

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Направление подготовки (специальность) 22.03.02 Металлургия

Направленность (профиль/специализация) программы Обработка металлов давлением

Уровень высшего образования - бакалавриат

Форма обучения заочная

Институт/ факультет Институт металлургии, машиностроения и материалообработки

Кафедра Механики

Kypc 1

Магнитогорск 2025 год Рабочая программа составлена на основе ФГОС ВО - бакалавриат по направлению подготовки 22.03.02 Металлургия (приказ Минобрнауки России от 02.06.2020 г. № 702)

Раоочая программа рассмотрена и одоорена на заседани 15.01.2025, протокол № 5 Зав. кафедрой	А.С. Савинов
Рабочая программа одобрена методической комиссие́й 04.02.2025 г. протокол № 4 Председатель	ИММиМ А.С. Савинов
Согласовано:	
Зав. кафедрой Технологий обработки материалов	А.Б. Моллер
Рабочая программа составлена: доцент кафедры Механики, канд. техн. наук	С.В. Конев
Рецензент: директор ЗАО НПО "ЦХТ", канд. техн. наук	В.П. Дзюба

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2026 - 2027 учебном году на заседании кафедры Механики						
	Протокол от	_ 20 г.	№ А.С. Савинов			
Рабочая программа пересмот учебном году на заседании к	рена, обсуждена и одобрена д афедры Механики	іля реали	зации в 2027 - 2028			
	Протокол от	_20 г.	№ А.С. Савинов			
Рабочая программа пересмот учебном году на заседании к	рена, обсуждена и одобрена д афедры Механики	іля реали	изации в 2028 - 2029			
	Протокол от	_20 г.	№ А.С. Савинов			
Рабочая программа пересмот учебном году на заседании к	рена, обсуждена и одобрена д афедры Механики	іля реали	изации в 2029 - 2030			
	Протокол от	_ 20 г.	№ А.С. Савинов			
Рабочая программа пересмот учебном году на заседании к	рена, обсуждена и одобрена д афедры Механики	іля реали	изации в 2030 - 2031			
	Протокол от	_ 20 г.	№ А.С. Савинов			

1 Цели освоения дисциплины (модуля)

Целями освоения дисциплины (модуля) «Сопротивление материалов» являются: формирование умения и навыков в расчетно-теоретической и конструкторской областях с целью овладения обучающимися основами общего машиноведения и дальнейшего использования полученных знаний в разработке, проектировании, наладке, эксплуатации и совершенствования технологических процессов в промышленности.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Сопротивление материалов входит в обязательную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Математика

Физика

Теоретическая механика

Информатика

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Детали машин

Проектная деятельность

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Сопротивление материалов» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции							
ОПК-1 Способен р	ОПК-1 Способен решать задачи профессиональной деятельности, применяя методы							
моделирования, ма	тематического анализа, естественнонаучные и общеинженерные							
знания								
ОПК-1.1	Использует естественнонаучные законы и принципы при решении							
практических задач								
ОПК-1.2	Решает стандартные профессиональные задачи с применением							
общеинженерных знаний								
ОПК-1.3	Применяет методы моделирования и математического анализа для							
	решения задач теоретического и прикладного характера							

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 4 зачетных единиц 144 акад. часов, в том числе:

- контактная работа 10,9 акад. часов:
- аудиторная 8 акад. часов;
- внеаудиторная -2.9 акад. часов;
- самостоятельная работа 124,4 акад. часов;
- в форме практической подготовки 0 акад. час;
- подготовка к экзамену 8,7 акад. час

Форма аттестации - экзамен

Раздел/ тема лисциплины	Kypc	конт	Аудиторі гактная р акад. ча	оабота	Самостоятельная работа студента	Вид самостоятельной	Форма текущего контроля успеваемости и	Код компетениии
		Лек.	лаб. зан.	практ. зан.	Самос	работы	промежуточной аттестации	
1. Раздел 1								
1.1 Статика. Классификация сил. Приведение сил к точке. Моменты сил.		1			18	Самостоятельное изучение учебной и научной литературы	Теоретический опрос	ОПК-1.1, ОПК-1.2, ОПК-1.3
1.2 Основы расчета на прочность. Общие положения. Деформация. Прочность. Жесткость. Устойчивость. Внешние и внутренние силы. Метод сечений. Напряжение. Основные гипотезы и допущения. Растяжениесжатие. Напряжение и перемещения. Закон Гука. Механические характеристики и свойства материалов. Твердость.	1			1	25	Выполнение РГР 1 «Построение эпюр ВСФ в статически определи-мых стержневых системах» и подго-товка к теоретическому опросу. Выполнение РГР 2 «Геометриче- ские характеристики поперечных сечений стержней теоретический опрос	Теоретический опрос	ОПК-1.1, ОПК-1.2, ОПК-1.3
1.3 Изгиб. Понятие о чистом изгибе. Теорема Журавского. Напряжения при изгибе. Геометрические характеристики плоских сечений. Расчет на		1		1	23	Выполнение РГР №3 Подбор сечений при изгибе	Теоретический опрос	ОПК-1.1, ОПК-1.2, ОПК-1.3

прочность. Изгибающий момент и поперечная сила.							
1.4 Чистый сдвиг. Абсолютный и относительный сдвиг. Закон Гука для деформации чистого сдвига. Модуль упругости второго рода. Условия прочности при срезе. Кручение круглого стержня. Угол закручивания. Расчет на прочность и жесткость при кручении. Относительный угол закручивания.	1	1		20	Самостоятельное изучение учебной и научной литературы	Теоретический опрос	ОПК-1.1, ОПК-1.2, ОПК-1.3
1.5 Сложное сопротивление. Понятие о теориях прочности. Косой изгиб. Изгиб с растяжением. Изгиб с кручением.			1	21,4	Самостоятельное изучение учебной и научной литературы	Теоретический опрос	ОПК-1.1, ОПК-1.2, ОПК-1.3
1.6 Устойчивость сжатых стержней. Усталостная прочность.		1	1	17	Самостоятельное изучение учебной и научной литературы	Теоретический опрос	ОПК-1.1, ОПК-1.2, ОПК-1.3
Итого по разделу		4	4	124,4			
Итого за семестр		4	4	124,4		экзамен	
Итого по дисциплине		4	4	124,4		экзамен	

5 Образовательные технологии

Для реализации предусмотренных видов учебной работы в качестве образовательных технологий в преподавании дисциплины «Сопротивление материалов» используются:

1. Традиционные образовательные технологии ориентируются на организацию образовательного процесса, предполагающую прямую трансляцию знаний от преподавателя к студенту (преимущественно на основе объяснительно-иллюстративных методов обучения). Учебная деятельность студента носит в таких условиях, как правило, репродуктивный характер.

Формы учебных занятий с использованием традиционных технологий:

Информационная лекция – последовательное изложение материала в дисциплинарной логике, осуществляемое преимущественно вербальными средствами (монолог препо-давателя).

Практическое занятие, посвященное освоению конкретных умений и навыков по предложенному алгоритму.

2. Интерактивные технологии — организация образовательного процесса, которая предполагает активное и нелинейное взаимодействие всех участников, достижение на этой основе личностно- значимого для них образовательного результата. Наряду со специализированными технологиями такого рода принцип интерактивности прослеживается в большинстве современных образовательных технологий. Интерактивность подразумевает субъект-субъектные отношения в ходе образовательного процесса и, как следствие, формирование саморазвивающейся информационно-ресурсной среды.

Практика-дискуссия – коллективное обсуждение какого-либо спорного вопроса, проблемы, выявление мнений в группе (межгрупповой диалог, дискуссия как спордиалог).

6 Учебно-методическое обеспечение самостоятельной работы обучающихся

Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины а) Основная литература:

- 1. Макаров, Е. Г. Сопротивление материалов с использованием вычислительных комплек-сов : учебное пособие для среднего профессионального образования / Е. Г. Макаров. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2024. 413 с. (Профессиональное образование). ISBN 978-5-534-01773-1. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/539104 .
- 2. Александров, А. В. Сопротивление материалов в 2 ч. Часть 2 : учебник и практикум для вузов / А. В. Александров, В. Д. Потапов, Б. П. Державин. 9-е изд., перераб. и доп. Москва : Издательство Юрайт, 2024. 273 с. (Высшее образование). ISBN 978-5-534-02162-2. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/538187.
- 3. Валишвили, Н. В. Сопротивление материалов и конструкций: учебник для вузов / Н. В. Валишвили, С. С. Гаврюшин. Москва: Издательство Юрайт, 2024. 429 с. (Высшее образование). ISBN 978-5-9916-8247-3. Текст: электронный // Образова-тельная платформа Юрайт [сайт]. URL:

б) Дополнительная литература:

электронный. - Сведения доступны также на CD-ROM.

- 1. Ступак, А. А. Практикум по сопротивлению материалов. Простое сопротивление : практикум / А. А. Ступак, О. А. Осипова ; Магнитогорский гос. технический ун-т им. Г. И. Носова. Магнитогорск : МГТУ им. Г. И. Носова, 2021. 1 CD-ROM. Загл. с титул. экрана. URL:
- https://host.megaprolib.net/MP0109/Download/MObject/3031. Макрообъект. Текст : электронный. Сведения доступны также на CD-ROM.
- 2. Статически неопределимые системы: учебное пособие / Д. Я. Дьяченко, О. С. Железков,С. В. Конев и др.; МГТУ. Магнитогорск: МГТУ, 2017. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://host.megaprolib.net/MP0109/Download/MObject/20961. Макрообъект. Текст:
- 3. Савинов, А. С. Практикум по сопротивлению материалов : практикум / А. С. Савинов, О. А. Осипова, А. С. Постникова ; МГТУ. Магнитогорск : МГТУ, 2017. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://host.megaprolib.net/MP0109/Download/MObject/20841. Макрообъект. Текст : электронный. Сведения доступны также на CD-ROM.
- 4. Статически неопределимые системы: учебное пособие / Д. Я. Дьяченко, О. С. Железков,С. В. Конев и др.; МГТУ. Магнитогорск: МГТУ, 2017. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://host.megaprolib.net/MP0109/Download/MObject/20961. Макрообъект. Текст: электронный. Сведения доступны также на CD-ROM.

в) Методические указания:

- 1. А.С. Савинов, А.С. Тубольцева, К.А. Фролушкина, Б.Б. Зарицкий. Построение эпюр внутренних силовых факторов при деформациях растяжение-сжатие, кручение и изгиб: методические указания по дисциплине «Сопротивление материалов» для студентов всех технических специальностей и форм обучения. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2013. 30с.
- 2. Ф.Г. Ибрагимов. Определение перемещений в стержневых системах: методические указания по дисциплине «Сопротивление материалов» для студентов всех технических специальностей и форм обучения. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2013. 10с.
- 3. В.Ф. Михайлец Расчёт статически неопределимых систем методом сил: методические указания к практическим занятиям по дисциплине «Сопротивление материалов» для студентов всех технических специальностей и форм обучения. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2013. 24с.
- 4. Дьяченко Д.Я. Сопротивление материалов. Учебное пособие. МГТУ. 2014 г. С. 97.
- 5. Дьяченко Д.Я. Определение грузоподъёмности балок: Методические указания по дисциплине «Сопротивление материалов» для студентов строительных специальностей. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2013. 17с. ун-та им. Г.И.Носова, 2015. 33с.
- 6. А.С. Савинов, С.В. Конев. Изгиб: сборник контрольных заданий по дисциплине «Сопротивление материалов» для обучающихся всех специальностей всех форм обучения. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2015. 23с.
 - 7. А.С. Савинов, С.В. Конев. Геометрические характеристики плоских сечений

балок: сборник контрольных заданий по дисциплине «Сопротивление материалов» для обучающихся всех специальностей всех форм обучения. – Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2015. - 6с.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
7Zip	свободно распространяемое ПО	бессрочно
FAR Manager	свободно распространяемое ПО	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Электронная база периодических изданий East View Information Services, OOO «ИВИС»	https://dlib.eastview.com/
Национальная информационно-аналитическая	URL:
система – Российский индекс научного цитирования	https://elibrary.ru/project_risc.
(РИНЦ)	asp

9 Материально-техническое обеспечение дисциплины (модуля)

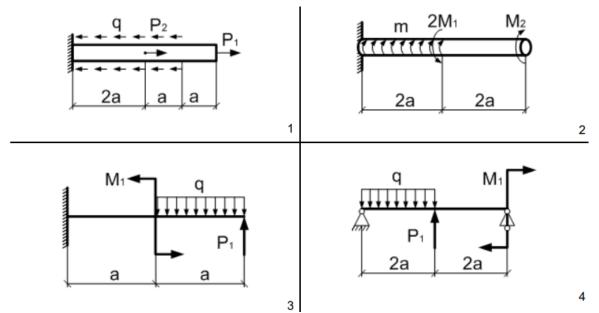
Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа 1-305M, 1-325M. Оснащение: Мультимедийные средства хранения, передачи и представления информации.

Учебные аудитории для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации 1-305, 1-325. Оснащение: Доска, мультимедийный проектор, экран.

Помещения для самостоятельной работы обучающихся 1-323М. Оснащение: Персональные компьютеры с пакетом MS Office, вы-ходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Помещение для хранения и профилактического обслуживания учебного оборудования 1-318. Оснащение: Стеллажи для хранения учебно-методических пособий и учебно-методической документации.


Приложение 1

Учебно-методическое обеспечение самостоятельной работы обучающихся

По дисциплине «Сопротивление материалов» предусмотрено выполнение расчетно-графических и аудиторных самостоятельных работ обучающихся.

Аудиторная самостоятельная работа студентов предполагает решение контрольных задач на практических занятиях.

Примерные расчетно-графические работы (РГР):

 $P\Gamma P$ №1 «Построение эпюр $BC\Phi$ в статически определимых стержневых системах» Таблииа числовых значений для выполнения $P\Gamma P$ №1

Строка	а,м	q 1, кН/м	q 2, kH/м	$P_{I, kH}$	$P_{2, kH}$	$M_{1, kH*_{\mathcal{M}}}$	$M_{2, kH*_M}$
10	2	8	12	9	15	15	18

Схема 1. Для статически определимого стержня ступенчато постоянного сечения при заданных осевых нагрузках и геометрических размерах, требуется:

- 1. Определить опорную реакцию в месте закрепления стержня.
- 2. Вычислить значения продольных сил и нормальных напряжений в характерных сечениях и построить эпюры этих величин.
- 3. Найти величины абсолютных удлинений (укорочений) участков стержня и величину общего удлинения (укорочения) стержня в целом.
- 4. Определить значения осевых перемещений характерных сечений и построить эпюру осевых перемещений.

Схема 2. Построить эпюру крутящих моментов углов закручивания; найти наибольший относительный угол закручивания.

Схема 3. Построить эпюру изгибающих моментов для консольной балки.

Схема 4. Построить эпюру изгибающих моментов для простой балки

РГР №2 «Геометрические характеристики поперечных сечений стержней»

Дано: лист 320х12 (мм), двутавр № 16, уголок 140х90х8 мм Для несимметричных сечений при заданных размерах, требуется:

- 1. определить положение центра тяжести;
- 2. вычислить осевые и центробежные моменты инерции относительно центральных осей;
- 3. определить положение главных центральных осей инерции и величины главных моментов инерции;
- 4. построить круг инерции и определить графически величины главных моментов инерции и направления главных центральных осей.

РГР №3 «Прямой поперечный изгиб. Расчеты на прочность»

Рассчитать на прочность по методу предельных состояний двугавровую прокатную балку (схема 4). Материал балки сталь ВСт 3. Предел текучести $\sigma T = 240$ МПа, расчетное сопротивление по пределу текучести R = 210 МПа, расчетное сопротивление при сдвиге R = 130 МПа. Коэффициент условий работы $\phi C = 0.9$. Коэффициент надежности по нагрузке $\phi C = 0.9$.

- 1. Подобрать сечение балки из двутавра, используя условие прочности по первой группе предельных состояний.
- 2. Для сечения балки, в котором действует наибольший изгибающий момент, построить эпюру нормальных напряжений и проверить выполнение условия прочности по нормальным напряжениям.

Приложение 2

Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

	Планируемые							
элемент	результаты	Оценочные средства						
компетенции								
		рования в профессиональной деятельности;						
ОПК-1.1	Решает	Перечень теоретических вопросов для экзамена:						
	стандартные	1. Цель и задачи курса "Сопротивление материалов" и его						
	профессиональные	связь с другими дисциплинами.						
	задачи с	2. Свойства, которыми наделяется основная модель твердого						
	применением	деформируемого тела в механике.						
	общеинженерных	3. Характерные формы элементов конструкций. Виды						
	знаний	основных деформаций стержня.						
		4. Внешние силы. Отличие во взгляде на внешние силы в						
		сопротивлении материалов и в теоретической механике.						
		Внутренние силы. Метод сечений. Понятие о напряжении, его компоненты.						
		5. Закон Гука для материала. Принцип Сен-Венана. Принцип						
		независимости действия сил. Условия его применимости.						
		6. Внутреннее усилие при осевом растяжении (сжатии)						
		прямоосного призматического стержня. Эпюра продольной						
		силы и характерные особенности ее очертания.						
		7. Вывод формулы для нормального напряжения в						
		поперечных сечениях стержня при растяжении (сжатии).						
		Основная гипотеза.						
		8. Условие прочности при растяжении (сжатии) и задачи,						
		решаемые с его помощью. Допускаемое напряжение,						
		коэффициент запаса по прочности.						
		9. Продольная и поперечная деформации при растяжении						
		(сжатии). Упругие постоянные материала. Закон Гука для						
		осевой деформации стержня. Формула для определения						
		абсолютной деформации при осевом растяжении (сжатии)						
		10. Анализ напряженно-деформированного состояния						
		в окрестности точки тела. 11. Понятие главных напряжений. Экстремальность						
		11. Понятие главных напряжений. Экстремальность главных напряжений. Экстремальные значения касательных						
		главных напряжении. Экстремальные значения касательных напряжений.						
		напряжении. 12. Закон парности касательных напряжений.						
		12. Закон парности касательных напряжении. 13. Обобщенный закон Гука для изотропного						
		материала.						
		14. Понятие о хрупком и вязком разрушении						
		материала. Теории прочности для хрупкого состояния						
		материала (I и II теории). Основные гипотезы.						
		Эквивалентные напряжения по первой и второй теориям						
		прочности.						
	ı	I						

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		15. Теории пластического деформирования (III и IV теории). Основные гипотезы. Эквивалентные напряжения по третьей и четвертой теориям прочности. 16. Сдвиг. Чистый сдвиг. Закон Гука при чистом сдвиге. Связь между упругими постоянными изотропного материала. 17. Кручение. Понятие о кручении вала. Внутренние усилия при кручении. Построение эпюры крутящего момента. 18. Вывод формулы для касательного напряжения в поперечном сечении вала кругового сечения. Основные гипотезы. 19. Условие прочности при кручении. Полярный момент сопротивления. Подбор сечения вала по условию прочности.
ОПК-1.2	моделирования и математического анализа для решения задач в	на рисунке, загружена внешней нагрузкой. a=4м, q=2 kH/м
ОПК-1.3	моделирования и математического анализа для решения задач	Примерное практическое задания для экзамена: Статически определимая рама, расчетная схема которой показана на рисунке, загружена внешней нагрузкой. а=2м, q=4kH/м Требуется: 1. Определить опорные реакции. 2. Записать выражения для внутренних усилий М z, Qy и N на каждом из участков рамы. 3. Построить эпюры внутренних усилий М z, Qy и N.

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Сопротивление материалов» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме экзамена на 1 курсе.

Показатели и критерии оценивания экзамена:

Экзамен по данной дисциплине проводится в устной форме по экзаменационным билетам, каждый из которых включает 2 теоретических вопроса и одно практическое задание.

- на оценку «**отлично**» (5 баллов) обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку «**хорошо**» (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку «удовлетворительно» (3 балла) обучающийся демонстрирует пороговый уровень сформированности компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку «**неудовлетворительно**» (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку «**неудовлетворительно**» (1 балл) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.