МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Магнитогорский государственный технический университет им. Г.И.

Носоваж

УТВЕРЖДАЮ Директор ИЕиС Ю.В. Сомова

03.02.2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

МАТЕМАТИКА

Направление подготовки (специальность) 22.03.02 Металлургия

Направленность (профиль/специализация) программы Обработка металлов давлением

Уровень высшего образования - бакалавриат

Форма обучения заочная

Институт/ факультет Институт естествознания и стандартизации

Кафедра

Прикладной математики и информатики

Курс

1

Магнитогорск 2025 год

Рабочая программа составлена на основе ФГОС ВО - бакалавриат по направлению подготовки 22.03.02 Металлургия (приказ Минобрнауки России от 02.06.2020 г. № 702)

мат	гаоочая программа рассмотрен тематики и информатики	на и одобрена на :	заседании кафедры	Прикладной
	14.01.2025, протокол № 5	Зав. кафедрой	Del	Ю.А. Извеко
	Рабочая программа одобрена м 03.02.2025 г. протокол № 3	етодической ком Председатель	иссией ИЕИС	Ю.В. Сомов
	Согласовано: Зав. кафедрой Технологий обра	аботки материало	B AA	
			- Jan 1	А.Б. Моллер
	Рабочая программа составлена: доцент кафедры ПМиИ, канд. т		UBliaroly	И.В.Глаголева
	Рецензент: зав. кафедрой Физики, канд. фи	змат. наук	De State	М. Догушин

1 Цели освоения дисциплины (модуля)

Целями освоения дисциплины «Математика» являются: ознакомить обучаемых с основными понятиями и методами высшей математики, создать теоретическую и практическую базу подготовки специалистов к деятельности, связанной с исследованием, разработкой и технологиями процессов получения металлов и сплавов, металлических изделий требуемого качества, и основанных на применении математического анализа и моделирования.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Математика входит в обязательную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Дисциплина Математика входит в базовую часть учебного плана образовательной программы. Изучение дисциплины базируется на школьном курсе математики.

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Планирование эксперимента

Анализ числовой информации

Физическая химия

Физика

Математический анализ

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Математика» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции					
ОПК-1 Способен р	ОПК-1 Способен решать задачи профессиональной деятельности, применяя методы					
моделирования, ма	тематического анализа, естественнонаучные и общеинженерные					
знания						
ОПК-1.1	Использует естественнонаучные законы и принципы при решении					
	практических задач					
ОПК-1.2	Решает стандартные профессиональные задачи с применением					
	общеинженерных знаний					
ОПК-1.3	Применяет методы моделирования и математического анализа для					
	решения задач теоретического и прикладного характера					

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 7 зачетных единиц 252 акад. часов, в том числе:

- контактная работа 19,5 акад. часов:
- аудиторная 14 акад. часов;
- внеаудиторная 5,5 акад. часов;
- самостоятельная работа 215,1 акад. часов;
- в форме практической подготовки 0 акад. час;
- подготовка к экзамену 17,4 акад. час

Форма аттестации - экзамен

Раздел/ тема дисциплины	Курс	конт	Аудиторн гактная р акад. ча	абота	Самостоятельная работа студента	Вид самостоятельной	Форма текущего контроля успеваемости и	Код
дисциплины	Я	Лек.	лаб. зан.	практ. зан.	Самост работа	работы	промежуточной аттестации	компетенции
1. Линейная алгебра								
1.1 Матрицы и определители. Действия над матрицами. Вычисление определителя. Обратная матрица	1	0,5		0,5	20	 подготовка к экзамену, выполнение КР №1, изучение литературы. 	КР №1 консультирование	ОПК-1.1, ОПК-1.2, ОПК-1.3
1.2 Системы линейных алгебраических уравнений. Способы решения СЛАУ. Исследование СЛАУ.	1	0,5		0,5	20	- подготовка к экзамену, - выполнение КР №1, - изучение литературы.	КР №1 консультирование,	ОПК-1.1, ОПК-1.2, ОПК-1.3
Итого по разделу		1		1	40			
2. Введение в математически анализ	ій							
2.1 Предел последовательности. Предел функции одной переменной	1	0,5		0,5	20	- подготовка к экзамену, - выполнение КР №1, - изучение литературы.	KP №1	ОПК-1.1, ОПК-1.2, ОПК-1.3
2.2 Непрерывность функции одной переменной	1	0,5		0,5	15	- подготовка к экзамену, - выполнение КР №1, - изучение литературы.	KP №1	ОПК-1.1, ОПК-1.2, ОПК-1.3
Итого по разделу		1		1	35			
3. Дифференциальное исчисление функции одной переменной								
3.1 Задачи, приводящие к понятию производной.	1	0,5		0,5	12	- подготовка к экзамену,	KP № 1	ОПК-1.1, ОПК-1.2,

Определение производной функции в точке. Дифференциал, его геометрический смысл Геометрический и механический смысл производной. Правила дифференцирования и таблица производных.					- выполнение КР №1, - изучение литературы.		ОПК-1.3
3.2 Производные и дифференциалы высших порядков. Основные теоремы дифференциального исчисления: теоремы Ферма, Ролля, Лагранжа, Коши. Формула Тейлора. Формула Тейлора. Применение производных при вычислении пределов. Правило Лопиталя. Исследование функций с помощью дифференциального исчисления.	1	0,5	0,5	12	- подготовка к экзамену, - выполнение КР №1, - изучение литературы.	КР № 1 Консультации	ОПК-1.1, ОПК-1.2, ОПК-1.3
Итого по разделу		1	1	24			
4. Интегральное исчисление функции одной переменной							
4.1 Первообразная функция. Неопределенный интеграл и его основные свойства. Таблица неопределенных интегралов от основных элементарных функций. Основные методы интегрирования. Методы непосредственного интегрирования. Интегрирования заменой переменной и по частям. Основные методы интегрирования. Интегрирования. Интегрирования. Интегрирование тригонометрических выражений. Интегрирование иррациональных выражений.	1	0,5	2	10	- подготовка к экзамену, - выполнение КР №1, - изучение литературы.	- консультации - КР № 1	ОПК-1.1, ОПК-1.2, ОПК-1.3
4.2 Определенный интеграл. Задача вычисления площади криволинейной трапеции и другие задачи, приводящие к понятию определенного интеграла. Формула Ньютона-Лейбница. Свойства определенного интеграла. Существование первообразной непрерывной функции. Замена переменной и		0,5	1	12	- подготовка к экзамену, - выполнение КР №1, - изучение литературы.	- консультации - КР №1	ОПК-1.1, ОПК-1.2, ОПК-1.3

интегрирование по частям. Несобственные интегралы. Признаки							
Итого по разделу		1	3	22			
5. Элементы векторной алгеб и аналитической геометрии	бры						
5.1 Понятие вектора. Скалярное, векторное и смешанное произведение векторов. Применение к вычислениям.	. 1	0,5	0,5	18	- подготовка к экзамену, - выполнение КР №1, - изучение литературы.	KP № 1	ОПК-1.1, ОПК-1.2, ОПК-1.3
5.2 Аналитическая геометрия на плоскости. Аналитическая геометрия в пространстве.	1	0,5	0,5	18	- подготовка к экзамену, - выполнение КР №1, - изучение литературы.	KP № 1	ОПК-1.1, ОПК-1.2, ОПК-1.3
Итого по разделу		1	1	36			
6. Классическая теория вероятностей	T						
6.1 Элементы комбинаторики.		0,5	0,5	20	- подготовка к экзамену, - выполнение КР №1, - изучение литературы.	консультирование КР № 1	ОПК-1.1, ОПК-1.2, ОПК-1.3
6.2 Классическое понятие вероятности. Случайные события. Основные понятия. Алгебра событий. Классическое, геометрическое и статистическое определения вероятности. Аксиоматика теории вероятностей. Теоремы сложения и умножения. Условная вероятность. Формула полной вероятности и формула Байеса. Схема Бернулли, приближения Лапласа и Пуассона.	1	0,5	0,5	38,1	- подготовка к экзамену, - выполнение КР №1, - изучение литературы.	консультирование КР № 1	ОПК-1.1, ОПК-1.2, ОПК-1.3
Итого по разделу		1	1	58,1			
Итого за семестр		6	 8	215,1		экзамен	
Итого по дисциплине		6	8	215,1		экзамен	

5 Образовательные технологии

1. Традиционные образовательные технологии. Организация образовательного процесса, предполагает прямую трансляцию знаний от преподавателя к студенту (преимущественно на основе объяснительно-иллюстративных методов обучения). Учебная деятельность студента носит в таких условиях, как правило, репродуктивный характер.

Формы учебных занятий:

- информационная лекция последовательное изложение материала в дисциплинарной логике, осуществляемое преимущественно вербальными средствами.
- практическое занятие, посвященное освоению конкретных умений и навыков по предложенному алгоритму.
- 2. Технологии проектного обучения. Образовательный процесс построен в соответствии с алгоритмом поэтапного решения проблемной задачи или выполнения учебного задания. Проект предполагает совместную учебно-познавательную деятельность группы студентов, направленную на выработку концепции, установление целей и задач, формулировку ожидаемых результатов, определение принципов и методик решения поставленных задач, планирование хода работы, поиск доступных и оптимальных ресурсов, поэтапную реализацию плана работы, презентацию результатов работы, их осмысление и рефлексию. Применяется в основном для перехода компетенции на уровень владения.

Основные типы применяемых нами в образовательной деятельности проектов:

Исследовательский проект – структура приближена к формату научного исследования (доказательство актуальности темы, определение научной проблемы, предмета и объекта исследования, целей и задач, методов, источников, выдвижение гипотезы, обобщение результатов, выводы, обозначение новых проблем). Результатом является учебная карта по модулю нашей образовательной программы.

Творческий проект, предполагающий в отличие от предыдущего, конечный продукт в следующих вариантах — газета к исторически значимому «математическому» событию (праздник числа «Пи» и т.п.); «математическая» открытка (своего рода учебная карта, только неформально, красочно оформленная; видеоролик «Я научу вас решать ...» и т.п.

Информационный проект — учебно-познавательная деятельность с ярко выраженной эвристической направленностью (поиск, отбор и систематизация информации о каком-то объекте, ознакомление участников проекта с этой информацией, ее анализ и обобщение и, наконец, презентация по практическому приложению).

4. Информационно-коммуникационные образовательные технологии. Организация образовательного процесса с применением специализированных программных сред и технических средств работы с информацией (информационную среду университета МООДУС МООDLE).

6 Учебно-методическое обеспечение самостоятельной работы обучающихся

Представлено в приложении 1.

- **7 Оценочные средства для проведения промежуточной аттестации** Представлены в приложении 2.
- 8 Учебно-методическое и информационное обеспечение дисциплины а) Основная литература:

- 1. Шипачев, В. С. Высшая математика : учебник / В. С. Шипачев. Москва : ИНФРА-М, 2024. 479 с. (Высшее образование). DOI 10.12737/5394. ISBN 978 -5-16-010072-2. Текст : электронный. URL: https://znanium.com/catalog/product/2085943 (дата обращения: 21.03.2025). Режим доступа: по подписке.
- 2. Математика : учебное пособие / Ю. М. Данилов, Л. Н. Журбенко, Г. А. Никонова [и др.] ; под ред. Л. Н. Журбенко, Г. А. Никоновой. Москва : ИНФРА-М, 2022. 496 с. (Высшее образование: Бакалавриат). ISBN 978-5-16-010118-7. Текст : электронный. URL: https://znanium.com/catalog/product/1818645 (дата обращения: 21.03.2025). Режим доступа: по подписке.

б) Дополнительная литература:

- 1. Математика в примерах и задачах : учеб. пособие / О.М. Дегтярева, Л.Н. Журбенко, Г.А. Никонова, Н.В. Никонова, С.Н. Нуриева. Москва : ИНФРА-М, 2019. 372 с. (Высшее образование: Бакалавриат). ISBN 978-5-16-011256-5. Текст : электронный. URL: https://znanium.com/catalog/product/989802 (дата обращения: 02.04.2024). Режим доступа: по подписке.
- 2. Фихтенгольц, Г. М. Основы математического анализа : учебник : в 2 частях / Г. М. Фихтенгольц. 11-е изд., стер. Санкт-Петербург : Лань, [б. г.]. Часть 1 2019. 444 с. ISBN 978-5-8114-0190-1. Текст : электронный // Лань : электронно -библиотечная система. URL: https://e.lanbook.com/book/112051 (дата обращения: 02.04.2024). Режим доступа: для авториз. пользователей.
- 3. Фихтенгольц, Г. М. Основы математического анализа: учебник: в 2 частях / Г. М. Фихтенгольц. 10-е изд., стер. Санкт-Петербург: Лань, [б. г.]. Часть 2 2019. 464 с. ISBN 978-5-8114-0191-8. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/115730 (дата обращения: 02.04.2024). Режим доступа: для авториз. пользователей.
- 4. Шипачев, В. С. Задачник по высшей математике : учебное пособие / В. С. Шипачев. 10-е изд., стер. Москва : ИНФРА-М, 2024. 304 с. (Высшее образование). ISBN 978-5-16-010071-5. Текст : электронный. URL: https://znanium.com/catalog/product/2124772 (дата обращения: 02.04.2024). Режим доступа: по подписке.

в) Методические указания:

- 1. Грачева, Л.А. Элементы линейной алгебры, векторной алгебры и аналитической геометрии: Учебное пособие. Магнитогорск: ГОУ ВПО «МГТУ им. Г.И. Носова», 2010-63 с.
- 2. Максименко, И.А. События и вероятность. Часть 2: Метод. указ. Магнитогорск: ГОУ ВПО «МГТУ им. Г.И. Носова», 2010.-25 с.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
7Zip	свободно распространяемое ПО	бессрочно
Браузер Yandex	свободно распространяемое ПО	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
пазвание курса	CCBLIKA

информационно-аналитическая система – Российский индекс научного	URL: https://elibrary.ru/project_risc.asp
Электронные ресурсы библиотеки МГТУ им. Г.И.	https://host.megaprolib.net/MP0109/Web

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа.

Доска, мультимедийный проектор, экран.

Учебные аудитории для проведения лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.

Персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Комплекс тестовых заданий для проведения рубежного и промежуточного контроля.

Помещения для самостоятельной работы обучающихся.

Персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Помещения для хранения и профилактического обслуживания учебного оборудования.

Шкафы для хранения учебно-методической документации, учебного оборудования и учебно-наглядных пособий.

Учебно-методическое обеспечение самостоятельной работы обучающихся

Примерный вариант контрольной работы

KP №1

1. Вычислить определител

a)
$$\begin{vmatrix} 5 & -2 \\ 3 & 2 \end{vmatrix}$$
; 6) $\begin{vmatrix} 1 & 3 & 1 \\ -1 & 2 & 2 \\ 3 & -2 & 5 \end{vmatrix}$.

- 2. Решить систему уравнений методом Крамера: $\begin{cases} x_1 + 3x_2 + x_3 = 0 \\ -x_1 + 2x_2 + 2x_3 = -3 \end{cases}$ $3x_1 2x_2 + 5x_3 = -2$
- 3. Даны матрицы $A = \begin{pmatrix} -1 & 2 \\ 7 & -3 \end{pmatrix}$ и $B = \begin{pmatrix} 5 & -2 \\ 3 & 2 \end{pmatrix}$. Найдите матрицу $A \cdot B$.
- 4. Даны точки A(-1;-1;0), B(3;1;6), C(0;1;2), D(6;4;7). Найдите:
- а) координаты векторов \overrightarrow{CA} и \overrightarrow{CB}
- б) скалярное произведение $\overrightarrow{CA} \cdot \overrightarrow{CB}$ и угол между векторами \overrightarrow{CA} и \overrightarrow{CB} ;
- в) векторное произведение $\overrightarrow{BD} \times \overrightarrow{CD}$:
- г) объём пирамиды ABCD;
- е) уравнение прямой AC .

5. Вычислить пределы

1.
$$\lim_{x \to -2} \frac{x^3 + 3x^2 + 2x}{x^2 - x - 6}$$

1.
$$\lim_{x \to -2} \frac{x^3 + 3x^2 + 2x}{x^2 - x - 6}$$
3.
$$\lim_{n \to \infty} \frac{(x - 7)(x - 3)(x - 4)}{5x^4 - x^2 + 11}$$
5.
$$\lim_{x \to -2} \frac{tg \pi x}{(x + 2)}$$

$$5. \quad \lim_{x \to -2} \frac{tg \, \pi x}{(x+2)}$$

$$2. \quad \lim_{x \to 0} (1 - 4x)^{\frac{1}{3x} + 7}$$

4.
$$\lim_{x \to 0} x \cot 5x$$
 6. $\lim_{x \to 1-0} 3^{\frac{1}{x-1}}$

6.
$$\lim_{x\to 1-0} 3^{\frac{1}{x-1}}$$

6. Исследовать на непрерывность функцию

$$f(x) = \begin{cases} x - 3 \ ecnu \ x < 0 \\ 5^x \ ecnu \ x \ge 0 \end{cases}$$

7. Найдите первую производную от функций:

a)
$$\begin{cases} x = \sqrt{1 - 25t^2}, \\ y = \arccos 5t + \pi, \end{cases}$$
 6) $y = x \cdot \cos 3x,$ B) $y = \frac{x^2 - 3x + 2}{x^2 + 2x + 1} - 5 \cdot \log_2 x + 3$

y =
$$5^{x^3 + \sqrt{x}} - 2arctg(4x^2 + 3x)$$
.

- Составьте уравнения касательной к кривой xy = 4 в точке $x_0 = 1$.
- Вычислите приближенно $y = \sqrt{x^2 + 8}$ при x = 1,09. 9.
- Вычислите предел по правилу Лопиталя $\lim_{x\to 0} \frac{\cos 4x 1}{(e^{4x} 1)^2}$. 10.

11. Вычислите неопределенные интегралы

1)
$$\int (1+tg^2 3x) dx$$
; 2) $\int \frac{3-5x}{\sqrt{6x+x^2}} dx$; 3) $\int \arcsin 5x dx$; 4) $\int \frac{\ln^3 x}{x} dx$.

12. Вычислите определенные интегралы

$$\int_{0}^{\frac{\pi}{8}} (1-\sin 2x)^{2} dx \qquad \int_{0}^{1} \frac{x^{2}}{e^{2x}} dx \qquad \int_{1}^{4,5} \frac{x-1}{\sqrt[3]{2x-1}} dx$$

13.. Найдите площади фигур, ограниченных линиями. В задаче (б) при построении линии воспользуйтесь таблицей важнейших кривых в полярной системе координат:

a)
$$xy = 6$$
, $x + y - 7 = 0$; 6) $\rho^2 = 2\cos 2\varphi$.

14. Вычислить несобственный интеграл или установить его расходимость:

$$\int_{0}^{\infty} x^{3} e^{-x^{4}} dx$$

$$(1) \int_{0}^{\infty} x^{3} e^{-x^{4}} dx$$

$$(2) \int_{2}^{4} \frac{dx}{\sqrt[3]{(4-x)^{2}}}.$$

- 15. По мишени производится три выстрела. Рассматриваются события A, B, C попадание при первом, втором и третьем выстрелах. Что означают события $\overline{A} + \overline{B} + \overline{C}$, AB + C?
- 16. В урне 12 шаров. Среди этих шаров 3 белых и 9 черных. Какова вероятность того, что наудачу вынутый шар окажется белым?
- 17. В радиостудии три микрофона. Для каждого из первых двух микрофонов вероятность того, что он включён в данный момент, равна 0,45, а для третьего -0,9. Найти вероятность того, что в данный момент включены 2 микрофона.
- 18. В продаже имеются белые и коричневые яйца в соотношении 2:3, причем производство 60% белых и 71% коричневых яиц датируется днем, предшествующим дню продажи, а остальные яйца датируются более ранними числами. Покупатель заказывает яйца, датируемые днем, предшествующим дню продажи, независимо от их цвета. Какова вероятность того, что ему продадут решетку белых яиц?
- 19. Прибор состоит из пяти узлов, каждый из которых может выйти из строя в течение года с вероятностью 0,1. Какова вероятность того, что в течение года выйдут из строя ровно 2 узла?

ПРИЛОЖЕНИЕ 2

Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Код индикатора	Индикатор достижения компетенции	Оценочные средства				
	ОПК-1 - Способен решать задачи профессиональной деятельности, применяя методы					
моделирова	моделирования, математического анализа, естественнонаучные и общеинженерные знания					
ОПК-1.1	Использует	Теоретические вопросы экзаменов				
	естественнонаучные	1				
	законы и принципы	1 курс зимняя сессия (экзамен)				
	при решении	1. Матрицы и действия над ними. Свойства действий				

Код	Индикатор достижения	Оценочные средства
индикатора	компетенции	, 1
	практических задач	над матрицами. 2. Определители I и II порядков. Определители п порядка и их свойства. 3. Системы линейных алгебраических уравнений (СЛАУ) и их запись в матричном виде. 4. Обратная матрица и ее вычисление. 5. Решения СЛАУ матричным методом. 6. Формулы Крамера 7. Предел функции в точке. Предел функции в бесконечности. Односторонние пределы. 8. Бесконечно малые и бесконечно большие функции, связь между ними. Свойства бесконечно малых функций. 9. Теоремы о пределах. Раскрытие неопределенностей. 10. Замечательные пределы. 11. Сравнение бесконечно малых функций. Эквивалентные бесконечно малых функций и основные теоремы о них. Применение к вычислению пределов. 12. Непрерывность функции в точке. Точки разрыва и их классификация. 13. Производная функции, ее геометрический и физический смысл. 14. Уравнения касательной и нормали к кривой. Дифференцируемость функции в точке. 15. Производная суммы, разности, произведения, частного функций. Производная сложной и обратной функций. 16. Дифференцирование неявных и параметрически заданных функций. Логарифмическое дифференцирование. 17. Производные высших порядков. 18. Дифференциалах. 19. Применение дифференциала к приближенным вычислениям. 20. Основные теоремы дифференциального исчисления: Ролля, Лагранжа и Коши. 21. Правило Лопиталя. 22. Условия монотонности функций. Экстремумы функций. Необходимое и достаточное условия экстремума функции.
		25. Асимптоты графика функции.

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		1 курс летняя сессия (экзамен)
		1. Скалярное произведение двух векторов и его
		свойства.
		2. Векторное произведение двух векторов и его свойства.
		3. Смешанное произведение трёх векторов и его свойства.
		4. Основная идея аналитической геометрии,
		применение векторных произведений. 5. Прямая на плоскости. Различные виды уравнений
		прямой на плоскости. 6. Угол между прямыми на плоскости. Расстояние от
		точки до прямой на плоскости.
		7. Плоскость в пространстве. Различные виды уравнений плоскости в пространстве.
		8. Угол между плоскостями. Расстояние от точки до плоскости.
		9. Прямая в пространстве. Различные виды уравнений прямой в пространстве.
		10. Взаимное расположение плоскости и прямой в пространстве.
		11. Первообразная. Неопределенный интеграл и его
		свойства. Таблица основных интегралов.
		12. Основные методы интегрирования: замена переменной и интегрирование по частям.
		13. Определенный интеграл как предел интегральной
		суммы, его свойства.
		14. Формула Ньютона – Лейбница. Основные свойства определенного интеграла.
		15. Вычисление определенного интеграла (замена переменной, интегрирование по частям). Интегрирование четных и нечетных функций в
		симметричных пределах.
		16. Несобственные интегралы.
		17. Геометрические и физические приложения
		определенного интеграла. 18. Элементы комбинаторики: перестановки,
		размещения, сочетания.
		19. Основные понятия теории вероятностей: испытание, событие, вероятность события.
		20. Действия над событиями. Алгебра событий.
		21. Теоремы сложения и умножения вероятностей.
		22. Вероятность появления хотя бы одного события.
		23. Формула полной вероятности и формула Байеса.
		24. Схема Бернулли, формула Бернулли,
		наивероятнейшее число появлений события A в
		схеме Бернулли. 25. Приближенные формулы в схеме Бернулли.
		23. Приолиженные формулы в слеме вернулли.

Код индикатора	Индикатор достижения компетенции	Оценочные средства
ОПК-1.2	Решает стандартные	Примерные практические задания для экзаменов:
	профессиональные задачи с	1. Решить матричное уравнение X+3(A-B)=4C, где
	применением общеинженерных знаний	$A = \begin{pmatrix} 1 & 3 \\ -2 & -4 \end{pmatrix}, B = \begin{pmatrix} 3 & 8 \\ -7 & 5 \end{pmatrix}, C = \begin{pmatrix} 8 & 6 \\ -3 & 9 \end{pmatrix}.$
		2. Решить системы линейных алгебраических уравнений по формулам Крамера, матричным методом, методом Гаусса:
		$3x_1 + 4x_2 + 2x_3 = 3$
		$\begin{cases} 3x_1 + 4x_2 + 2x_3 = 3\\ 2x_1 - x_2 - 3x_3 = -3\\ x_1 + 5x_2 + x_3 = -2 \end{cases}$
		$[x_1 + 3x_2 + x_3 = -2]$
		3. Даны координаты вершин пирамиды $A_1A_2A_3A_4$:
	$A_1(1;3;6), A_2(2;2;1), A_3(-1;0;1), A_4(-4;6;-3).$ Найти:	
		1) длину ребра A_1A_2 ; 2) угол между ребрами A_1A_2 и A_1A_4 ;
		3) угол между ребром A_1A_4 и гранью A_1A_2A_3 ; 4)
		площадь грани $A_1A_2A_3$; 5) объем пирамиды.
		 В треугольнике с вершинами A(2,1), B(5,3), C(-6,5) найти длину высоты из вершины A. Написать канонические и параметрические уравнения прямой, проходящей через точки M(2,1,-1) и K(3,3,-1). Составить уравнение плоскости, проходящей через точки A(1,0,2), B(-1,2,0), C(3,3,2). Доказать, что прямые параллельны:
		n .
		8. Вычислите пределы:
		a) $\lim_{x \to \infty} \frac{1 + 4x - x^4}{x + 3x^2 + 2x^4}$; 6) $\lim_{x \to 0} \frac{3x \cdot \arcsin 2x}{\cos x - \cos^3 x}$; B) $\lim_{x \to 3} \frac{\sqrt{2x - 1} - \sqrt{5}}{x - 3}$
		9. Найдите $\frac{dy}{dx}$ для функций: a) $y = e^{4x-x^2}$. б) $x = ctg 2t$,
		$\begin{cases} x = ctg \ 2t \ , \\ y = \ln(\sin 2t). \end{cases}$

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		10. Вычислить: $(1-i)^{28}$. 11. Найти неопределённый интеграл: а) $\int \sin 3x \cdot \cos 5x dx$, б) $\int \frac{1-\cos x}{(x-\sin x)^2} dx$. В) $\int (2x+5) \cdot e^x dx$. 12. Вычислить определенный интеграл $\int_2^{\sqrt{20}} \frac{x dx}{\sqrt{x^2+5}}$. 13. Найти площадь фигуры, ограниченной линиями: $x=4$, $y^2=4x$. 14. При доставке с завода на базу 1000 радиоприемников, у 55 вышли из строя лампы. Найти вероятность того, что взятый наудачу приемник будет исправным. 15. Принимаем вероятности рождения мальчика и девочки равными. Найти вероятность того, что среди 10 новорожденных 6 окажутся мальчиками.
ОПК-1.3	Применяет методы моделирования и математического анализа для решения задач теоретического и прикладного характера	Примерные прикладные задачи и задания $ \begin{array}{l} \textbf{Задача 1.} & \text{Проверить, лежат ли точки} & A(1;0;1), \\ B(4;4;6), & C(2;2;3) & D(10;14;17) & \text{в одной плоскости.} \\ \textbf{Задача 2.} & \text{При построении висячего моста через речку} \\ \text{«Тихая» и выяснении надежности сооружения, студенты стройотряда столкнулись с решением следующей задачи:} \\ Трос, подвешенный за два конца на одинаковой высоте, имеет форму дуги параболы. Расстояние между точками крепления равно 24 м. Глубина прогиба троса на расстоянии 3 м от точки крепления равна 40 см. Определить глубину прогиба троса посередине между креплениями. $

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		Задание 4. Покажите, что предел $\lim_{x\to\infty} \frac{x-\cos x}{x+\cos x}$ не может быть вычислен по правилу Лопиталя. Найдите этот предел другим способом.
		Задание 5. Зависимость пути от времени при прямолинейном движении точки задается уравнением $s = \frac{1}{3}t^3 + 2t^2 - 3$, где s - путь в м, а t время в с.
		Вычислите ее скорость и ускорение в момент времени $t=4c$.
		Задача 6. В парке аттракционов города N один из отрезков траектории движения поезда в «Американских горках» представляет собой синусоиду:
		$s(t) = A \sin(\omega t + \varphi_0)$, где A , φ_0 и ω — известные числа. Определить угол наклона к горизонту посетителя аттракциона Д. в момент времени t_1 его движения по этому отрезку.
		Задание 7. Подумайте, с помощью средств какого раздела математики можно решить следующую задачу.
		«Для уборки снега на улицах города используются снегоуборочные машины. Они работают в течение светлого времени суток с 6 до 18 часов с постоянной скоростью уборки снега 400 (м³/ч). Изменение объема снега, выпадающего на улицы города в городе в течение
		суток, можно описать уравнением $\frac{dS}{dt} = 120t - 5t^2$, где $S(t)$ — объем снега (в м³), выпавшего за время t (в часах), $0 \le t \le 24$. В момент времени $t = 0$ на улицах города лежит 1000 м^3 снега. Установите соответствие между временем t и объемом снега, лежащего на улицах города $S(t)$. »
		Составьте математическую модель этой задачи и решите её.

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Математика» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме экзамена (1 и 2 семестр).

Экзамен по данной дисциплине проводится в устной форме по экзаменационным билетам, каждый из которых включает 2 теоретических вопроса и два практических задания.

Показатели и критерии оценивания экзамена:

- на оценку **«отлично»** обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку **«хорошо»** обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку **«удовлетворительно»** обучающийся демонстрирует пороговый уровень сформированности компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку **«неудовлетворительно»** обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач или не может показать знания даже на уровне воспроизведения и объяснения информации.