Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г. И. Носова» Многопрофильный колледж

КОМПЛЕКТ КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ЕН.02 ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ ЛОГИКИ программы подготовки специалистов среднего звена по специальности СПО 09.02.03 Программирование в компьютерных системах базовой подготовки

ОДОБРЕНО

Предметно-цикловой комиссией «Информатики и вычислительной техники»

Председатель / . Зоро

Протокол № 7 от 14 марта 2017 г.

Методической комиссией МпК Протокол №4 от «23» марта 2017г

Разработчик (и):

преподаватель ФГБОУ ВО «МГТУ им. Г.И. Носова» Многопрофильный колледж Елена Александровна Васильева

Комплект контрольно-оценочных средств для текущего контроля и промежуточной аттестации по учебной дисциплине составлен на основе ФГОС СПО по специальности 09.02.03 Программирование в компьютерных системах, утвержденного «28» июля 2014 г. № 804, и рабочей программы учебной дисциплины «Элементы высшей математики».

общие положения

Учебная дисциплина «Элементы математической логики» относится к математическому и общему естественнонаучному циклу.

В результате освоения дисциплины обучающийся должен уметь:

У.1. Формулировать задачи логического характера и применять средства математической логики для их решения.

В результате освоения дисциплины обучающийся должен знать:

- 3.1. Основные принципы математической логики, теории множеств, алгоритмов.
- 3.2. Формулы алгебры высказываний.
- 3.3. Методы минимизации алгебраических преобразований.
- 3.4. Основы языка и алгебры предикатов.

Содержание дисциплины ориентировано на подготовку студентов к освоению профессиональных модулей ППССЗ по специальности и овладению профессиональными компетенциями:

- ПК 1.1. Выполнять разработку спецификаций отдельных компонент.
- ПК 1.2. Осуществлять разработку кода программного продукта на основе готовых спецификаций на уровне модуля.
- ПК 2.4. Реализовывать методы и технологии защиты информации в базах данных.
- ПК 3.4. Осуществлять разработку тестовых наборов и тестовых сценариев.

В процессе освоения дисциплины у студентов должны формироваться общие компетенции:

- ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- OК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- OK 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- ОК 6. Работать в коллективе и в команде, эффективно общаться с коллегами, руководством, потребителями.
- ОК 7. Брать на себя ответственность за работу членов команды (подчиненных), результат выполнения заданий.
- OК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.

ОК 9. Ориентироваться в условиях частой смены технологий в профессиональной деятельности.

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе освоения материала: опросы в устной и письменной форме, промежуточное тестирование, оценка самостоятельной работы обучающихся.

В качестве форм и методов текущего контроля используются домашние контрольные работы, практические занятия, тестирование и др.

Промежуточная аттестация в форме комплексного дифференцированного зачета.

Оценка индивидуальных образовательных достижений по результатам текущего контроля и промежуточной аттестации производится в соответствии с универсальной шкалой:

Процент результативности		оценка индивидуальных ельных достижений
(правильных ответов)	балл (отметка)	вербальный аналог
90 ÷ 100	5	онрицто
80 ÷ 89	4	хорошо
70 ÷ 79	3	удовлетворительно
менее 70	2	не удовлетворительно

Паспорт оценочных средств

		Контролиру	Контролиру	Наименовани	ie
No	Контролируемые разделы (темы)	емые	емые	оценочного сред	ства
No	учебной дисциплины	умения,	компетенци	Текущий контроль	Промежуточная
		знания	И	текущии контроль	аттестация
1.	Введение		ОК.1	Тест входного контроля	Вопросы для
			OK 1-9	Контрольная работа по теме	зачета
	D 1 M	У1, 31,	ПК.2.4.,	«Булевы функции»	
	Раздел 1. Математическая логика	34	ПК.3.4.,	Контрольная работа по теме	
	логика	34	ПК.1.1,	«Полнота множества	
			ПК.1.2.	булевых функций»	
2.	Тема 1.1. Формулы логики.	У1, 31, 34	ПК.1.1.,	Индивидуальное домашнее	
	Законы логики	31, 31, 34	ПК.1.2	задание по теме 1.1	
3.	Тема 1.2. Функции алгебры	У1, 31, 34	ПК.2.4.,	Индивидуальное домашнее задание по теме 1.2	
	логики	31, 31, 34	ПК.3.4	Индивидуальное домашнее	
4.	Тема 1.3. Многочлен Жегалкина	У1, 31, 34	ПК.1.1.	задание по теме 1.3	
5.	Тема 1.4. Полнота множества	У1, 31, 32,	ПК.1.1.,	Индивидуальное домашнее	
	булевых функций	34	ПК.1.2	задание по теме 1.4	
6.				Индивидуальное домашнее	
	Тема 1.5. Предикаты	У1, 31	ПК.3.4.	задание по теме 1.5	
	D 2.0		ОК 1-9	Тестирование Контрольная работа по теме	
	Раздел 2. Основные принципы	У1,32, 33	ПК.1.1.,	«Основы теории множеств»	
	теории множеств и теории алгоритмов	5 1,52, 55	ПК.1.1.,		
	алгоритмов		11K.Z.4.		

7. Тема 2 множе	2.1. Основы теории	У1, 32	ПК.1.1.	Индивидуальное домашнее задание по теме 2.1 Тестирование	
8. Тема 2 алгори	2.2. Элементы теории итмов	У1, 33	ПК.2.4.	Подготовка рефератов Тестирование	

1. ВХОДНОЙ КОНТРОЛЬ

Спецификация

Входной контроль проводится с целью определения готовности обучающихся к освоению учебной дисциплины, базируется на дисциплинах, предшествующих изучению данной учебной дисциплины:

- математика;
- информатика.

По результатам входного контроля планируется осуществление в дальнейшем дифференцированного и индивидуального подхода к обучающимся. При низком уровне знаний проводятся корректирующие курсы, дополнительные занятия, консультации.

Примеры заданий входного контроля

1. 3	Закон	нчи:	ге	предло	жение.	В	ЭВ	M	все	опера	ации	над	pa3	злич	ны	ии
даннь	ыми	_	чи	слами,	логиче	ски	МИ	3Н8	ачени	ями,	текс	тами	И	T.	Д.	_
произ	води	Т														

- а) процессор;
- б) ОЗУ;
- в) ПЗУ.
- 2. Ответьте на вопрос. Эквивалентны ли следующие выражения: $3^{n+1} 3^n$ и $2 \cdot 3^n$
- 3. Для измерения количества информации применяют следующие единицы измерения: байт, бит. Какая из них больше?
 - а) Бит, так как 1 бит =16 байт;
 - б) Байт, так как 1 байт = 10 бит;
 - Байт, так как 1 байт = 8 бит.
- 4. Выберите правильный ответ. Число 9 в двоичной системе счисления выглядит так:
 - a) 1001;

в) 1111;

б) 1011;

г) 0011.

- 5. Закончите предложение. Двоичная система счисления имеет основание...
 - a) d = 2;
 - d = 0;
 - B) d = 1.
- 6. Выберите то, что не является множеством:

- {1,2,3}; a)
- б) 34;
- {0}. в)
- Установите соответствие между кривыми и их функциональными зависимостями:
 - 1) окружность; a)
 - x+4y=6; 2) $2x^{2}-y=1$; 3) $x^{2}+y^{2}=4$. б) прямая;
- 8. Какие знаки имеют координаты точки, если она принадлежит III
- координатной четверти (выбери правильный ответ):
 - a) (+;+);

парабола;

- B) (-;-); г) (+;-). (-;+): б)
- На прямой, параллельной оси ОУ, взяты две точки. У одной из них абсцисса равна 3. Чему равна абсцисса другой точки?
 - 0; a)

в)

- ნ) 3;
- B) -3.
- 10. Из точки А(2;3) опущен перпендикуляр на ось ОХ. Какие координаты имеет точка в основании перпендикуляра?
 - a) (0;3);
 - б) (3;0);
 - в) (2;0);
 - L) (0;2).

Критерии оценки

За каждый правильный ответ – 1 балл.

За неправильный ответ – 0 баллов.

Процент результативности		Качественная оценка индивидуальных образовательных достижений					
(правильных ответов)	балл (отметка)	вербальный аналог					
90 ÷ 100	5	отлично					
80 ÷ 89	4	хорошо					
70 ÷ 79	3	удовлетворительно					
менее 70	2	не удовлетворительно					

2. ТЕКУЩИЙ КОНТРОЛЬ

Текущий контроль успеваемости осуществляется в ходе повседневной учебной работы по курсу дисциплины. Данный вид контроля должен стимулировать стремление к систематической самостоятельной работе по изучению учебной дисциплины, овладению профессиональными и общими компетенциями, позволяет отслеживать положительные/отрицательные результаты и планировать предупреждающие/ корректирующие мероприятия.

Формы текущего контроля

2.1. ТЕСТОВЫЙ КОНТРОЛЬ

Спецификация

Текущий контроль успеваемости осуществляется в виде фронтального опроса учащихся по теме предыдущего занятия и в результате проверки самостоятельной работы.

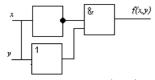
Текущий контроль успеваемости так же осуществляется в виде тестирования по вопросам, по завершению изучения темы.

Критерии оценки

За каждый правильный ответ – 1 балл.

За неправильный ответ – 0 баллов.

Процент результативности	_	оценка индивидуальных ельных достижений
(правильных ответов)	балл (отметка)	вербальный аналог
90 ÷ 100	5	ОТЛИЧНО
80 ÷ 89	4	хорошо
70 ÷ 79	3	удовлетворительно
менее 70	2	не удовлетворительно


Тест

- 1. Операция ИЛИ имеет результат «истина», если ...
 - а) оба операнда истинны;
 - б) оба операнда ложны;
 - в) хотя бы один ложный;
 - г) хотя бы один истинный.
- 2. Эквивалентность это функция обратная функции ...
 - а) конъюнкция;

- б) штрих Шеффера;
- в) сумма Жегалкина;
- г) импликация.
- 3. Логическое выражение $A&(B&\overline{B}\Rightarrow C)$ принимает значение ...
 - a) 0010;
 - б) 0011;
 - в) 0101;
 - r) 1011.
- 4. Сколько наборов будет участвовать в СКНФ для функции заданной таблично:

a	б	c	$(a \to \delta) \to \bar{c}$
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

- a) 3;
- б) 5;
- B) 8;
- r) 4.
- 5. Логическое выражение A & A равносильно:
 - a) 0;
 - б) 1;
 - B) A;
- Логическая функция $f(x, y, z) = x \mathcal{E}(yVz) V x \mathcal{E}^{y} V x$ принимает значение, равное ...
 - a) y;
 - б) z;
 - B) X;
- 7. Выберите из перечисленного функцию, соответствующую построенной логической схеме:

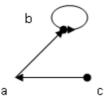
a)
$$f(x, y) = (xVy)V\overline{x}$$
;

6)
$$f(x,y) = (x \& y)V\bar{x}$$
;

B)
$$f(x, y) = (xVy) \& x$$
;

$$f(x, y) = \overline{x} \& yVx$$
.

- 8. Выберите верный результат функции $F = A \oplus B$:
 - a) 1110;
 - б) 0101;
 - в) 1101:
 - r) 0110.
- 9. Для представления логической функции в виде полинома Жегалкина используются следующие логические функции ...
 - a) $\{1, \oplus, \vee\};$
 - \emptyset $\{0, \oplus, \vee\};$
 - $_{\rm B)}$ $\{1, \oplus, \land\};$
 - Γ $\{0, \oplus, \land\}$
- 10. Для того, чтобы система логических функций F была полной, необходимо и достаточно, чтобы...
 - а) она целиком не содержалась ни в одном из классов Ко, К1, М, S, L;
 - б) она представима уравнением Жегалкина первой степени;
 - в) на всех противоположных наборах значения функций противоположны;
 - г) она принадлежала каждому замкнутому классу Ко, К1, М, S, L.
- 11. Является ли полной система функций $\{f, g, h\}$ (принадлежность функций классам T_0, T_1, L, M, S отображена в таблице).


Функции	T_{0}	T_{1}	L	M	S
f	+	-	+	+	-
g	-	+	+	+	-
h	+	+	-	+	+

- а) да;
- б) нет.
- 12. Какая из систем принадлежит классу То?
 - a) $\{\vee,1\}$;

- $6) \quad \{\oplus, \rightarrow, 0\};$
- B) $\{\oplus,1\}$;
- Γ) $\{\oplus,\vee,0\}$.
- 13. Укажите соответствие между понятием и его обозначением:

1. \cap :

- а) объединение;
- $2. \setminus \operatorname{если} A \supset B$;
- б) разность; в) пересечение;
- r) дополнение; 4. \vee .
- 14. Заданы 2 множества $A = \{3,5,6,8,9,10\}$ и $B = \{9,3,10,14\}$, множество $C = (A \setminus B) \cup B$ имеет вид:
 - a) {3,5,6,8,9,10};
 - б) Ø;
 - в) {3,9,10,14};
 - г) {3,5,6,8,9,10,14}.
- 15. Выражение « всякое натуральное число кратное 2 является четным» в виде формулы логики предиката имеет вид:
 - a) $\forall x, \forall n \quad (x \in N \lor x : 2 \rightarrow x = 2 \cdot n)$:
 - \forall x(x ∈ N & x:2, το x кратное);
 - $\forall x, \forall n \quad (x \in N \& x : 2 \rightarrow x = 2 \cdot n)$
 - $\forall x, \forall n \quad (x \in N \& x : 2, x \kappa p a T Hoe)$
- 16. Если $A=\{2,3,4,5,6,7,8\}$, то бинарное отношение $P=\left\{(x,y)\mid x,y\in A,x$ делит y и $x\leq 3\right\}$ можно записать в виде ...
 - a) $P=\{(2,2),(2,4),(2,6),(2,8),(3,3),(3,6)\};$
 - 6) $P=\{(2,2),(2,4),(2,6),(2,8),(3,3),(3,6),(4,8)\};$
 - $P = \{(2,2),(2,4),(2,6),(2,8),(3,3),(3,6),(4,4),(4,8),(5,5),(6,6),(7,7),(8,8)\}.$
- 17. Установите соответствие между графической и аналитической интерпретацией отношения на множестве A, где $A = \{a,b,c\}$.

- a) $P=\{(b,a), (b,b), (c,a)\};$
- $\delta) \quad P = \{(a,b),(b,a),(b,b),(c,a),(a,c)\};$
- B) $P=\{(a,b),(b,b)(c,a)\}.$

		(1	2	3	4	5)
18.	Чему равен порядок подстановки	$o_1 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	2	1	3	5	4

- a) 2;
- б) 3:
- в) 4;
- г) 5.

19. Чему равно число инверсий подстановки

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 5 & 4 \end{pmatrix}.$$

- a) 5;
- б) 6;
- B) 3
- r) 2.
- 20. Существует ли отображение, обратное отображению $x \rightarrow x4 4x2 + 3$, X

$$= [-\infty; -\sqrt{3}], Y=R?$$

- а) да;
- б) нет.

21. Выражение
$$9^{n+1} - 8n - 9$$
 для всех $n \ge 0$ кратно ...

- a) 7
- б) 9;
- B) 4;
- r) 5
- 22. Система счисления это ...
 - а) представление чисел в экспоненциальной форме;
 - б) представление чисел с постоянным положением запятой;
 - в) способ представления чисел с помощью символов, имеющих определённые количественные значения;
 - г) представление чисел в виде ряда и в виде разрядной сетки.
- 23. В чем заключается принцип шифрования рассеивание:
 - а) в использовании таких шифрующих преобразований, которые исключают восстановление взаимосвязи статистических свойств открытого и шифрованного текста;
 - б) в распространении влияния одного символа открытого текста на много символов шифртекста.
- 24. Какое из представленных выражений кратно 2?
 - a) $n \cdot (n+1) + 10$
 - $(n-1)\cdot (n+1)+2$.

- 25. Доказать методом математической индукции кратность 3 выражения: $n^2 + 11$
- 26. Имеется 5 видов открыток без марок и 4 вида марок. Сколькими способами можно выбрать конверт и марку для посылки письма?
 - a) 20;
 - б) 9;
 - в) 41;
 - r) 5.
- 27. Сколько существует двузначных чисел, у которых обе цифры четные?
 - a) 16;
 - б) 20;
 - в) 29;
 - г) 10.
- 28. Может ли логическое устройство иметь несколько выходов?
- 29. Какое дискретное устройство из ниже перечисленных входит в схему арифметико-логического устройства?
 - а) многоразрядный параллельный сумматор;
 - б) двунаправленный регистр;
 - в) ЈК-триггер;
 - г) D-триггер.
- 30. Дополнительный код двоичного числа это ...
 - а) число, дополняющее данное до максимального значения (2ⁿ 1, где n число разрядов двоичного числа) и получающееся инвертированием всех разрядов данного числа;
 - б) число, дополняющее данное до переполнения (2^n) и получающееся прибавлением (1)» к обратному коду числа;
 - в) сумма всех разрядов двоичного числа произведение всех разрядов двоичного числа.

2.2 КОНТРОЛЬНЫЕ РАБОТЫ

Спецификация

Контрольные работы проводятся после изучения соответствующего раздела.

Контрольная работа по теме «Булевы функции».

- 1. Построить таблицу функции.
- 2. По таблице составить совершенные ДНФ и КНФ.
- 3. Найти разложение БФ в дизьюнктивную форму по переменным х,z. Проверить результат с помощью таблицы.
- 4. Упростить исходную формулу и проверить результат с помощью таблицы.
- 5. Построить СДНФ и СКНФ по исходной формуле с помощью эквивалентных преобразований.

$$(x \vee y) \rightarrow (z \oplus x)$$

Контрольная работа по теме «Полнота множества булевых функций»

1. Для функции, заданной таблицей истинности, составить полином Жегалкина.

х	0	0	0	0	1	1	1	1
y	0	0	1	1	0	0	1	1
Z	0	1	0	1	0	1	0	1
f(x, y, z)	1	1	0	0	0	1	0	0

- 2. Выяснить, является ли система функций функционально полной.
- a) $A = \{xy, x \lor y, x \oplus y, xy \lor yz \lor zx\};$
- 6) $A = \{x, \ x(y \Leftrightarrow z) \Leftrightarrow yz, \ x \oplus y \oplus z\}.$

Контрольная работа по теме «Основы теории множеств»

1. Найдите $\sigma_1 \circ \sigma_2$, $\sigma_2 \circ \sigma_1$, σ_1^3 , σ_2^4 , σ_1^{-1} , порядок каждой из подстановок, число инверсий и четность подстановки σ_1 .

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 5 & 4 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}$$

2. Решите задачу.Из 100 студентов 42 посещают спортивные секции, 30 — занятия HCO, а 28 — кружки художественной самодеятельности. На занятия HCO и спортом успевают ходить 5 студентов, спортом и художественной самодеятельностью занимаются 10, HCO и художественной

самодеятельностью -8, а сразу все три увлечения имеют три студента. Сколько студентов не посещают ни одно из этих объединений по интересам?

3. ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ

Промежуточная аттестация обучающихся по учебной дисциплине, осуществляется по завершении изучения данной дисциплины и позволяет определить качество и уровень ее освоения. Предметом оценки освоения учебной дисциплины являются умения и знания.

3.1. Контрольные вопросы

Комплексный дифференцированный зачет является формой промежуточной аттестации для оценки умений и знаний обучающихся 2 курса специальности 09.02.03 Программирование в компьютерных системах по программе учебным дисциплинам «Элементы высшей математики» и «Элементы математической логики». Дифференцированный зачет проводится после изучения всего программного материала в устной форме.

Теоретические вопросы

- 1. Матрицы и действия над ними.
- 2. Определитель матрицы и его свойства, вычисление определителей. Определители n-го порядка.
- 3. Миноры и алгебраические дополнения. Разложение определителя по элементам строки или столбца.
- 4. Обратная матрица.
- 5. Элементарные преобразования матрицы. Ступенчатый вид матрицы.
- 6. Системы линейных уравнений и методы их решения.
- 7. Однородные и неоднородные системы линейных уравнений.
- 8. Правило Крамера для решения квадратной системы линейных уравнений.
- 9. Метод обратной матрицы для решения квадратной системы линейных уравнений.
- 10. Метод исключение неизвестных метод Гаусса.
- 11. Определение вектора. Операции над векторами, их свойства.
- 12. Координаты вектора. Модуль вектора. Скалярное произведение векторов. Вычисление скалярного произведения через координаты векторов.
- 13. Прямая на плоскости: уравнение с угловым коэффициентом, уравнение прямой, проходящей через две данные точки, параметрические уравнения, уравнение в канонической форме.
- 14. Кривые 2-го порядка, канонические уравнения окружности, эллипса, гиперболы, параболы.
- 15. Числовые последовательности. Предел последовательности, свойства предела.

- 16. Предел функции. Свойства предела функции. Односторонние пределы. Предел суммы, произведения и частного двух функций. Замечательные пределы.
- 17. Непрерывные функции, их свойства. Непрерывность функции. Точки разрыва, их классификация.
- 18. Понятие производной функции. Производные основных элементарных функций.
- 19. Дифференцируемость функции. Дифференциал функции.
- 20. Производная сложной функции.
- 21. Правила дифференцирования: производная суммы, произведения и частного.
- 22. Производные и дифференциалы высших порядков.
- 23. Раскрытие неопределенностей, правила Лопиталя.
- 24. Приложение производной к исследованию функций. Возрастание и убывание функций, условия возрастания и убывания.
- 25. Приложение производной к исследованию функций. Экстремумы функций, необходимое условие существования экстремума. Нахождение экстремумов с помощью первой производной.
- 26. Приложение производной к исследованию функций. Выпуклые функции. Точки перегиба. Асимптоты.
- 27. Полное исследование функции.
- 28. Неопределенный интеграл, его свойства. Таблица основных интегралов.
- 29. Метод замены переменных.
- 30. Интегрирование по частям.
- 31. Интегрирование рациональных функций.
- 32. Интегрирование некоторых иррациональных функций. Универсальная подстановка.
- 33. Определенный интеграл, его свойства. Формула Ньютона-Лейбница.
- 34. Интегрирование заменой переменной и по частям в определенном интеграле.
- 35. Приложения определенного интеграла в геометрии.
- 36. Несобственный интеграл. Несобственные интегралы с бесконечными пределами интегрирования. Понятие несобственных интегралов от неограниченных функций.
- 37. Понятие функции нескольких действительных переменных. Предел и непрерывность функции нескольких переменных. Свойства.

- 38. Частные производные. Дифференцируемость функции нескольких переменных. Дифференциал. Производные и дифференциалы высших порядков.
- 39. Двойные интегралы и их приложения.
- 40. Повторные интегралы. Сведение двойных интегралов к повторным в случае областей 1 и 2 типа.
- 41. Определение числового ряда, сумма ряда, остаток ряда. Свойства рядов.
- 42. Необходимый признак сходимости рядов.
- 43. Признаки сравнения положительных рядов.
- 44. Признаки Даламбера и Коши, интегральный признак сходимости.
- 45. Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимость.
- 46. Степенные ряды. Радиус и интервал сходимости. Поведение степенного ряда на концах интервала сходимости. Область сходимости степенного ряда.
- 47. Свойства степенных рядов.
- 48. Ряды Тейлора и Маклорена. Разложение функций в ряд Тейлора. Ряды Фурье.
- 49. Обыкновенные дифференциальные уравнения, их виды и методы решения. Общее и частное решения.
- 50. Дифференциальные уравнения с разделёнными и разделяющимися переменными.
- 51. Однородные дифференциальные уравнения 1-го порядка. Уравнения, приводящиеся к однородным.
- 52. Линейные однородные и неоднородные дифференциальные уравнения 1-го порядка.
- 53. Дифференциальные уравнения 2-го порядка. Линейные однородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами.
- 54. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами.
- 55. Дифференциальные уравнения, допускающие понижение степеней.
- 56. Определение комплексного числа в алгебраической форме, действия над ними.
- 57. Тригонометрическая форма комплексных чисел. Переход от алгебраической формы к тригонометрической и обратно.
- 58. Решение алгебраических уравнений.
- 59. Действия над комплексными числами в тригонометрической форме.

- 60. Показательная форма комплексных чисел, действия над ними. Тождество Эйлера.
- 61. Сформулируйте определение высказывания. Приведите примеры высказываний. Приведите примеры предложений, которые не являются высказываниями. Какие значения может принимать высказывание?
- 62. Сформулируйте определение логической функции. Как может быть задана логическая функция? В чем особенности табличного задания функции? Приведите пример табличного задания логической функции.
- 63. Что представляет собой таблица истинности функции? Чему равно общее число наборов переменных логической функции и ее значений?
- 64. Сколько существует логических функций одной переменной? Объясните смысл операции отрицания?
- 65. Сколько существует логических функций от двух переменных? Объясните смысл операции конъюнкции двух переменных с привлечением множеств. Приведите таблицу истинности функции «конъюнкция x1, x2».
- 66. Сколько существует логических функций от двух переменных? Объясните смысл операции дизъюнкция двух переменных с привлечением множеств. Приведите таблицу истинности функции «дизъюнкция x1, x2».
- 67. Приведите пример задания логической функции формулой. Можно ли задать одну и ту же функцию различными формулами? Какие формулы называются эквивалентными? Как доказывается эквивалентность формул логических функций?
- 68. Какая формула называется булевой? Перечислите четыре основные разновидности булевых формул.
- 69. Дайте определение булевой алгебры логических функций. Справедливы ли сочетательный, переместительный и распределительный законы для операций булевой алгебры? Допишите правую часть для распределительного закона относительно дизъюнкции двух переменных $x_1 \wedge (x_2 \vee x_3) = ?$
- 70. Дайте определение булевой алгебры логических функций. Справедливы ли сочетательный, переместительный и распределительный законы для операций булевой алгебры? Допишите правую часть для распределительного закона относительно конъюнкции двух переменных $x_1 \lor (x_2 \land x_3) = ?$
- 71. Сформулируйте определение элементарной конъюнкции и дизъюнктивной нормальной формы (ДНФ). Чем отличается ДНФ от СДНФ?

- 72. Сформулируйте определение элементарной дизъюнкции и конъюнктивной нормальной формы (КНФ). Чем отличается КНФ от СКНФ?
- 73. В чем смысл минимизации булевых формул? Перечислите основные методы минимизации булевых формул.
- 74. Какая система функций называется функционально полной? Приведите пример функционально полных систем.
- 75. Сформулируйте определение алгебры Жегалкина. Сформулируйте определение замыкания множества логических функций.
- 76. На основании каких элементов составляются логические схемы? Какие требования предъявляются к логическим схемам?
- 77. В чем смысл задачи анализа логических схем? Каковы два пути анализа логических схем?
- 78. Сформулируйте определение предиката. Что представляет собой предметная область предиката и какие значения может принимать предикат?
- 79. В чем отличие предиката от булевой функции? Каков смысл кванторов общности и существования? Как определяется истинность предиката?
- 80. Сформулируйте определение множества. Приведите примеры множества. Перечислите способы задания множеств. Приведите примеры.
- 81. Перечислите основные операции над множествами. Приведите примеры на кругах Эйлера.
- 82. Сформулируйте определение подстановки. Приведите пример подстановки. Что такое инверсия и транспозиция подстановки.
- 83. Сформулируйте определение декартова произведения множеств. Приведите примеры. Чему равна длина (мощность) множества.
- 84. Основы теории кодировани

Критерии оценки

Оценки "отлично" заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка "отлично" выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

Оценки "хорошо" заслуживает студент обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в

программе. Как правило, оценка "хорошо" выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

Оценки "удовлетворительно" заслуживает студент, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка "удовлетворительно" выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

Оценка "неудовлетворительно" выставляется студенту, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка "неудовлетворительно" ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании колледжа без дополнительных занятий по соответствующей дисциплине.

1.2. Тестирование

Тест входит в состав комплекта контрольно-оценочных средств и предназначается для итогового контроля и оценки умений и знаний обучающихся 2 курса специальности 09.02.03 Программирование в компьютерных системах по программе учебной дисциплины «Элементы высшей математики». Тест проводится в форме Федерального интернет-экзамена в сфере профессионального образования.

1. Переменная
$$y$$
 системы уравнений
$$\begin{cases} -3x+6y-8z=2,\\ x+y+z=-4,\\ -3x-y+2z=2 \end{cases}$$
 определяется по

формуле ...

a)
$$y = \begin{vmatrix} -3 & 6 & 2\\ 1 & 1 & -4\\ -3 & -1 & 2\\ \hline -3 & 6 & -8\\ 1 & 1 & 1\\ 2 & 1 & 2 \end{vmatrix};$$

$$y = \begin{vmatrix} -3 & -1 & 2 \\ -3 & 6 & -8 \\ 1 & 1 & 1 \\ -3 & -1 & 2 \\ \hline -3 & 2 & -8 \\ 1 & -4 & 1 \\ -3 & 2 & 2 \end{vmatrix};$$

B)
$$y = \frac{\begin{vmatrix} 2 & 0 & -3 \\ -4 & 1 & 1 \\ 2 & -1 & 2 \end{vmatrix}}{\begin{vmatrix} -3 & 6 & -8 \\ 1 & 1 & 1 \\ -3 & -1 & 2 \end{vmatrix}};$$

$$y = \frac{\begin{vmatrix} -3 & 2 & -8 \\ 1 & - & 1 \\ -3 & 2 & 2 \end{vmatrix}}{\begin{vmatrix} -3 & 6 & -8 \\ 1 & 1 & 1 \\ -3 & -1 & 2 \end{vmatrix}}$$

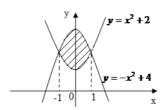
- Определитель $\begin{vmatrix} 12 & -12 & 0 \\ 0 & -3 & 0 \\ 3 & 6 & 9 \end{vmatrix}$ можно привести к виду ... 2.
 - a) $3 \cdot \begin{vmatrix} 4 & -4 & 0 \\ 0 & -3 & 0 \\ 1 & 2 & 3 \end{vmatrix}$
 - $6) \quad 3 \cdot \begin{vmatrix} 12 & -12 & 0 \\ 0 & -3 & 0 \end{vmatrix};$

B)
$$\begin{vmatrix} 12 & -12 & 0 \\ 3 & 6 & 9 \\ 0 & -3 & 0 \end{vmatrix}$$

- $\begin{array}{c|cccc}
 \Gamma & 12 & 0 & -12 \\
 0 & 0 & -3 \\
 3 & 9 & 6
 \end{array}$
- Значение неизвестного элемента определителя $\begin{vmatrix} x & -2 \\ -1 & 8 \end{vmatrix} = 14$ равно ... 3.

- Матрица $H = 7,3 \cdot \begin{pmatrix} 7 \\ -3 \end{pmatrix}$ имеет размерность ...
 - a) 1×1 ;

в) 2×2; г) 1×2.


- Уравнение прямой, проходящей через две данные точки A(5;-1), B(2;2), имеет вид ...
 - a) $\frac{x-5}{3} = \frac{y+1}{2}$;

B) $\frac{x-5}{-3} = \frac{y+1}{3}$;

6) -3(x-5)+3(y+1)=0;

 Γ) $\frac{x-5}{2} = \frac{y-1}{1}$.

6.	Уравнение $36x^2 + 9y^2 - 25 = 0$ задает на плоскости							
	a)	гиперболу;	в)	параболу;				
	б)	окружность;	Г)	эллипс.				
7.		на вектора $\bar{a} = (2;-11)$ равна						
		$\sqrt{13}$;		13;				
	б)	9;	L)	$5\sqrt{5}$.				
8.	Уста	новите соответствие между уравнениям	ии п	рямых и их				
расп	олож	ением на координатной плоскости						
	a)	4y + x = 0; 1) уравнение прямой, п						
	б)	x = -16; 2) уравнение прямой, п $6y + 1 = 0$; 3) уравнение прямой, п	ара	ллельной оси OX;				
	B)	6y+1=0; 3) уравнение прямой, п	рох	одящей через начало				
		координат.						
9.	Знач	ение предела $\lim_{x\to\infty} \frac{1+5x+3x^2-9x^3}{4-x+3x^3}$ равно						
	a)	0;	в)	-3;				
	б)		г)	−3; ∞.				
		4						
10.	Точк	ка $x=1$ для функции $y = \begin{cases} -x-1 & npu & x \\ \sqrt{x} & npu & x > \end{cases}$	≤1 1	является				
		точкой устранимого разрыва;		точкой разрыва II рода;				
				точкой непрерывности.				
11.	Прог	изводная функции $y = \frac{x}{\ln x}$ имеет вид	•					
	a)	$\frac{\ln x - 1}{\ln x}$;	в)	$\frac{\ln x + 1}{\ln^2 x}$;				
		III X	-)	$\ln^2 x$				
	െ	$\frac{\ln x - 1}{\ln^2 x}$;	L)	r				
	0)	$\frac{1}{\ln^2 x}$,	1)	Λ.				
12.	Уста	новите, чему равны значения функции	<i>z</i> =	$\frac{4x^2y}{x+2y^2}$ в указанных				
точк	ax.							
		z(-1; 1);	1)	3,2; 4;				
		z(2;2);						
1.2	_	z(0; 1);	3)	* *				
13.	Плоі	цадь фигуры, изображенной на рисунке	e, on	ределяется интегралом				
• • •								

a) $\int_{2}^{4} ((x^2+2)-(-x^2+4))dx;$

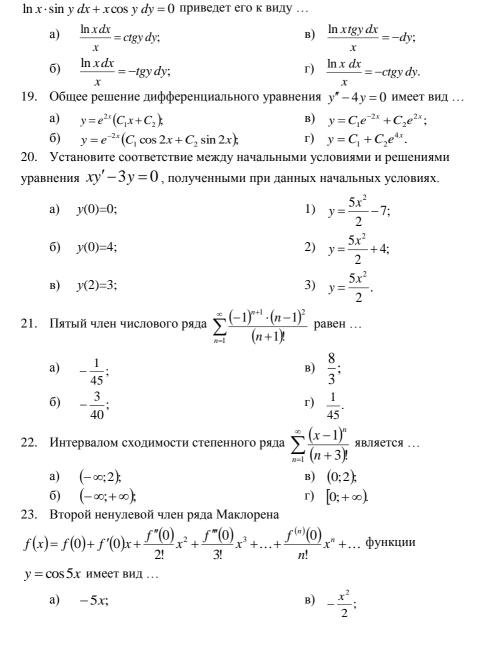
 $6) \qquad \int_{1}^{1} ((x^{2} + 2) - (-x^{2} + 4)) dx;$

- B) $\int_{-1}^{1} ((-x^2 + 4) (x^2 + 2)) dx;$ $\Gamma) \int_{1}^{4} ((-x^2 + 4) (x^2 + 2)) dx.$
- Несобственным интегралом является ...
 - $\int (x^3 tgx)dx$;

B) $\int_{0}^{\pi} x \sin x dx;$

 $6) \qquad \int_{0}^{2} dx \int_{0}^{3x} dy;$

- Γ) $\int_{0}^{-1} \frac{dx}{3}$.
- Используя свойства определенного интеграла, интеграл


 $\int (4\ln(2x-\pi)-x^3\sin x)dx$ можно привести к виду ...

- a) $4\int_{\pi}^{\frac{3\pi}{2}}\ln(2x-\pi)dx \int_{\frac{3\pi}{2}}^{2\pi}x^3\sin xdx;$ B) $4\int_{\pi}^{2\pi}\ln(2x-\pi)dx + \int_{2\pi}^{\pi}x^3\sin xdx;$
- 6) $4 \int_{\pi}^{2\pi} \ln(2x-\pi) dx \int_{2\pi}^{\pi} x^3 \sin x dx;$ Γ) $4 \int_{\pi}^{\frac{3\pi}{2}} \ln(2x-\pi) dx + \int_{3\pi}^{2\pi} x^3 \sin x dx.$
- Установите соответствие между интегралами и методами их вычисления
 - непосредственное интегрирование; 1) $\int \sqrt{x^3 + 1} x^2 dx$; a)
- - метод замены переменной; б)
- 2) $\int x \ln x dx$;
- B) метод интегрирования по частям;
- 3) $\int \frac{dx}{3}$.
- Решением дифференциального уравнения xy'-3y=0 является функция 17.

. . .

a) $v = -x^3$:

B) y = 3;

 Γ) $v = x^3$.

 $v = 3x^2$:

18. Разделение переменных в дифференциальном уравнении

б)

6)
$$\frac{25x^2}{2}$$
;

$$\Gamma$$
) $-\frac{25x^2}{2}$.

- 24. Необходимое условие сходимости выполняется для двух рядов ...
 - a) $\sum_{n=1}^{\infty} (n+3)!$;

 $\mathrm{B)}\quad \sum_{n=1}^{\infty}\frac{7}{8^n};$

6)
$$\sum_{n=1}^{\infty} \frac{1+n^2}{n}$$
;

 $\Gamma) \quad \sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{2n^3}.$

- 25. Частное $\frac{z_1}{z_2}$ комплексных чисел $z_1=-4+2i$ и $z_2=1-3i$ равно ...
 - a) -1+i:

B) -1-i;

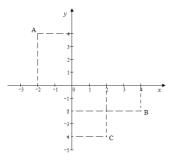
6)
$$-4-\frac{2}{3}i$$
;

 Γ) 0,2-*i*.

26. Комплексное число $z = \sqrt{6} + \sqrt{6}i$ в тригонометрической форме имеет вид

...

a) $2\sqrt{3}(\cos 30^{\circ} + i \sin 30^{\circ});$


B) $\cos 45^{\circ} + i \sin 45^{\circ}$;

- 6) $2\sqrt{3}(\cos 45^{\circ} + i \sin 45^{\circ});$
- Γ) $2\sqrt{3}(\cos 45^{\circ} i \sin 45^{\circ})$.
- 27. Корнем уравнения $y^2 + 6y + 13 = 0$ является число ...
 - a) 3+2i;

B) -5;

б) –1;

- Γ) -3+2i.
- 28. Сопоставьте комплексным числам точки на комплексной плоскости.

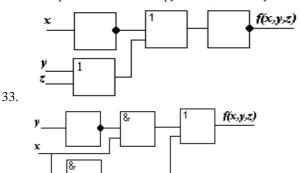
a) -2+4i;

1) C;

6) 4-2i;

2) B;

B) 2-4i:


- 3) A.
- 29. Как на основании таблицы истинности функции получить СДНФ? Постройте ее для следующей таблицы:

x1	x2	F
0	0	0
0	1	1
1	0	0
1	1	1

30. Как на основании таблицы истинности функции получить СКНФ? Постройте ее для такой таблицы:

x1	x2	F
0	0	1
0	1	0
1	0	0
1	1	1

- 31. Минимизируйте функцию $F(x_1, x_2) = (\overline{x_1} \land x_2) \lor (x_1 \land x_2)$
- 32. Построить логические функции для следующих схем:

34. Постройте таблицы истинности для функций: $F(x_1,x_2) = (x_1 \wedge x_2) \vee \overline{x_1}, \ F(x_1,x_2) = (x_1 \vee x_2) \wedge \overline{x_2}.$ Сконструируйте логические схемы, реализующие эти функции.

- 35. Решите задачу. Из 100 студентов университета английский язык знают 28 студентов, немецкий 30, французский 42, английский и немецкий 8, английский и французский 10, немецкий и французский 5, все три языка знают 3 студента. Сколько студентов не знают ни одного из трех языков?
- 36. Найдите $\sigma_1 \circ \sigma_2$, $\sigma_2 \circ \sigma_1$, σ_1^3 , σ_2^4 , σ_1^{-1} , порядок каждой из подстановок, число инверсий и четность подстановки σ_1 .

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 5 & 4 \end{pmatrix} \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}$$

- 37. Докажите тождество с помощью кругов Эйлера: $(X \cup Y) \cap Z = (X \cap Z) \cup (Y \cap Z)$
- 38. Пусть даны множества A={-3;-2;-1;0;1;2;3;7}, B={5;3;2;1;0;-2;-3}, C={-4;-3;-2;-1;0;1;2;3;4}. Найдите множества $A\cup B$, $A\cap B$, $A\cup C$, $B\cup C$ $A\setminus B$, $B\setminus A$
- 39. Выполните действия: a) 271,34(8)+1566,2(8); б) 65,2(16)+3CA,8(16); в) 731,6(8)-622,6(8); г) 22D,1(16)-123,8(16).
- 40. Полна ли система функций $\{f, g, h\}$ (принадлежность функций классам T_0, T_1, L, M, S отображена в таблице).

Функции	$T_{\scriptscriptstyle 0}$	T_{1}	L	M	S
f	-	-	+	-	+
g	+	+	+	+	+
h	+	+	-	-	+

41. Полна ли система функций $\{F, G, H\}$ (принадлежность функций классам T_0, T_1, L, M, S отображена в таблице).

Функции	T_{0}	T_{1}	L	M	S
F	-	+	-	-	-
G	-	+	+	+	-
Н	-	-	-	-	+

Критерии оценки

За каждый правильный ответ – 1 балл.

За неправильный ответ – 0 баллов.

Процент результативности	Качественная оценка индивидуальных образовательных достижений		
(правильных ответов)	балл (отметка)	вербальный аналог	
90 ÷ 100	5	ОТЛИЧНО	
80 ÷ 89	4	хорошо	
70 ÷ 79	3	удовлетворительно	
менее 70	2	не удовлетворительно	