МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ТОПОЛОГИЧЕСКАЯ ОПТИМИЗАЦИЯ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ

Направление подготовки (специальность) 22.04.02 Металлургия

Направленность (профиль/специализация) программы Искусственный интеллект в металлургии

Уровень высшего образования - магистратура

Форма обучения очная

Институт/ факультет Институт металлургии, машиностроения и материалообработки

Кафедра Литейных процессов и материаловедения

Kypc 2

Семестр 3

Магнитогорск 2025 год Рабочая программа составлена на основе ФГОС ВО - магистратура по направлению подготовки 22.04.02 Металлургия (приказ Минобрнауки России от 24.04.2018 г. № 308)

Рабочая программа рассмотрена и одобрена на заседании кафедры Литейных
процессов и материаловедения
23.01.2025, протокол № 6
Зав. кафедрой Н.А. Феоктистоп
Рабочая программа одобрена методической комиссией ИММиМ
04.02.2025 г. протокол № 4
Председатель А.С. Савинов
D.C.
Рабочая программа составлена: зав. кафедрой кафедры ЛПиМ, канд. техн. наук Н.А. Феоктисто
Рецензент:
доцент кафедры ПЭиБЖД, канд. техн. наук А.Ю. Перятинский

Лист актуализации рабочей программы

рена, обсуждена и одобрена д афедры Питейных процессов	
Протокол от	_ 20 г. № Н.А. Феоктистов
 рена, обсуждена и одобрена д афедры Литейных процессо	<u> </u>
Протокол от	_ 20 г. № Н.А. Феоктистов

1 Цели освоения дисциплины (модуля)

Цель: формирование у студентов комплекса знаний, умений и навыков направленных на топологическую оптимизацию деталей и узлов промышленного

оборудования с учетом их функционального назначения, условий эксплуатации, материалоемкости, технологии и трудоемкости их изготовления. Задачи: -изучить вные факторы определяющие конструктивный облик изделия, критерии

основные факторы определяющие конструктивный облик изделия, критери оптимизации; - изучить методы топологической оптимизации деталей узловпромышленного оборудования; - ознакомиться с основными программными

продуктами реализующими методы топологической оптимизации; - на практике освоить технологию топологической оптимизации деталей и узлом промышленного оборудования.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Топологическая оптимизация элементов конструкций входит в часть учебного плана формируемую участниками образовательных отношений образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Основы прочностного расчета в литейном производстве

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Подготовка к сдаче и сдача государственного экзамена

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Топологическая оптимизация элементов конструкций» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции					
ОПК-4 Способен н	ОПК-4 Способен находить и перерабатывать информацию, требуемую для принятия					
решений в научных исследованиях и в практической технической деятельности						
ОПК-4.1	Знает: как производить поиск, анализ и синтез информации для					
	разработки и принятия решений при проведении научных					
	исследований и осуществления профессиональной деятельности в					
	области металлургии и металлообработки; методы использования					
	информации для подготовки и принятия решений в научных					
	исследованиях и в практической технической деятельности					
ОПК-4.2	Умеет: использовать профессиональные знания для сравнения,					
	классификации и преобразования информации, необходимой для					
	совершенствования основных и вспомогательных операций					
	технологических процессов производства металлопродукции					
	широкого назначения; самостоятельно искать, анализировать и					
	отбирать необходимую информацию, организовывать,					
	преобразовывать, сохранять и передавать ее					
ОПК-4.3	Имеет практический опыт: применять существующие					
	методологические подходы для структурирования, систематизации,					
	хранения и передачи информации, требуемой для решения					
	широкого спектра задач в практической деятельности; принятия					
	решений по оптимизации элементов конструкций					

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 2 зачетных единиц 72 акад. часов, в том числе:

- контактная работа 39,05 акад. часов:

- аудиторная 38 акад. часов; внеаудиторная 1,05 акад. часов; самостоятельная работа 32,95 акад. часов;
- в форме практической подготовки 0 акад. час;

Форма аттестации - зачет

Раздел/ тема дисциплины	Семестр	кон	Аудиторн гактная р акад. ча лаб.	работа сах) практ.	Самостоятельная работа студента	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код компетенции
1. Конструктивный облик изделия: влияющие факторы	ι,	Jick.	зан.	зан.	Ce			
критерии оптимизации 1.1 Общие принципы конструирования промышленного оборудования и основные факторы определяющие конструктивный облик изделия. Критерии оптимизации элементов конструкций		2,5						ОПК-4.1, ОПК-4.2, ОПК-4.3
1.2 Основные расчеты кинематики и динамики механизмов, расчеты на прочность, долговечность (износ, усталостные разрушения), тепловые расчеты	3	2,5						ОПК-4.1, ОПК-4.2, ОПК-4.3
1.3 Субстрактивные, традиционные формообразующие и аддитивные технологии и их влияние на конструктивный облик изделия		2						ОПК-4.1, ОПК-4.2, ОПК-4.3
1.4 Семинар "Конструктивный облик изделий: влияние технологии"				4,5	8	Основная литература . Дополнительная литература	Контрольные вопросы к разделу 1	ОПК-4.1, ОПК-4.2, ОПК-4.3
Итого по разделу 2. Методы топологической оптимизации: основные принципы, область применения, ограничения		7		4,5	8			

2.1 Топологическая оптимизация: терминология, основные концепции, основные методы (Level-Set, ESO/BESO, SIMP). Методы ESO/BESO, особенности реализации, ограничения		4				ОПК-4.1, ОПК-4.2, ОПК-4.3
2.2 Топологическая оптимизация: методы Level-Set, особенности реализации, ограничения	3	2				ОПК-4.1, ОПК-4.2, ОПК-4.3
2.3 Топологическая оптимизация: методы SIMP, особенности реализации, ограничения		2				ОПК-4.1, ОПК-4.2, ОПК-4.3
2.4 Топологическая оптимизация: сравнительная характеристика основных методов			2,5	Основная литература . Дополнительная литература	Контрольные вопросы к разделу 2	ОПК-4.1, ОПК-4.2, ОПК-4.3
Итого по разделу		8	2,5			
3. Основные программные решения для топологической оптимизации элементов конструкций	á					
3.1 Обзор основных программных продуктов для топологической оптимизации элементов конструкций. Примеры типовых задач топологической оптимизации		2				ОПК-4.1, ОПК-4.2, ОПК-4.3
3.2 Топологическая оптимизация детали типа тонкостенный сосуд нагруженный внутренним давлением и осевой силой: подготовка геометрии, постановка задачи топологической оптимизации, постобработка результатов.	3		6			ОПК-4.1, ОПК-4.2, ОПК-4.3
3.3 Порядок подготовки исходных моделей, постановки и решения задач топологической оптимизации, финальной обработки результатов топологической оптимизации		2				ОПК-4.1, ОПК-4.2, ОПК-4.3
3.4 Топологическая оптимизация нагруженной детали типа кронштейн: подготовка геометрии, постановка задачи			6	Основная литература . Дополнительная литература	Контрольные вопросы к разделу 3	ОПК-4.1, ОПК-4.2, ОПК-4.3

топологической оптимизации, постобработка результатов.							
3.5 Семестровое задание. Проектирование и оптимизация конструкции технологической машины.	3			14,95	Основная литература . Дополнительная литература		ОПК-4.1, ОПК-4.2, ОПК-4.3
3.6 Промежуточная аттестация	3				Основная литература . Дополнительная литература	Зачет	ОПК-4.1, ОПК-4.2, ОПК-4.3
Итого по разделу		4	12	24,95			
Итого за семестр		19	19	22,95		зачёт	
Итого по дисциплине		19	19	32,95		зачет	

5 Образовательные технологии

Для усвоения студентами знаний по дисциплине «Топологическая оптимизация элементов конструкции» применяются традиционная и компетентностно-модульная технологии обучения, включающие в себя объяснения преподавателя на лекциях, самостоятельную работу с учебной и справочной литературой по дисциплине, выполнение практических работ и т.д.

В качестве интерактивных методов обучения используются:

- опережающая самостоятельная работа и работа в команде при выполнении практических работ;
 - проблемное обучение при поиске информационных источников.

Самостоятельная работа студентов направлена на закрепление теоретического материала, изложенного преподавателем, на проработку тем, отведенных на самостоятельное изучение, на подготовку к практическим занятиям, рейтинговым контролям и устному опросу, а также подготовку к экзамену по дисциплине.

Текущий контроль по дисциплине осуществляется на практических занятиях при выполнении индивидуальных заданий, выданных преподавателем.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся

Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

- 1. Дунаев, П. Ф. Конструирование узлов и деталей машин [Текст] учеб. пособие для техн. специальностей вузов П. Ф. Дунаев, О. П. Леликов. 6-е изд., испр. М.: Высшая школа. 2000. 446.[1] с. ил.
- 2. Орлов, П. И. Основы конструирования [Текст] Кн. 1 в 2 кн. П. И. Орлов ; под ред. П. Н. Учаева. 3-е изд., испр. М.: Машиностроение, 1988. 559 с. ил.
- 3.Лесин, В. В. Основы методов оптимизации : учебное пособие / В. В. Лесин, Ю. П. Лисовец. 4-е изд., стер. Санкт-Петербург : Лань, 2016. 344 с. ISBN 978-5-8114-1217-4. Текст : электронный // Лань : электронно-библиотечная система. —URL: https://e.lanbook.com/book/86017 (дата обращения: 06.01.2025). Режим доступа: для авториз. пользователей.

б) Дополнительная литература:

1. Должиков, В. П. Технологии наукоемких машиностроительных производств: учебное пособие / В. П. Должиков. — 2-е изд., стер. — Санкт-Петербург: Лань, 2021. — 304 с. — ISBN 978-5-8114-2393-4. — Текст: электронный // Лань: электроннобиблиотечная система. — URL: https://e.lanbook.com/book/168969 (дата обращения: 06.01.2025). — Режим доступа: для авториз. пользователей.

в) Методические указания:

Предствлены в Приложении 3

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
7Zip	свободно распространяемое	бессрочно
FAR Manager	свободно распространяемое	бессрочно
АСКОН Компас	Д-1082-22 от 01.12.2022	бессрочно
FlowVision	К-93-09 от 19.06.2009	бессрочно
Delkam ArtCAM Pro 2011	К-308-12 от 19.11.2012	бессрочно
Delkam PowerMill Pro 2012	К-308-12 от 19.11.2012	бессрочно
Delkam Power Shape 2012	К-308-12 от 19.11.2012	бессрочно

Профессиональные базы данных и информационные справочные системы

1 1	1 '
Название курса	Ссылка
Национальная информационно-аналитическая	
система – Российский индекс научного	<pre>URL:https://elibrary.ru/project_risc.asp</pre>
цитирования	
Электронные ресурсы библиотеки МГТУ им. Г.И.	https://host.moconvolib.not/MD0100/Wah
Г.И.	mttps://nost.megaprono.net/MP0109/web

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Материально-техническое обеспечение дисциплины включает:

- 1. Учебная аудитория для проведения занятий лекционного типа оснащена:
- техническими средствами обучения, служащими для представления учебной информации большой аудитории: мультимедийными средства хранения, передачи и представления учебной информации;
 - специализированной мебелью.
 - 2. Учебная аудитория для проведения практических занятий оснащена:
- техническими средствами обучения, служащими для представления учебной информации большой аудитории: мультимедийными средства хранения, передачи и представления учебной информации;
 - специализированной мебелью.
- 3. Учебная аудитория для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации оснащена:
- компьютерной техникой с пакетом MS Office, с подключением к сети «Интернет» и с доступом в электронную информационно-образовательную среду университета;
 - специализированной мебелью.
 - 4. Помещение для самостоятельной работы оснащено:
- компьютерной техникой с пакетом MS Office, с подключением к сети «Интернет» и с доступом в электронную информационно-образовательную среду университета;
 - специализированной мебелью.
- 5. Помещение для хранения и профилактического обслуживания учебного оборудования оснащено:
 - специализированной мебелью: стеллажами для хранения учебного оборудования;
 - -инструментами для ремонта учебного оборудования;
 - шкафами для хранения учебно-методической документации и материалов.

- 7 Оценочные средства для проведения промежуточной аттестации а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Структурный								
элемент	Планируемые результаты обучения	Оценочные средства						
компетенции								
ОПК-4 Спос	ОПК-4 Способен находить и перерабатывать информацию, требуемую для принятия решений в научных исследованиях и в							
	практической технической д							
ОПК-4.1	исследований и осуществления профессиональной деятельности в области металлургии и металлообработки; методы использования информации для подготовки и принятия решений в научных исследованиях и в практической технической деятельности	Теоретические вопросы к зачету: 1. Основные подходы к разработке конструкции изделия. Цели и задачи процесса конструирования. 2. Основные факторы, определяющие конструктивный облик изделия. Основные направления совершенствования конструкций деталей и узлов промышленного оборудования. 3. Инженерные расчеты при определении конструктивного облика деталей и узлов промышленного оборудования. Основные расчетные зависимости. 4. Перечислите основные технологии изготовления деталей и узлов промышленного оборудования. Укажите ключевые особенности конструкций деталей и узлов схожего функционального назначения, изготовленных различными способами. 5. Цели и задачи оптимизации конструкции изделий, критерии оптимизации. 6. Топологическая оптимизация. Предметная область. Цели и задачи. 7. Перечислите основные методы и проведите их сравнительную оценку. 8. Методы ESO/BESO: математическая формулировка,						
ОПК-4.2	Умеет: использовать профессиональные знания для сравнения, классификации и преобразования информации,	особенности реализации, ограничения. Перечень примерных практических заданий: 1. В рамках магистерской ВКР выбрать узел или деталь по						

	необходимой для совершенствования основных и согласованию с дипломным руководителем.
	вспомогательных операций технологических процессов 2. Провести анализ условий эксплуатации узла, типичные
	производства металлопродукции широкого назначения; проблемы и определить пути совершенствования конструкции
	самостоятельно искать, анализировать и отбирать выбранного изделия.
	необходимую информацию, организовывать, 3. Создать 3D модель узла. Провести общее улучшение
	преобразовывать, сохранять и передавать ее конструкции исходя из практических соображений.
	4. Выбрать наиболее нагруженную деталь и провести её
	топологическую оптимизацию.
	5. Провести постобработку результатов топологической
	оптимизации.
	6. Предложить варианты технологии изготовления
	оптимизированной детали.
	Имеет практический опыт: применять существующие Теоретические вопросы к зачету:
	методологические подходы для структурирования, 1. Основные программные решения для топологической
	систематизации, хранения и передачи информации, оптимизации элементов конструкций. Сравнительная оценка.
	требуемой для решения широкого спектра задач в 2. Порядок подготовки исходной модели. Требования к
	практической деятельности; принятия решений по исходной модели.
	оптимизации элементов конструкций 3. Постановка задачи топологической оптимизации.
	Основные этапы.
	4. Постобработка результатов топологической оптимизации.
ОПК-4.3	Цели и задачи.
	5. Примеры решения задач топологической оптимизации
	(исходная формулировка, методы, программные продукты,
	уровень результата).
	6. Методы Level-Set: математическая формулировка,
	особенности реализации, ограничения.
	7. Методы SIMP: математическая формулировка,
	особенности
	реализации, ограничения.

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

Контрольные вопросы к разделу 1. Контрольные вопросы к разделу включают в себя 5 вопросов, каждый оценивается максимум в 20 баллов. Критерии оценивания ответа на вопрос: 0 баллов - нет ответа на вопрос 5 баллов - ответ на вопрос дан частично, имеются логические и фактические ошибки, ответ опирается только на материалы лекции, отсутствует критическая оценка данных, нет примеров. 10 баллов - ответ на вопрос дан полностью, но есть логические или фактические ошибки, ответ опирается только на материалы лекции, имеется критическая оценка известным данным, приведены примеры. 15 баллов - ответ на вопрос дан полностью, но есть незначительные неточности, ответ опирается только на русскоязычные источники информации, в том числе материалы лекции, даны ссылки на использованные источники информации, есть критическая оценка известных данных, приведены примеры. 20 баллов - дан исчерпывающий ответ на вопрос, информация взята из нескольких источников, в том числе на иностранном языке, приведены ссылки на источники информации, проведена критическая оценка известных данных, приведены примеры.

Контрольные вопросы к разделу 2. Контрольные вопросы к разделу включают в себя 5 вопросов, каждый оценивается максимум в 20 баллов. Критерии оценивания ответа на вопрос: 0 баллов - нет ответа на вопрос 5 баллов - ответ на вопрос дан частично, имеются логические и фактические ошибки, ответ опирается только на материалы лекции, отсутствует критическая оценка данных, нет примеров. 10 баллов - ответ на вопрос дан полностью, но есть логические или фактические ошибки, ответ опирается только на материалы лекции, имеется критическая оценка известным данным, приведены примеры. 15 баллов - ответ на вопрос дан полностью, но есть незначительные неточности, ответ опирается только на русскоязычные источники информации, в том числе материалы лекции, даны ссылки на использованные источники информации, есть критическая оценка известных данных, приведены примеры. 20 баллов - дан исчерпывающий ответ на вопрос, информация взята из нескольких источников, в том числе на иностранном языке, приведены ссылки на источники информации, проведена критическая оценка известных данных, приведены примеры.

Контрольные вопросы к разделу 3. Контрольные вопросы к разделу включают в себя 5 вопросов, каждый оценивается максимум в 20 баллов. Критерии оценивания ответа на вопрос: 0 баллов - нет ответа на вопрос 5 баллов - ответ на вопрос дан частично, имеются логические и фактические ошибки, ответ опирается только на материалы лекции, отсутствует критическая оценка данных, нет примеров. 10 баллов - ответ на вопрос дан полностью, но есть логические или фактические ошибки, ответ опирается только на материалы лекции, имеется критическая оценка известным данным, приведены примеры. 15 баллов - ответ на вопрос дан полностью, но есть незначительные неточности, ответ опирается только на русскоязычные источники информации, в том числе материалы лекции, даны ссылки на использованные источники информации, есть критическая оценка известных данных, приведены примеры. 20 баллов - дан исчерпывающий ответ на вопрос, информация взята из нескольких источников, в том числе на иностранном языке,

приведены ссылки на источники информации, проведена критическая оценка известных данных, приведены примеры.

Семинар: Конструктивный облик изделия: влияние технологий. Выступление с докладом на семинаре - максимум 40 баллов. Вопросы к докладчикам - максимум 30 баллов Участие в дискуссии - максимум 30 баллов.

Требования к выступлению:

- 1. Доклад должен быть структурирован. В докладе должно быть полностью раскрыто основное содержание темы. Дана краткая характеристика технологии. Приведены примеры реализации технологии. Формализованы требования к конструкции деталей или узлов, получаемых по рассматриваемой технологии. Сделаны выводы. Доклад должен сопровождаться презентацией. Время доклада 5 минут.
- 2. Презентация к докладу должна полностью отражать содержание доклада, иметь понятную структуру, быть аккуратно оформлена, оформление не должно затруднять восприятие информации. В презентации должны быть ссылки на использованные источники.
- 3. Ответы на вопросы. Продолжительность раунда вопросов из аудитории 5 минут. Ответы на вопросы должны быть краткими по существу, по возможности сопровождаться иллюстрирующими примерами.

Штрафные баллы за выступление:

- -1 балл: за отсутствие четкой структуры доклада, нет введения, нет выводов.
- -10 баллов не раскрыто основное содержание темы доклада.
- -5 баллов: не дана характеристика технологии, не приведены примеры реализации технологии, не формализованы требования к конструкции деталей или узлов, получаемых по рассматриваемой технологии.
 - 1 балл превышено время доклада на 1-2 минуты.
 - 2 балла превышено время доклада на 2-3 минуты.
 - 5 баллов превышено время доклада на более чем 3 минуты.
 - 5 баллов отсутствует презентация
- 2 балла: презентация не отражает содержание доклада; не имеет четкой структуры; оформление не аккуратное;

оформление затрудняет восприятие информации; нет ссылок на источники информации.

- 3 балла нет ответа на вопрос
- 2 балла: ответ не попадает в вопрос; ответ не по существу; ответ слишком затянутый (занимает всё отведенное на раунд вопросов время).

Вопросы к докладчикам - 5 баллов за один вопрос по существу доклада. Вопрос может быть не засчитан, если не относится к теме доклада или апеллирует к личности докладчика.

Раунд обсуждения продолжительностью не более 5 минут. Участие в обсуждении докладов - 5 баллов за одно высказанное развернутое мнение по содержанию вопроса.

<u>Практическое занятие 1.</u> Максимальное количество баллов за полностью выполненное задание -60.

Критерии оценивания результатов практического задания:

0 баллов - задание не выполнено.

Если задание выполнено, то от максимального количества баллов вычитаются штрафные баллы:

- 20 баллов не выполнена постобработка результатов топологической оптимизации
- 40 баллов не выполнена топологическая оптимизация и постобработка её результатов.

- 2 балла за каждое отступление от заданной в задании геометрии в исходной 3D модели.
- 2 балла за каждую отступление от исходных данных при постановке задачи топологической оптимизации.
 - 2 балла за некорректно заданные критерии топологической оптимизации
- 2 балла за некорректно заданные ограничения при выполнении топологической оптимизации.

<u>Практические занятия по курсу</u>. Максимальное количество баллов за полностью выполненное задание -60.

Критерии оценивания результатов практического задания:

0 баллов - задание не выполнено.

Если задание выполнено, то от максимального количества баллов вычитаются штрафные баллы:

- 20 баллов не выполнена постобработка результатов топологической оптимизации 40 баллов не выполнена топологическая оптимизация и постобработка её результатов.
 - 2 балла за каждое отступление от заданной в задании геометрии в исходной 3D модели.
 - 2 балла за каждую отступление от исходных данных при постановке.

Семестровое задание. Максимальное количество баллов за работу 100 баллов выставляется, если твердотельная модель выполнена верно и полностью соответствует заданию, проведённые исследования прочностных и эксплуатационных параметров изделия соотносятся с реальной схемой нагружения конструкции и сопровождены анализом результатов, предложенная оптимизированная конструкция имеет потенциальную возможность изготовления методами аддитивных технологий. Если хотя бы одно из вышеперечисленных требований не выполнено, студент получает «штрафные баллы».

Штрафные баллы: отклонение формы или геометрии изделия от задания:

-1 балл, размеры не выдержаны: -1 балл, материал выбран неверно или не указан: -1 балл, задание сдано не в срок: -1 балл, модель нельзя в дальнейшем использовать для производства методами аддитивных технологий: -2 балла, наложенные сопряжения поверхностей деталей ограничивают необходимую свободу движущихся элементов: -2 балла за каждую ошибку, размеры сопрягаемых поверхностей деталей не соответствуют друг другу: -5 баллов, процесс оптимизации конструкции вызывает вопросы: -5 баллов. Бонусные баллы: Сделаны предложения по оптимизации конструкции изделия или технологии производства: +3 балла за существенное или инновационное предложение, +2 балла за обоснованное предложение по оптимизации.

<u>Промежуточная аттестация</u>. Зачёт. Зачет проводится в письменной форме. В билете содержится 2 теоретических вопроса и практическое задание. Время на подготовку ответа 120 минут. За ответ на каждый теоретический вопрос - максимум 20 баллов. За практическое задание - 60 баллов.

Критерии оценивания ответов на теоретические вопросы:

- 0 баллов нет ответа на вопрос.
- 5 баллов ответ на вопрос дан частично, имеются логические и фактические ошибки, ответ опирается только на материалы лекции, отсутствует критическая оценка данных, нет примеров.
- 10 баллов ответ на вопрос дан полностью, но есть логические или фактические ошибки, ответ опирается только на материалы лекции, имеется критическая оценка известным данным, приведены примеры.

15 баллов - ответ на вопрос дан полностью, но есть незначительные неточности, ответ опирается только на русскоязычные источники информации, в том числе материалы лекции, даны ссылки на использованные источники информации, есть критическая оценка известных данных, приведены примеры.

20 баллов - дан исчерпывающий ответ на вопрос, информация взята из нескольких источников, в том числе на иностранном языке, приведены ссылки на источники информации, проведена критическая оценка известных данных, приведены примеры.

Критерии оценивания результатов практического задания: 0 баллов - задание не выполнено.

Если задание выполнено, то от максимального количества баллов вычитаются штрафные баллы:

- 20 баллов не выполнена постобработка результатов топологической оптимизации
- 40 баллов не выполнена топологическая оптимизация и постобработка её результатов.
- 2 балла за каждое отступление от заданной в задании геометрии в исходной 3D модели.
- 2 балла за каждую отступление от исходных данных при постановке задачи топологической оптимизации.
 - 2 балла за некорректно заданные критерии топологической оптимизации
- 2 балла за некорректно заданные ограничения при выполнении топологической оптимизации.

ТЕМЫ ДОКЛАДОВ НА ПРАКТИЧЕСКИЕ ЗАНЯТИЯ:

«КОНСТРУКТИВНЫЙ ОБЛИК ИЗДЕЛИЙ: ВЛИЯНИЕ ТЕХНОЛОГИЙ»

- 1. Субстрактивные технологии. Обработка резанием. Токарное точение. Требования к конструкции деталей.
- 2. Субстрактивные технологии. Обработка резанием. Фрезерование. Требования к конструкции деталей.
- 3. Субстрактивные технологии. Обработка резанием. Обработка осевым инструментом. Требования к конструкции деталей.
- 4. Субстрактивные технологии. Обработка резанием. Шлифование. Требования к конструкции деталей.
- 5. Традиционные формоизменяющие технологии. Фасонное литье. Требования к конструкции отливок.
- 6. Традиционные формоизменяющие технологии. Центробежное литье. Требования к конструкции отливок.
- 7. Традиционные формоизменяющие технологии. Точное литье по газифицируемым моделям. Требования к конструкции отливок.
- 8. Традиционные формоизменяющие технологии. Литье в кокиль. Требования к конструкции отливок.
- 9. Традиционные формоизменяющие технологии. Литье под давлением. Требования к конструкции отливок.
- 10. Традиционные формоизменяющие технологии. Полимерные материалы Литье под давлением. Требования к конструкции изделий.
- 11. Традиционные формоизменяющие технологии. Обработка давлением. Длинномерные изделия. Требования к конструкции изделий.
- 12. Традиционные формоизменяющие технологии. Обработка давлением. Объемная ковка и штамповка. Требования к конструкции изделий.
- 13. Традиционные формоизменяющие технологии. Обработка давлением. Листовая штамповка. Требования к конструкции изделий.
- 14. Традиционные формоизменяющие технологии. Обработка давлением. Инкрементное формование. Требования к конструкции изделий.
- 15. Протоаддитивные технологии. Порошковые технологии. Требования к конструкции изделий.
- 16. Протоаддитивные технологии. Полимерные материалы. Прямое прессование. Требования к конструкции изделий.
- 17. Протоаддитивные технологии. Нанесение покрытий. Требования к конструкции изделий.
 - 18. Протоаддитивные технологии. Дуговая сварка. Требования к конструкции изделий.
- 19. Протоаддитивные технологии. Электронно-лучевая сварка. Требования к конструкции изделий.
 - 20. Протоаддитивные технологии. Лазерная сварка. Требования к конструкции изделий.
- 21. Протоаддитивные технологии. Диффузионная сварка. Требования к конструкции изделий.
 - 22. Протоаддитивные технологии. Сварка трением. Требования к конструкции изделий.

- 23. Протоаддитивные технологии. Сварка перемешиванием. Требования к конструкции изделий.
 - 24. Протоаддитивные технологии. Лазерная сварка. Требования к конструкции изделий.
 - 25. Протоаддитивные технологии. Пайка. Требования к конструкции изделий.
- 26. Протоаддитивные технологии. Технологии сборки. Требования к конструкции изделий.
- 27. Аддитивные технологии. Полимерные материалы. FDM (FFF). Требования к конструкции изделий.
- 28. Аддитивные технологии. Полимерные материалы. SLA. Требования к конструкции изделий.
- 29. Аддитивные технологии. Полимерные материалы. Послойное нанесение с отверждением жидких фотополимеров (Material Jetting). Требования к конструкции изделий.
- 30. Аддитивные технологии. Полимерные материалы. Нанесение связующего с отверждением (Binder Jetting). Требования к конструкции изделий.
- 31. Аддитивные технологии. Металлические материалы. Селективное лазерное сплавление (SLS, SLM). Требования к конструкции изделий.18 25
- 32. Аддитивные технологии. Металлические материалы Прямое нанесение металла (DMD). Требования к конструкции изделий.
- 33. Аддитивные технологии. Селективное лазерное сплавление. Требования к конструкции изделий.