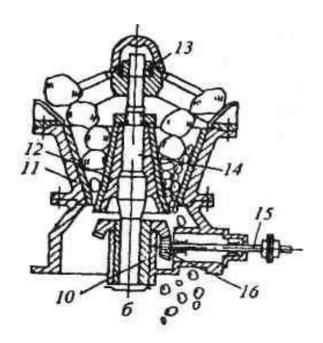


Рис 3 б - Конусная дробилка:

10 — эксцентрик; 11 — неподвижный конус; 12 — подвижный конус; 13 — шарнир; 14 — вал; 15 — приводной вал; 16 — зубчатая передача

3. Ознакомиться с принципом действия данных агрегатов.

Обычно различают следующие стадии дробления: крупное дробление — от кусков размером 1200 мм до получения кусков размером 100—350 мм; среднее дробление — от 100—350 до 40-60 мм и мелкое дробление - от 40—60 до 6—25 мм; измельчение — от 6—25 до 1 мм; тонкое измельчение — менее 1 мм. Крупное, среднее и мелкое дробление осуществляют в аппаратах, называемых дробилками, а измельчение — в мельницах. Дробление можно выполнять следующими методами: раздавливанием, истиранием, раскалыванием, ударом и сочетанием перечисленных выше способов.

Основные типы применяемых дробилок представлены на рис. 3. Щековые дробилки служат для крупного и среднего дробления.

Схема одной из разновидностей **щековых** дробилок показана на рис. 3, *а*. Дробимую руду загружают сверху в зазор между неподвижной

щекой I и подвижной 2, подвешенной на оси 3. Привод дробилки через шкив 4 вращает эксцентриковый вал 5, при этом шатун δ двигается вверх-вниз. При подъеме шатуна распорные плиты 8 нажимают на подвижную щеку 2, она сближается с неподвижной и происходит дробление кусков руды; при опускании шатуна подвижная щека отходит назад под воздействием пружины 7 и тяги 9, и через зазор между щеками снизу высыпается дробленая руда. Производительность щековых дробилок составляет 10-700 т/ч.

В конусных дробилках (рис. 3, 6) основными рабочими элементами являются неподвижный 11 и подвижный 12 конусы, в зазор между которыми сверху засыпают дробимую руду. Верх вала 14 подвижного конуса закреплен в шарнире 13, а его нижней части придают с помощью приводного вала 15, зубчатой передачи 16 и эксцентрика 10 вращательное движение. Подвижный конус при этом перекатывается по внутренней поверхности неподвижного конуса и в месте сближения конусов происходит дробление кусков, а с противоположной стороны через кольцевую щель просыпается дробленый продукт.

Конусные дробилки применяются для крупного, среднего и мелкого дробления. Производительность дробилок крупного дробления составляет 150-2300 м 3 /ч, среднего — от 8 до 580м 3 /ч, мелкого- от 24 до 260м 3 /ч.

Молотковые дробилки (рис. 3, в) применяют для крупного, среднего и мелкого дробления мягких и средних по твердости пород. Дробилка состоит из корпуса, внутри которого закреплены массивные отбойные плиты 17. В опорах конуса установлен вращающийся с большой скоростью вал 19 с насаженными на него несколькими дисками 18, на которых шарнирно закреплены стальные молотки (билы) 20. Дробление происходит в результате ударов, наносимых кускам материала молотками; выдача дробленой руды происходит через отверстия колосниковой решетки 21. Производительность молотковых дробилок достигает 1500 т/ч и более.

Валковые дробилки применяют для среднего и мелкого дробления пород средней крепости. Чаще применяют двух- и четырехвалковые дробилки. В двухвалковой дробилке (рис. 3, г) дробление происходит между двумя вращающимися палками 23; оба валка приводные, один из них закреплен в раме 22 жестко, второй— подвижный и прижимается к неподвижному пружиной 24 либо гидравлическим, либо пневмогидравлическим устройством. Валки бывают гладкими и иногда рифлеными и зубчатыми.

Для тонкого измельчения руд применяют шаровые мельницы и в последнее время мельницы бесшарового помола. **Шаровая мельница** (рис. 4, *a*) представляет собой вращаемый через зубчатый венец 5 футе-

рованный плитами из износостойкой стали барабан 4 с полыми цапфами 2. Барабан почти наполовину заполнен чугунными или стальными шарами 3. Куски руды вместе с водой подают в цапфу через устройство 1, в барабане куски, испытывая удары падающих шаров, раскалываются, раздавливаются и истираются; измельченный продукт с водой (пульпа) выдается через противоположную цапфу барабана. Производительность крупных шаровых мельниц достигает 150-200 т/сут.

На рис. 4, δ показана **мельница бесшарового** помола типа Лэрофол. Крупные и мелкие куски руды вместе со сжатым воздухом вводят через питатель 2 во вращающийся барабан I. Крупные куски играют роль дробящих шаров; измельченный продукт уносится воздухом через пустотелую цапфу в шахту выдачи 3, а затем скапливается в пылеуловителях.

- 4. Схематично выполнить эскизы данных типов дробилок.
- 5. Заполнить таблицу: «Классификация дробилок по крупности измельчения»

Вид	Рабо-	Класс	Дроби-	Достоинства/	производи-
дро-	чий	крупности	мы ма-	недостатки	тельность
билки	орган	дробления	териал		

Форма представления результата:

В устной форме: ответы на вопросы преподавателя по конструкции и принципу действия агрегатов, знание основных частей и позиций на чертежах.

В письменной форме: заполнить таблицу в тетради для практических заданий для проверки.

Т 1.1.2 Подготовка исходного сырья к доменной плавке

Практическое занятие № 11 Изучение грохотов по чертежам

Формируемые компетенции:

ПК 1.1. Осуществлять технологические операции по производству черных металлов.

ПК 1.3. Эксплуатировать технологическое и подъемнотранспортное оборудование, обеспечивающее процесс производства черных металлов.

Цель работы: Изучить конструкцию и принцип действия основного оборудования для грохочения и классификации материалов

Выполнив работу, Вы будете:

уметь:

пользоваться чертежами основных типов грохотов

Материальное обеспечение:

чертежи, схемы оборудования для грохочения, презентация, лекции по дисциплине

Задание:

Изучить конструкцию и принцип действия основного оборудования для грохочения и классификации материалов

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

Ход работы:

- 1. Получить у преподавателя папку с чертежами и схемами оборудования. Просмотреть презентацию.
- 2. Ознакомиться с конструкциями колосникового, подвижного, барабанного, вибрационных грохотов (инерционный, самоцентрирующийся); классификаторов.

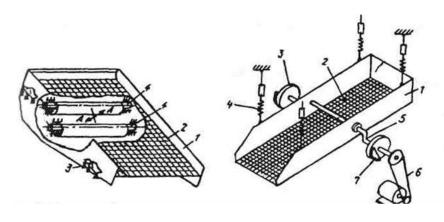


Рис. 1. Схема самобалансного грохота Рис. 2 Самоцентрирующийся инерционный грохот

3. Ознакомиться с принципом действия данных агрегатов.

Придание решету грохота колебательных движений сильно повышает производительность и к.п.д. грохота (до 95—98 %). Из подобных грохотов в последнее время широко применяют самобалансные и самоцентрирующиеся инерционные грохоты.

Самобалансный грохот (рис.1) представляет собой опирающийся на пружины 3 короб 1 с просеивающим решетом 2. В боковых стенках короба на подшипниках установлены два дебалансных вала 4 (ось вала не совпадает с осью его вращения). Валы вращают с одинаковой скоростью в противоположных направлениях, при этом возникают инерционные силы, вызывающие колебания короба по направлению стрелок "А", что обеспечивает подбрасывание груза и его перемещение вдоль решета с эффективным просеиванием мелочи. Для самобалансных грохотов частота колебаний составляет 740-950 в минуту, амплитуда колебаний 4-9 мм, размеры решета достигают 3x6,4 м, производительность — 600 т/ч

Самоцентрирующийся инерционный грохот(рис 2)

Грохот состоит из подвешенного на пружинах 4 короба 1 с одним или двумя ситами 2. В подшипниковых опорах короба закреплен вращаемый приводом через шкив 6 эксцентриковый вал 5, на концах которого имеются диски 3 с противовесами (дебалансами) 7. Вращение вала с дебалансами вызывает перемещение короба по круговой траектории вокруг оси вала с амплитудой 3—6 мм. Частота составляет 520—1440 колебаний в минуту, производительность грохотов 2000 т/ч.

- 4. Схематично выполнить эскизы данных типов грохотов.
- 5. Заполнить таблицу: «Классификация грохотов»

Тип гро-	прин-	Достоин-	Недос-	производитель-	Частота
	цип	ства	татки	ность	колеба-
хота	работы				ний

Форма представления результата:

В устной форме: ответы на вопросы преподавателя по конструкции и принципу действия агрегатов, знание основных частей и позиций на чертежах.

В письменной форме: заполнить таблицу в тетради для практических заданий для проверки.

Т 1.1.2 Подготовка исходного сырья к доменной плавке

Практическое занятие № 12 Изучение оборудования открытых и закрытых складов

Формируемые компетенции:

ПК 1.1. Осуществлять технологические операции по производству черных металлов.

ПК 1.3. Эксплуатировать технологическое и подъемнотранспортное оборудование, обеспечивающее процесс производства черных металлов.

Цель работы: изучить конструкцию и принцип действия основного оборудования открытых и закрытых складов

Выполнив работу, Вы будете:

уметь:

пользоваться чертежами основного оборудования открытых и закрытых складов

Материальное обеспечение:

чертежи, схемы оборудования для усреднения шихтовых материалов, презентация, лекции по дисциплине

Задание:

Изучить конструкцию и принцип действия оборудования складов концентратов

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

Ход работы:

- 1. Получить у преподавателя папку с чертежами и схемами оборудования. Просмотреть презентацию.
- 2. Ознакомиться с конструкциями штабелеукладчика, усреднителя шихтовых материалов, рудозаборной машины, грейферных кранов и перегружателей, конвейерных транспортеров.

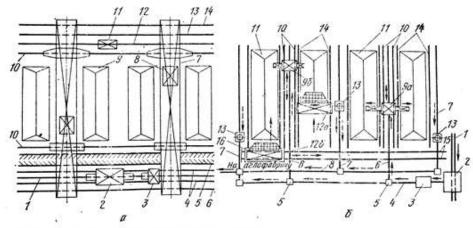
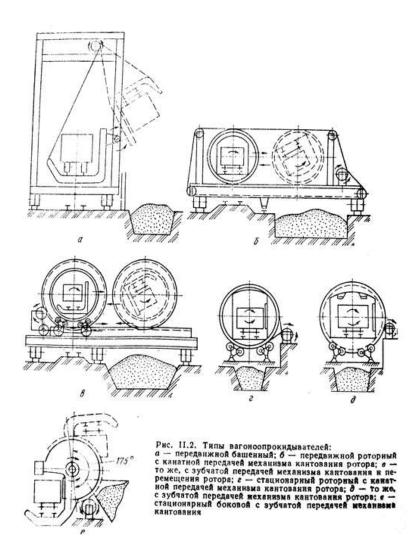
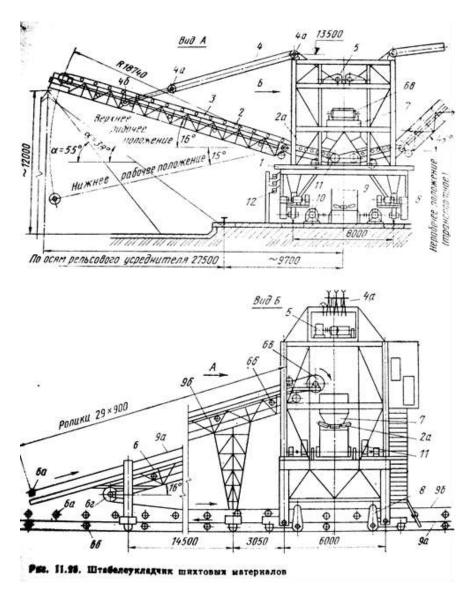
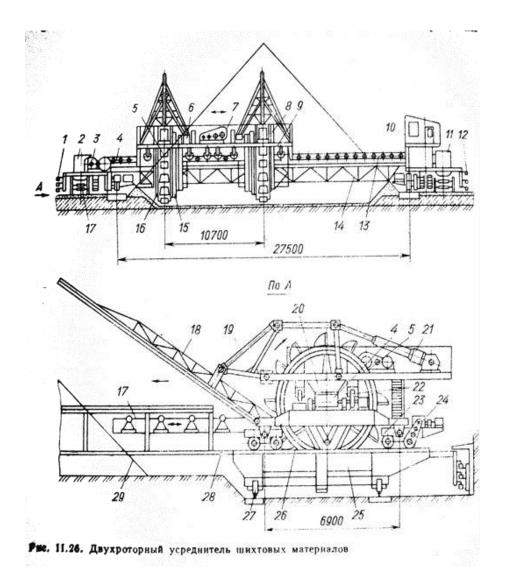





Рис. II.1. Схемы складов шихтовых материалов: a-c передвижным вагоноопрокидывателем и перегрузочными кранами; b-c со стационарными вагоноопрокидывателями, конвейерами и усреднительным комплексом

- 3. Ознакомиться с принципом действия данных агрегатов.
- 4. Схематично выполнить эскизы данных типов оборудования.
- 5. Выполнить опорный конспект «Особенности усреднения на открытых и закрытых складах»

Форма представления результата:

В устной форме: ответы на вопросы преподавателя по конструкции и принципу действия агрегатов, знание основных частей и позиций на чертежах.

В письменной форме: выполнить опорный конспект в тетради для практических заданий для проверки.

T 1.1.2

Подготовка исходного сырья к доменной плавке

Практическое занятие № 13

Определение выхода концентрата и величины извлечения металла в концентрат

Формируемая компетенция:

ПК 1.4. Анализировать качество сырья и готовой продукции.

Цель работы:

определить выход концентрата и величины извлечения металла в концентрат

Выполнив работу, Вы будете:

уметь:

определять выход концентрата и величины извлечения металла в концентрат на магнитном сепараторе

Материальное обеспечение: методические указания по расчётам

Задание:

определить выход концентрата и величины извлечения металла в концентрат различных типов концентратов

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

Ход работы:

- 1. Осуществляют расчет основных технологических показателей по формулам.
 - 2. Результаты расчетов заносят в таблицу баланса минералов.

Форма представления результата:

Отчет о проделанной работе

T 1.1.2

Подготовка исходного сырья к доменной плавке

Практическое занятие № 14 Изучение оборудования для обогащения

Формируемые компетенции:

ПК 1.1. Осуществлять технологические операции по производству черных металлов.

ПК 1.3. Эксплуатировать технологическое и подъемнотранспортное оборудование, обеспечивающее процесс производства черных металлов.

Цель работы: изучить конструкцию и принцип действия основного оборудования открытых и закрытых складов

Выполнив работу, Вы будете:

уметь:

пользоваться чертежами основного оборудования для обогащения руды

Материальное обеспечение:

чертежи, схемы оборудования для обогащения шихтовых материалов, презентация, лекции по дисциплине

Задание:

Изучить конструкцию и принцип действия оборудования для обогащения

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

Ход работы:

- 1. Получить у преподавателя папку с чертежами и схемами оборудования. Просмотреть презентацию.
- 2. Ознакомиться с конструкциями корытной мойки, отсадочной машины, промывочной башни, флотационной машины, барабанных и магнитных сепараторов.

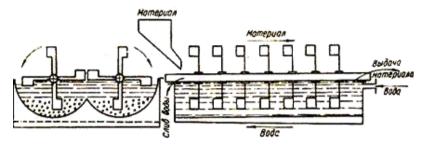
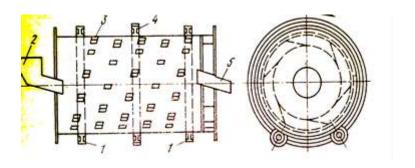
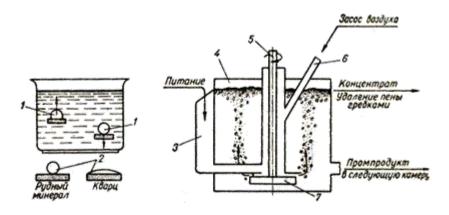
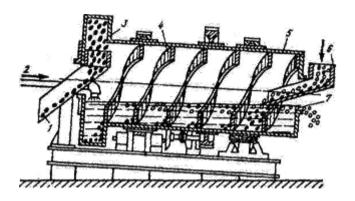


Схема корытной мойки


Схема промывочного скруббера

1 – опорные ролики; 2 – загрузочный желоб; 3 – перебрасывающие лопатки; 4 – зубчатое колесо; 5 – разгрузочный желоб

Схема пенной флотации и камеры флотационной машины

1 – пузырьки воздуха; 2 – капли воды; 3 – карман для исходного продукта; 4 – чан; 5 – вал мешалки; 6 – труба для засоса воздуха; 7 – мешалка (импеллер)

Схема барабанного сепаратора

1 — выдача концентрата; 2 — подача суспензии; - кольцевой черпаковый элеватор; 4 - спирали; 5- наклонный барабан; 6 - питающий желоб; 7 - место разгрузки легкой фракции.

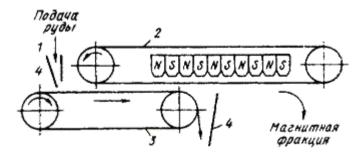


Схема ленточного магнитного сепаратора

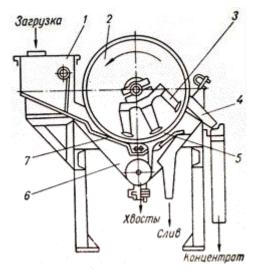


Схема барабанного магнитного сепаратора

1 — загрузочная коробка; 2 — барабан; 3 — магнитная система; 4 — разгрузочный лоток; 5 — резиновая обклейка барабана; 6 — ванна; 7 — загрузочный лоток

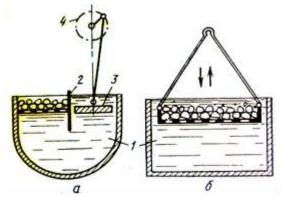


Схема отсадочной машины

 ${f a}$ — отсадочная машина с неподвижным решетом; ${f 6}$ — с подвижным решетом ${\bf 1}$ - вода; ${\bf 2}$ - разделительная перегородка; ${\bf 3}$ - поршень; ${\bf 4}$ — эксцентрик

3. Ознакомиться с принципом действия данных агрегатов.

3. ОБОГАЩЕНИЕ:

В результате обогащения руды получают:

- 1 **концентрат** продукт, в котором содержится большая часть извлекаемого материала;
- 2 **хвосты** отходы при обогащение руды, в которых содержится незначительное количество металла;
- 3 **промежуточный продукт**, в котором содержание металла больше, чем в хвостах, но меньше чем в концентрате.

Способы обогашения:

- промывка
- отсадка
- магнитное обогащение
- флотация
- обогащение в тяжелых жидких средах (суспензиях)

Гравитационное обогащение руд основано на разделении в жидкой среде рудных минералов и пустой породы в зависимости от плотности зерен.

• Наиболее широкое применение получили отсадка и разделение в тяжелых суспензиях

3.1 Промывка

- Промывка основана на разной размываемости кусков рудного минерала и пустой породы.
- Промывку осуществляют: в корытных мойках, бутарах, скрубберах и промывочных башнях

3.2 Отсадка

- Отсадка разделение зерен минералов разной плотности в восходящем потоке воды, который создаётся различными способами.
- Обогащение отсадкой осуществляют в отсадочных машинах с неподвижным или подвижным решетом

3.3 Магнитное обогашение

- Магнитная сепарация основана на различной магнитной проницаемости минералов.
- Используют мокрое, сухое или комбинированное (сухая сепарация с последующей мокрой) магнитное обогащение.

3.4 Флотация

- Флотация основана на различии свойств поверхности рудного минерала и пустой породы.
- Флотацию осуществляют в бетонированных резервуарах, куда подают **пульпу** раствор воды с тонкоизмельченной рудой с добавками пенообразователей и флотирующих веществ.

3.5 Обогащение в тяжелых суспензиях

- Суспензию подбирают так, чтобы её плотность была больше плотности пустой породы и меньше плотности рудного минерала. При загрузке руды в суспензию рудный минерал тонет, а пустая порода всплывает.
- Для обогащения руд в тяжелых суспензиях наибольшее распространение получили барабанные и конусные сепараторы.
- Для гравитационного обогащения измельченных руд крупностью 0,1 – 1 мм применяют винтовые сепараторы
 - 4. Схематично выполнить эскизы данных типов оборудования.
 - 5. Заполнить таблицу: «Способы обогащения железной руды»

Способ	Агре-	прин-	достоин-	недос-	производитель-	l
--------	-------	-------	----------	--------	----------------	---

обогаще- ния	гат	цип дейст-	ства	татки	ность
		вия			

Форма представления результата:

В устной форме: ответы на вопросы преподавателя по конструкции и принципу действия агрегатов, знание основных частей и позиций на чертежах.

В письменной форме: заполнить таблицу в тетради для практических заданий для проверки.

T 1.1.2 Подготовка исходного сырья к доменной плавке

Практическое занятие № 15 Изучение оборудования обогатительной фабрики

Формируемые компетенции:

ПК 1.1. Осуществлять технологические операции по производству черных металлов.

ПК 1.3. Эксплуатировать технологическое и подъемнотранспортное оборудование, обеспечивающее процесс производства черных металлов.

Цель работы:

с помощью макетов, чертежей и схем изучить конструкцию и принцип действия основного оборудования обогатительной фабрики

Выполнив работу, Вы будете:

уметь:

читать чертежи оборудования обогатительной фабрики

Материальное обеспечение:

макеты оборудования, чертежи, фотографии, схемы, презентация

Задание:

изучить конструкцию и принцип действия основного оборудования обогатительной фабрики.

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

Ход работы:

- 1. Получить у преподавателя макеты оборудования и папку с чертежами и схемами оборудования.
- 2. Ознакомиться с конструкциями дробилок, грохотов, сепараторов, флотационной машины, отсадочных машин, усреднителей, штабелеукладчиков, грейферных кранов
 - 3. Ознакомиться с принципом действия данных агрегатов.
- 4. Схематично выполнить эскизы или зарисовать схемы основного оборудования.
 - 5. Построить схему подготовки руды к спеканию

Форма представления результата:

В устной форме: ответы на вопросы преподавателя по конструкции и принципу действия агрегатов, знание основных частей и позиций на чертежах.

В письменной форме: выписать основные этапы подготовки руды к спеканию в тетрадь для практических заданий для проверки.

Тема 1.3 Окускование руд и концентратов

Практическое занятие № 16 Изучение устройства агломерационной машины

Формируемые компетенции:

ПК 1.1. Осуществлять технологические операции по производству черных металлов.

ПК 1.3. Эксплуатировать технологическое и подъемнотранспортное оборудование, обеспечивающее процесс производства черных металлов.

Цель работы: изучить конструкцию и принцип действия агломерационной машины

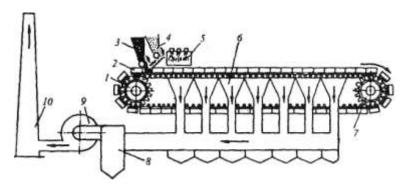
Выполнив работу, Вы будете:

уметь:

пользоваться чертежами агломерационных машин различной площади спекания

Материальное обеспечение: макет агломашины, чертежи агломерационных машин, схемы агломерационного процесса, презентация, лекционный материал

Задание:


Изучить устройство и принцип действия агломерационной машины

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

Ход работы:

- 1. Получить у преподавателя макеты оборудования и папку с чертежами и схемами оборудования.
 - 2. Ознакомиться с конструкцией агломерационной машины.

3. Ознакомиться с принципом действия агломерационной машины.

Агломерационная машина имеет в качестве основного элемента замкнутую ленту (конвейер) из отдельных спекательных тележек-паллет 2, Тележка — это опирающаяся на четыре ролика колосниковая решетка с продольными бортами; тележки движутся по направляющим рельсам под воздействием пары приводных звездочек *1*. На горизонтальном участке ленты тележки плотно примыкая друг к другу, образуют движущийся желоб с дном в виде колосниковой решетки

Под тележками рабочей ветви ленты расположено 13—26 вакуум-камер 6, в которых с помощью эксгаустера 9 создают разрежение 10—13 кПа. Ширина ленты составляет 2—4 м, число тележек в ленте от 70 до 130, скорость ее движения 1,4—7 м/мин; площадь спекания действующих машин равна 50—312 м². Удельная производительность по площади спекания составляет 1,2—1,5 т/(м² • ч).

На движущуюся ленту питателем 3 укладывают постель высотой ~ 30 мм из возврата агломерата крупностью 10-25 мм; она предотвращает просыпание шихты через щели решетки и предохраняет решетку от перегрева. Затем питателем 4 загружают слой шихты высотой 250— 350 мм. Далее шихта на движущейся ленте попадает под зажигательный горн 5, который нагревает поверхность шихты по всей ширине до 1200— 1300 °C, в результате чего загорается топливо. При дальнейшем движении ленты за счет просасываемого эксгаустером 9 сверху воздуха слой горения кокса и спекания агломерата перемещается вниз, а продукты сгорания через вакуумные камеры 6 поступают в пылеуловитель 8 и далее выбрасываются в атмосферу через трубу 10.

- 4. Схематично выполнить эскиз агломерационной машины.
- 5. Построить схему технологического процесса спекания агломерационной шихты

Форма представления результата:

В устной форме: ответы на вопросы преподавателя по конструкции и принципу действия агрегатов, знание основных частей и позиций на чертежах.

В письменной форме: выписать основные этапы подготовки шихты для производства агломерата к спеканию в тетрадь для практических заданий для проверки.

Тема 1.3 Окускование руд и концентратов

Практическое занятие № 17

Изучение оборудования аглофабрики

Формируемые компетенции:

ПК 1.1. Осуществлять технологические операции по производству черных металлов.

ПК 1.3. Эксплуатировать технологическое и подъемнотранспортное оборудование, обеспечивающее процесс производства черных металлов.

Цель работы:

с помощью макетов, чертежей и схем изучить конструкцию и принцип действия основного оборудования агломерационной фабрики

Выполнив работу, Вы будете:

уметь:

читать чертежи и схемы основного оборудования агломерационной фабрики

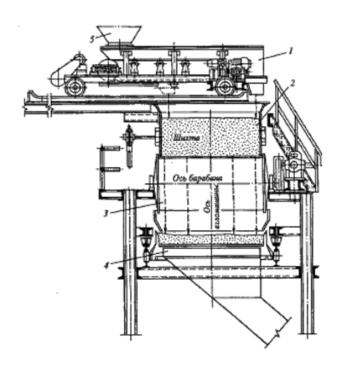
Материальное обеспечение:

макеты оборудования, чертежи, фотографии, схемы оборудования аглофабрики, презентация

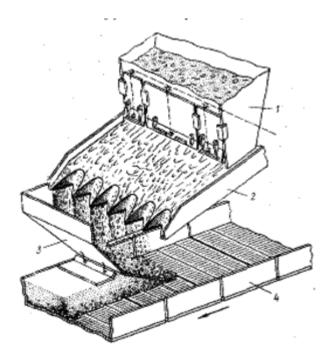
Задание:

изучить конструкцию и принцип действия основного оборудования аглофабрики

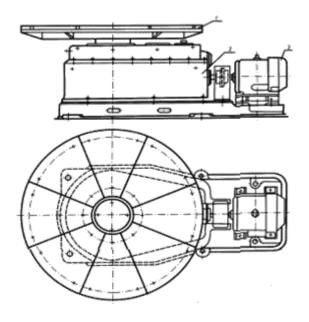
Порядок выполнения работы:


- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

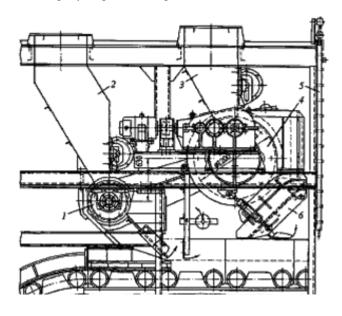
- 1. Получить у преподавателя макеты оборудования и папку с чертежами и схемами оборудования.
- 2. Ознакомиться с конструкциями окомкователей, смесителей, агломерационной машины, паллеты, зажигательного горна, питателя постели и питателя шихты, эксгаустера, вакуум-камер, охладителя агломерата.


Конструкции камерных горнов со сводовыми го-релками (a), с боковыми горелками (б), торцевыми горелками (в):

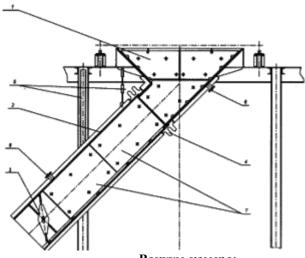
1- подвод газа; 2- подвод воздуха; 3- газовые го-релки для зажигания; 4- горелки дополнительного обогрева спекаемого слоя; 5- паллета.



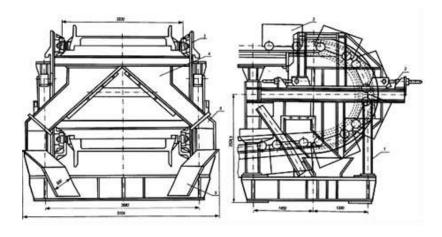
Установка челнокового питателя над барабанным питателем


- 1 челноковый питатель; 2 промежуточ-ный бункер для шихты;
- 3 барабанный пита-тель; 4 агломерационная машина;
 - 5 загрузочное устройство

Вибрационный питатель — бункер шихты; 2 — вибролоток; 3 — загрузочный лоток; 4 — паллеты агломашины



 $\label{eq: 1-duck} \begin{picture}(2.5,0.5) \put(0.5,0.5){$\text{$1-$}$} \put(0.5,0.5){$\text{$1-$}$$


Узел загрузки шихты на агломерационную машину площадью спекания 75 м2 (челноковый питатель, засыпающий шихту в бункер 3, не показан):

1 — барабанный питатель для постели; 2 — бункер для постели; 3 — бункер для шихты; 4 — барабанный питатель для шихты; 5 — трубы водяной завесы, защищающий питатель от воздействия пламени горна; 6 — лоток.

Вакуум-камера:

- 1 камера; 2 патрубок; 3 шибер;
- 4 компенсатор; 5 подвеска патрубка;
- 6 патрубки для установки термопар и вакуум-камеры; 7 футеровочные плиты

Разгрузочное устройство:

- 1 каркас машины; 2 винтовой домкрат; 3 спекательная тележка;
 - 4 бункер; 5 рукав течки
 - 3. Ознакомиться с принципом действия данных агрегатов.
- 4. Схематично выполнить эскизы или зарисовать схемы основного оборудования.
 - 5. Построить схему производства агломерата на фабрике

Форма представления результата:

В устной форме: ответы на вопросы преподавателя по конструкции и принципу действия агрегатов, знание основных частей и позиций на чертежах.

В письменной форме: выписать основные этапы подготовки агломерационной шихты к спеканию в тетрадь для практических заданий для проверки.

Тема 1.3 Окускование руд и концентратов

Практическое занятие № 18 Расчет агломерационной шихты

Формируемая компетенция:

Цель работы: научиться пользоваться методикой и уметь рассчитывать шихту агломерационного процесса с целью определения необходимого расхода материалов

Выполнив работу, Вы будете:

уметь:

рассчитывать агломерационную шихту

Материальное обеспечение:

методические указания по расчету агломерационной шихты

Задание:

на основании исходных данных – химического состава сырых материалов, технического состава кокса и расхода материалов выполнить расчет агломерационной шихты и определить конечный состав агломерата

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

Ход работы:

- 1. Получить исходные данные у преподавателя, согласно своему варианту.
- 2. Проверить сумму компонентов химического состава сырых материалов на 100%
- 3. Оценить сырые материалы по содержанию в них фосфора и марганца с целью выбора марки и состава чугуна.
- 4. Определить расход рудных материалов и флюсов на выплавку 1000 кг чугуна.
- 5. Рассчитать агломерационную шихту и определить химический состав агломерата.

Форма представления результата:

Расчет оформляется в печатном виде на листах формата A4, согласно ГОСТ. Расчет брошюруется и защищается в установленные сроки.

Тема 1.3 Окускование руд и концентратов

Практическое занятие № 19 Изучение устройства машины для обжига окатышей

Формируемые компетенции:

ПК 1.1. Осуществлять технологические операции по производству черных металлов.

ПК 1.3. Эксплуатировать технологическое и подъемнотранспортное оборудование, обеспечивающее процесс производства черных металлов.

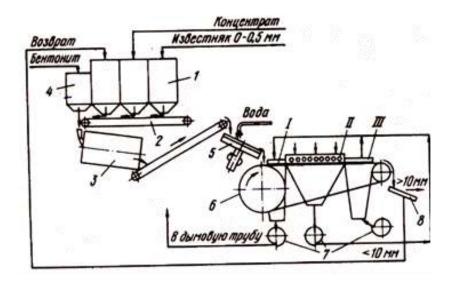
Цель работы: изучить конструкцию и принцип действия машины для обжига окатышей

Выполнив работу, Вы будете:

уметь.

пользоваться чертежами машин для обжига окатышей различной площади спекания

Материальное обеспечение: макет машины для обжига окатышей, чертежи машины для обжига окатышей, схемы процесса производства окатышей, презентация, лекционный материал


Залание:

Изучить устройство и принцип действия машины для обжига окатышей

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

- 1. Получить у преподавателя макеты оборудования и папку с чертежами и схемами оборудования.
 - 2. Ознакомиться с конструкцией машины для обжига окатышей.

3. Ознакомиться с принципом действия машины для обжига окатышей.

У конвейерных машин ширина паллет составляет 3—4 м, рабочая площадь спекания 100-500 м² и производительность их равна 2500—9000 т/сут. Верх ленты перекрыт камерами в соответствии с делением на зоны сушки, обжига и охлаждения. Зона обжига составляет около 50 % от общей площади машины. В зоне сушки окатыши подогревают до 250-400 °C газами, поступающими из зон обжига и охлаждения. Циркуляция газов и удаление их в дымовую трубу осуществляются вентиляторами. В зонах обжига окатыши нагреваются до 1200—1350 °C продуктами горения газообразного или жидкого (мазута) топлива, просасываемыми через слой окатышей на колосниковой решетке машины. В зоне охлаждения окатыши охлаждаются принудительно подаваемым через колосниковую решетку воздухом. Охлажденные окатыши разгружаются на грохот. Фракцию > 5 мм отправляют для доменной плавки, а фракция 0—5 мм является возвратом. Время пребывания окатышей в зоне обжига равно7—12 мин. Расход природного газа составляет 21—45 кг/т окатышей.

Основная цель обжига окатышей сводится к упрочнению их до такой степени, чтобы они в дальнейшем выдерживали транспортировку, перегрузки и доменную плавку без значительных разрушений. При этом в отличие от агломерации нельзя доводить процесс до перехода значительной части шихты в жидкое состояние. Если не ограничить верхний предел температуры (1320—1350 °C), то произойдет оплавление окатышей и

сваривание их в крупные глыбы. В то же время понижение температуры обжига ниже 1200—1250 °C приводит к понижению прочности окатышей.

- 4. Схематично выполнить эскиз машины для обжига окатышей.
- 5. Построить схему технологического процесса получения окатышей.

Форма представления результата:

В устной форме: ответы на вопросы преподавателя по конструкции и принципу действия агрегатов, знание основных частей и позиций на чертежах.

В письменной форме: выписать основные этапы подготовки шихты для производства окатышей к спеканию в тетрадь для практических заданий для проверки.

Тема 1.3 Окускование руд и концентратов

Практическое занятие № 20 Изучение оборудования фабрики окомкования

Формируемые компетенции:

ПК 1.1. Осуществлять технологические операции по производству черных металлов.

ПК 1.3. Эксплуатировать технологическое и подъемнотранспортное оборудование, обеспечивающее процесс производства черных металлов.

Цель работы:

с помощью макетов, чертежей и схем изучить конструкцию и принцип действия основного оборудования фабрики окомкования

Выполнив работу, Вы будете:

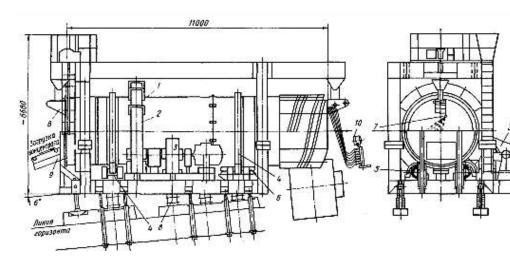
уметь:

читать чертежи и схемы основного оборудования фабрики оком-кования

Материальное обеспечение:

макеты оборудования, чертежи, фотографии, схемы оборудования фабрики окомкования

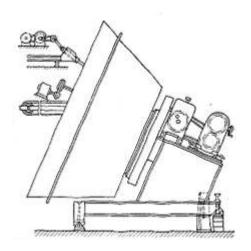
Задание:


изучить конструкцию и принцип действия основного оборудования фабрики окомкования

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

Ход работы:


- 1. Получить у преподавателя макеты оборудования и папку с чертежами и схемами оборудования.
- 2. Ознакомиться с конструкциями окомкователей, смесителей, конвейерной обжиговой машины, вращающейся трубчатой печи, зажигательного горна, питателя постели и питателя окатышей, эксгаустера, вакуум-камер, охладителя.

Барабанный окомкователь ОБ2 2,8x11 для получения окатышей (40 т/ч):

1 — барабан; 2 — приводной зубчатый венец барабана; 3 — привод (90 кВт); 4 — опорные бандажи; 5 — опорные ролики; 6 — упорные ролики; 7 — водопровод; 8 — нож (скребок); 8 — шарнирные опоры; 9 - ленточный

конвейер для подачи шихты; 10 – прожектор для освещения внутренней полости барабана

Чашевый (конический) гранулятор

- 3. Ознакомиться с принципом действия данных агрегатов.
- 4. Схематично выполнить эскизы или зарисовать схемы основного оборудования.
- 5. Построить схему подготовки шихты для получения окатышей к спеканию

Форма представления результата:

В устной форме: ответы на вопросы преподавателя по конструкции и принципу действия агрегатов, знание основных частей и позиций на чертежах.

В письменной форме: выписать основные этапы подготовки шихты для производства окатышей к спеканию в тетрадь для практических заданий для проверки.

Тема 1.3 Окускование руд и концентратов

Практическое занятие № 21 Расчет шихты для получения окатышей

Формируемая компетенция:

ПК 1.1. Осуществлять технологические операции по производству черных металлов.

Цель работы:

научиться пользоваться методикой и уметь рассчитывать шихту для получения окатышей с целью определения необходимого расхода материалов

Выполнив работу, Вы будете:

уметь:

рассчитывать шихту для получения окатышей

Материальное обеспечение:

методические указания по расчету шихты для производства окатышей

Задание:

на основании исходных данных – химического состава сырых материалов, технического состава кокса и расхода материалов выполнить расчет шихты для производства окатышей и определить конечный состав окатышей

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заланию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

- 1. Получить исходные данные у преподавателя, согласно своему варианту.
- 2. Проверить сумму компонентов химического состава сырых материалов на 100%
- 3. Оценить сырые материалы по содержанию в них фосфора и марганца с целью выбора марки и состава чугуна.
- 4. Определить расход концентрата, связующих и флюсов на выплавку 1000 кг чугуна.
- 5. Рассчитать шихту для производства окатышей и определить их химический состав.

Форма представления результата:

Расчет оформляется в печатном виде на листах формата A4, согласно ГОСТ. Расчет брошюруется и защищается в установленные сроки.

Тема 1.6 Образование чугуна и шлака

Практическое занятие № 22 Расчет доменной шихты

Формируемая компетенция:

ПК 1.1. Осуществлять технологические операции по производству черных металлов.

Цель работы: научится пользоваться методикой по расчёту доменной шихты и производить технологический расчет шихты

Выполнив работу, Вы будете:

уметь:

рассчитывать доменную шихту

Материальное обеспечение: методические указания по расчёту доменной шихты

Залание:

на основании исходных данных – химического состава сырых материалов, технического состава кокса и расхода материалов выполнить расчет доменной шихты и составить материальный и тепловой балансы доменной плавки

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

- 1. Получить у преподавателя исходные данные в соответствии со своим вариантом.
 - 2. Проверить сумму составляющих на 100%.
- 3. Оценить сырые материалы по химическому составу богатству, составу пустой породы, содержанию примесей.
 - 4. Выбрать марку и состав чугуна.
 - 5. Определить расход материалов на выплавку 1 тонны чугуна.
- 6. На основании данных полученных в ходе предыдущих расчетов составить систему уравнений с целью определения расхода агломерата, окатышей, кокса, известняка для выплавки 1 тонны чугуна.
- 7. Согласно методике выполнить расчет по определению полного веса чугуна и шлака.
- 8. Заполнить поверочную таблицу расчета шихты для определения полного состава чугуна и шлака и проверить выполнение принятых ранее условий.
- 9. На основании данных полученных в ходе расчетов практических работ № 33 38 заполнить таблицу по составу чугуна относительно состава ранее принятой марки.
 - 10. Выполнить пересчет химического состава шлака на 100 %
- 11. Вычислить используя теоретические формулы требуемую и фактическую основность шлака.
- 12. Оценить физические и физико-химические свойства шлака с определением обессеривающей способности по тройным диаграммам.
 - 13. Написать вывод по расчету.
- 14. Получить у преподавателя исходные данные для расчета согласно своему варианту.
- 15. Определить расход углерода на процессы, протекающие при окислении и восстановлении.
 - 16. Определить влажность дутья.
 - 17. Определить расход влажного дутья.
- 18. Определить расход сухого дутья и количество влаги в дутье в кг.
- 19. Используя данные предыдущих расчетов определить количество:
 - летучих кокса;
 - водорода;
 - углекислоты;
 - окиси углерода;
 - азота.
 - 20. Подсчитать общие суммы каждого раздела расчета.

- 21. Заполнить таблицу по количеству компонентов колошникового газа
- 22. Определить процентное содержание каждого компонента исходя из 100%.
 - 23. Сделать вывод по полученным результатам расчета.
 - 24. Используя данные предыдущих расчетов определить:
 - плотность сухого дутья;
 - плотность природного газа;
 - плотность сухого колошникового газа
- 25. Заполнить в таблице материального баланса приходные статьи, т.е. сколько материалов поступает в доменную печь
- 26. Заполнить в таблице материального баланса расходные статьи, т.е. сколько продуктов образуется в печи.
 - 27. Подсчитать суммы приходной и расходной части.
 - 28. Вычислять по полученным суммам невязку.
 - 29. Сделать вывод по расчету.
- 30. Используя данные предыдущих расчетов определить приходные статьи теплового баланса:
 - окисление углерода до углекислоты;
 - окисление углерода до окиси углерода;
 - образование водяных паров;
 - теплота шлакообразования;
 - физическое тепло влажного дутья и агломерата.
- 31. Определить количества тепла по каждой статье и общую сумму.
 - 32. определить статьи расхода тепла:
 - диссоциация окислов;
 - выделение и испарение влаги;
 - диссоциация карбонатов;
 - тепло, уносимое чугуном и шлаком;

Тепло, уносимое колошниковым газом.

- 33. Определить количества тепла по каждой статье и общую сумму.
- 34. Данные по всему расчету свести в общую таблицу теплового баланса.
- 35. Определить невязку баланса и дать подробный вывод по расчету.

Форма представления результата:

Расчет оформляется в печатном виде на листах формата A4, согласно ГОСТ. Расчет брошюруется и защищается в установленные сроки.

Тема 1.8 Работа доменной печи и её технико-экономические показатели

Практическое занятие № 23 Определение основных показателей работы печи

Формируемая компетенция:

ПК 1.1. Осуществлять технологические операции по производству черных металлов.

Цель работы:

определить основные технико-экономические показатели работы доменной печи

Выполнив работу, Вы будете:

уметь:

определять основные технико-экономические показатели работы доменной печи

Материальное обеспечение:

методические рекомендации по определению ТЭП доменного пронесса

Задание:

на основании исходных данных, используя формулы, рассчитать основные ТЭП доменного процесса

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

- 2. Получить у преподавателя исходные данные на расчет в соответствии со своим вариантом.
 - 3. Определить:
 - к.и.п.о.
 - удельный расход кокса;
 - производительность доменной печи;

- производительность труда;

Форма представления результата:

Выполнить расчеты согласно методике и оформить их в виде решения задач в тетради для практических работ.

Тема 1.8 Работа доменной печи и её технико-экономические показатели

Практическое занятие № 24 Сравнение показателей работы доменных печей по материалам пеха

Формируемая компетенция:

ПК 1.1. Осуществлять технологические операции по производству черных металлов.

Цель работы:

научиться сравнивать и анализировать показатели работы различных ломенных печей

Выполнив работу, Вы будете:

уметь:

сравнивать и анализировать показатели работы различных доменных печей

Материальное обеспечение:

технологическая документация и материалы доменных цехов

Задание:

сравнить основные показатели работы печей, используя материалы доменного цеха

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

- 1. Получить у преподавателя папку с документацией доменного пеха.
- 2. Получить исходный вариант с номером печей, подлежащих сравнению.
- 3. Составить сравнительную таблицу по анализируемым печам по следующим показателям:
 - полезный объем;
 - суточная и годовая производительность;
 - к.и.п.о.;
 - удельный расход кокса;
 - вид и расход используемого сырья;
 - себестоимость получаемого чугуна и т.д.
 - 4. Сделать вывод по заполненной таблице.

Форма представления результата:

Сравнительную таблицу заполнить в тетради для практических работ

Тема 1.8 Работа доменной печи и её технико-экономические показатели

Практическое занятие № 25 Изучение структуры себестоимости чугуна

Формируемые компетенции:

ПК 1.1. Осуществлять технологические операции по производству черных металлов.

ПК 1.4. Анализировать качество сырья и готовой продукции.

Цель работы: изучить структуру себестоимости чугуна

Выполнив работу, Вы будете:

уметь:

определять структуру себестоимости чугуна

Материальное обеспечение:

калькуляции себестоимости чугуна разных печей доменного цеха, конспект лекций

Задание:

изучить структуру себестоимости чугуна, с проработкой всех статей калькуляции

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

Ход работы:

- 1. Получить у преподавателя калькуляцию себестоимости чугуна
- 2. Ознакомится со всеми статьями калькуляции.
- 3. Повести анализ статей калькуляции
- 4. Используя конспект лекций по дисциплине «Технология производства чугуна» проработать мероприятия, направленные на снижение себестоимости чугуна.

Форма представления результата:

Работа выполняется письменно в тетради для практических работ или защищается в устной форме.

Тема 1.8 Работа доменной печи и её технико-экономические показатели

Практическое занятие № 26 Определение производительности труда

Формируемые компетенции:

ПК 1.1. Осуществлять технологические операции по производству черных металлов.

 Π К 1.3. Эксплуатировать технологическое и подъемнотранспортное оборудование, обеспечивающее процесс производства черных металлов.

Цель работы: научится определять производительность труда

Выполнив работу, Вы будете:

уметь:

определять производительность труда

Материальное обеспечение:

методические рекомендации по определению производительности труда

Задание:

на основании исходных данных определить производительность труда

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

Ход работы:

- 1. Получить исходные данные для расчета у преподавателя согласно своему варианту.
- 2. Пользуясь методикой, рассчитать производительность труда на различных участках аглодоменного производства.

Форма представления результата:

Выполнить расчеты и оформить в виде решения задач в тетради для практических работ.

Тема 1.8 Работа доменной печи и её технико-экономические показатели

Практическое занятие № 27 Изучение графика выпусков чугуна и шлака

Формируемые компетенции:

ПК 1.1. Осуществлять технологические операции по производству черных металлов.

ПК 1.4. Анализировать качество сырья и готовой продукции.

Цель работы: научиться пользоваться документацией доменного цеха, а также работать с графиком выпусков чугуна и шлака

Выполнив работу, Вы будете:

уметь:

пользоваться документацией доменного цеха, а также работать с графиком выпусков чугуна и шлака

Материальное обеспечение:

документация доменного цеха

Задание:

изучить документацию доменного цеха научиться читать график выпусков чугуна и шлака

Порядок выполнения работы:

- 1. Ознакомится с методическими указаниями по практическому заданию.
 - 2. Выполнить задание.
 - 3. Оформить работу в тетради для практических занятий.

Ход работы:

- 1. Получить у преподавателя папку с документацией доменного цеха.
- 2. Ознакомится с документацией, сделать краткую опись предоставленной документации.
 - 3. Ознакомится с графиками выпусков чугуна и шлака.
- 4. Сделать выводы по работе доменной печи, используя график выпусков чугуна и шлака.

Форма представления результата:

Работа выполняется письменно в тетради для практических работ