MX5-25-1

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Магнитогорский государственный технический университет им. Г.И.

Носова»

THE PROPERTY OF THE PROPERTY O

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Направление подготовки (специальность) 18.03.01 Химическая технология

Направленность (профиль/специализация) программы Химическая технология природных энергоносителей и углеродных материалов

Уровень высшего образования - бакалавриат

Форма обучения очная

Институт/ факультет Институт металлургии, машиностроения и материалообработки

Кафедра Механики

1

Курс

Семестр

Магнитогорск 2025 год Рабочая программа составлена на основе ФГОС ВО - бакалавриат по направлению подготовки 18.03.01 Химическая технология (приказ Минобрнауки России от 07.08.2020 г. № 922)

Рабочая программа рассмотрена и одобрена на заседании кафедры Механики 15.01.2025, протокол № 5

Зав. кафедрой Д.С. Савинов
Рабочая программа одобрена методической комиссией ИММиМ 04.02.2025 г. протокол № 4

Председатель Д.С. Савинов
Согласовано:
Зав. кафедрой Металлургии и химических технологий А.С. Харченко
Рабочая программа составлена:
зав. кафедрой кафедры Механики, д-р техн. наук Д.С. Савинов
Рецензент:
директор ЗАО НПО "ЦХТ", канд. техн. наук В.П. Дзюба

Лист актуализации рабочей программы

учебном году на заседании к	грена, обсуждена и одобрена для реализаці кафедры Механики	[ии в 2026 - 2027				
	Протокол от	<u>.</u> С. Савинов				
	Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2027 - 2028 учебном году на заседании кафедры Механики					
	Протокол от	² С. Савинов				
Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2028 - 2029 учебном году на заседании кафедры Механики						
		µи в 2028 - 2029				
учебном году на заседании к	кафедры Механики Протокол от	<u>.</u> С. Савинов				

1 Цели освоения дисциплины (модуля)

Целями освоения дисциплины (модуля) «Сопротивление материалов» являются: формирование умения и навыков в расчетно-теоретической и конструкторской областях с

целью овладения обучающимися основами общего машиноведения и дальнейшего

использования полученных знаний в разработке, проектировании, наладке, эксплуатации

и совершенствования технологических процессов в промышленности.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Сопротивление материалов входит в обязательную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Математика

Физика

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Производственная - технологическая (проектно-технологическая) практика Современный инжиниринг металлургического производства

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Сопротивление материалов» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции		
ОПК-4 Способен обеспечивать проведение технологического процесса, использовать технические средства для контроля параметров технологического процесса, свойств сырья и готовой продукции, осуществлять изменение параметров технологического процесса при изменении свойств сырья			
ОПК-4.1	Определяет технические средства на производстве для обеспечения технологических процессов		
ОПК-4.2	Оценивает и контролирует параметры и эффективность технологических процессов, свойства сырья и готовой продукции в области химической технологии		
ОПК-4.3	Прогнозирует и регулирует изменение параметров технологических процессов в зависимости от свойств сырья		

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 4 зачетных единиц 144 акад. часов, в том числе:

- контактная работа 57,2 акад. часов:
- аудиторная 54 акад. часов;
- внеаудиторная 3,2 акад. часов;
- самостоятельная работа 51,1 акад. часов;
- в форме практической подготовки 0 акад. час;
- подготовка к экзамену 35,7 акад. час

Форма аттестации - экзамен

Раздел/ тема дисциплины	Семестр	Аудиторная контактная работа (в акад. часах)		Самостоятельная работа студента	Вид самостоятельной	Форма текущего контроля успеваемости и	Код компетенции	
диодинятия	Ce	Лек.	лаб. зан.	практ. зан.	Самост работа	работы	промежуточной аттестации	компетенции
1. Раздел 1								
1.1 Статика. Классификация сил. Приведение сил к точке. Моменты сил.		2		8	10	Самостоятельное изучение учебной и научной литературы	Теоретический опрос	ОПК-4.1, ОПК-4.2, ОПК-4.3
1.2 Основы расчета на прочность. Общие положения. Деформация. Прочность. Жесткость. Устойчивость. Внешние и внутренние силы. Метод сечений. Напряжение. Основные гипотезы и допущения. Растяжение-сжатие. Напряжение и перемещения. Закон Гука. Механические характеристики и свойства материалов. Твердость.	1	2		6	10	Выполнение РГР 1 «Построение эпюр ВСФ в статически определи-мых стержневых системах» и подго-товка к теоретическому опросу. Выполнение РГР 2 «Геометриче- ские характеристики поперечных сечений стержней теоретический опрос	Теоретический опрос	ОПК-4.1, ОПК-4.2, ОПК-4.3
1.3 Изгиб. Понятие о чистом изгибе. Теорема Журавского. Напряжения при изгибе. Геометрические характеристики плоских сечений. Расчет на		4		6	10	Выполнение РГР №3 Подбор сечений при изгибе	Теоретический опрос	ОПК-4.1, ОПК-4.2, ОПК-4.3

прочность. Изгибающий момент и поперечная сила.							
1.4 Чистый сдвиг. Абсолютный и относительный сдвиг. Закон Гука для деформации чистого сдвига. Модуль упругости второго рода. Условия прочности при срезе. Кручение круглого стержня. Угол закручивания. Расчет на прочность и жесткость при кручении. Относительный угол закручивания.	1	4	8	9,1	Самостоятельное изучение учебной и научной литературы	Теоретический опрос	ОПК-4.1, ОПК-4.2, ОПК-4.3
1.5 Сложное сопротивление. Понятие о теориях прочности. Косой изгиб. Изгиб с растяжением. Изгиб с кручением.		2	6	6	Самостоятельное изучение учебной и научной литературы	Теоретический опрос	ОПК-4.1, ОПК-4.2, ОПК-4.3
1.6 Устойчивость сжатых стержней. Усталостная прочность.		4	2	6	Самостоятельное изучение учебной и научной литературы	Теоретический опрос	ОПК-4.1, ОПК-4.2, ОПК-4.3
Итого по разделу		18	36	51,1			_
Итого за семестр		18	36	51,1		экзамен	
Итого по дисциплине		18	36	51,1		экзамен	

5 Образовательные технологии

Для реализации предусмотренных видов учебной работы в качестве образовательных технологий в преподавании дисциплины «Сопротивление материалов» используются:

1. Традиционные образовательные технологии ориентируются на организацию образовательного процесса, предполагающую прямую трансляцию знаний от преподавателя к студенту (преимущественно на основе объяснительно-иллюстративных методов обучения). Учебная деятельность студента носит в таких условиях, как правило, репродуктивный характер.

Формы учебных занятий с использованием традиционных технологий:

Информационная лекция – последовательное изложение материала в дисциплинарной логике, осуществляемое преимущественно вербальными средствами (монолог преподавателя).

Практическое занятие, посвященное освоению конкретных умений и навыков по предложенному алгоритму.

2. Интерактивные технологии — организация образовательного процесса, которая предполагает активное и нелинейное взаимодействие всех участников, достижение на этой основе личностно- значимого для них образовательного результата. Наряду со специализированными технологиями такого рода принцип интерактивности прослеживается в большинстве современных образовательных технологий. Интерактивность подразумевает субъект-субъектные отношения в ходе образовательного процесса и, как следствие, формирование саморазвивающейся информационно-ресурсной среды.

Практика-дискуссия – коллективное обсуждение какого-либо спорного вопроса, проблемы, выявление мнений в группе (межгрупповой диалог, дискуссия как спордиалог).

6 Учебно-методическое обеспечение самостоятельной работы обучающихся

Представлено в приложении 1.

- **7 Оценочные средства для проведения промежуточной аттестации** Представлены в приложении 2.
- 8 Учебно-методическое и информационное обеспечение дисциплины а) Основная литература:
- 1. Сопротивление материалов / Е. Г. Макаров. М. : Новый Диск, 2008. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL:https://host.megaprolib.net/MP0109/Download/MObject/664. Макрообъект. Текст : электронный. Сведения доступны также на CD-ROM.

б) Дополнительная литература:

1. Ибрагимов, Ф. Г. Механика деформируемых стержней: учебное пособие

- [для вузов] / Ф. Г. Ибрагимов, А. С. Постникова; МГТУ. Магнитогорск: МГТУ, 2019. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://host.megaprolib.net/MP0109/Download/MObject/2456. Макрообъект. Текст: электронный. Сведения доступны также на CD-ROM.
- 2. Ступак, А. А. Практикум по сопротивлению материалов. Простое сопротивление : практикум / А. А. Ступак, О. А. Осипова ; Магнитогорский гос. технический ун-т им. Г. И. Носова. Магнитогорск : МГТУ им. Г. И. Носова, 2021. 1 CD-ROM. Загл. с титул. экрана. URL: https://host.megaprolib.net/MP0109/Download/MObject/3031. Макрообъект. Текст : электронный. Сведения доступны также на CD-ROM.
- 3. Статически неопределимые системы: учебное пособие / Д. Я. Дьяченко, О. С. Железков,С. В. Конев и др.; МГТУ. Магнитогорск: МГТУ, 2017. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://host.megaprolib.net/MP0109/Download/MObject/20961. Макрообъект. Текст: электронный. Сведения доступны также на CD-ROM.

в) Методические указания:

- 1. Асадулина, Е. Ю. Сопротивление материалов: построение эпюр внутренних силовых факторов, изгиб: учебное пособие для вузов / Е. Ю. Асадулина. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2020. 115 с. (Высшее образование). ISBN 978-5-534-09944-7. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/453439 .
- 2. Кривошапко, С. Н. Сопротивление материалов. Практикум: учебное пособие для вузов / С. Н. Кривошапко, В. А. Копнов. 4-е изд., испр. и доп. Москва: Издательство Юрайт, 2020. 353 с. (Высшее образование). ISBN 978-5-9916-7117-0. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/450811.
- 3. К.С. Элиджарова Задачник по сопротивлению материалов. Построение эпюр ВСФ.: задачник / А.С. Савинов, А.А. Ступак, О.А.Осипова. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им.Г.И.Носова, 2023. 38 с.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
7Zip	свободно распространяемое	бессрочно
FAR Manager	свободно распространяемое	бессрочно
Браузер Yandex	свободно распространяемое	бессрочно

Профессиональные базы данных и информационные справочные системы

	1 ' 1
Название курса	Ссылка
Электронные ресурсы библиотеки МГТУ им. Г.И.	https://host.megaprolib.net/MP0109/Web
I К ата поги	https://www.rsi.ru/ru/4readers/catalogues/
Электронная база периодических изданий East View	https://dlib.eastview.com/

Национальная информационно-аналитическая					
система	_	Российский	индекс	научного	<pre>URL:https://elibrary.ru/project_risc.asp</pre>
цитирован	ИЯ				

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа. Оснащение: Мультимедийные средства хранения, передачи и представления информации.

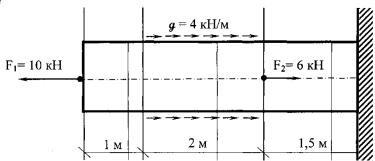
Учебные аудитории для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оснащение: Доска, мультимедийный проектор, экран.

Помещения для самостоятельной работы обучающихся. Оснащение: Персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

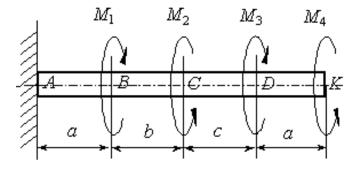
Помещение для хранения и профилактического обслуживания учебного оборудования. Оснащение: Стеллажи для хранения учебно-методических пособий и учебно-методической документации.

Приложение 1 «Учебно-методическое обеспечение самостоятельной работы обучающихся»

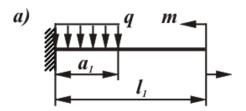
По дисциплине «Сопротивление материалов» предусмотрено выполнение контрольных и аудиторных самостоятельных работ обучающихся.

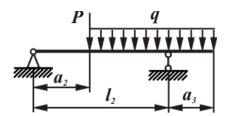

Аудиторная самостоятельная работа студентов предполагает решение контрольных задач на практических занятиях.

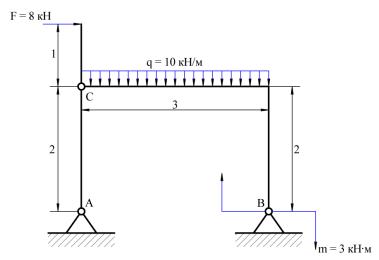
Примерные контрольные работы (КР):


КР № 1 «Построение эпюр ВСФ в статически определимых стержневых системах» Задача 1. Для статически определимого стержня ступенчато постоянного сечения по схеме при заданных осевых нагрузках и геометрических размерах, требуется:

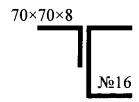
- 1. Определить опорную реакцию в месте закрепления стержня.
- 2. Вычислить значения продольных сил и нормальных напряжений в характерных сечениях и построить эпюры этих величин.
- 3. Найти величины абсолютных удлинений (укорочений) участков стержня и величину общего удлинения (укорочения) стержня в целом.


 $K_{3.\Pi}$


Задача 2. Построить эпюру крутящих моментов и углов закручивания; найти наибольший относительный угол закручивания. Дано: a=2 м; b=3 м; c=1 м; $M_1=5$ кНм; $M_2=3$ кНм; $M_3=6$ кНм; $M_4=2$ кНм

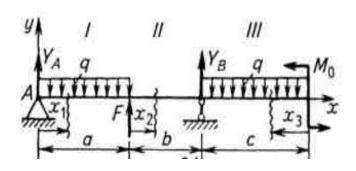

Задача 3. Построить эпюру поперечных сил и изгибающих моментов для консольной балки при $a_1=2$ м; $l_1=4$ м; q=10 кH/м; m=2 кНм.

Задача 4. Построить эпюру поперечных сил и изгибающих моментов для балки на двух опорах $a_2=1$ м; $a_3=2$ м; $l_2=4$ м; q=10 кH/м; P=3 кH.


Задача 5. Построить эпюру изгибающих моментов, продольных и поперечных сил для рамы.

КР №2 «Геометрические характеристики поперечных сечений стержней»

Для несимметричного сечения при заданных размерах, требуется:


- 1. определить положение центра тяжести;
- 2. вычислить осевые и центробежные моменты инерции относительно центральных осей;
- 3. определить положение главных центральных осей инерции и величины главных моментов инерции;
- 4. построить круг инерции и определить графически величины главных моментов инерции и направления главных центральных осей.

КР №3 «Прямой поперечный изгиб. Расчеты на прочность»

Рассчитать на прочность по методу предельных состояний двутавровую прокатную балку при a=2 м; b=1 м; c=2 м;q=10 кH/м; $M_0=2$ кНм; F=8 кН. Материал балки сталь Ст 3. Предел текучести $\sigma T=240$ МПа, расчетное сопротивление по пределу текучести R=210 МПа, расчетное сопротивление при сдвиге R=130 МПа. Коэффициент условий работы ус =0.9. Коэффициент надежности по нагрузке $\gamma f=1.2$.

- 1. Подобрать сечение балки из двутавра, используя условие прочности по первой группе предельных состояний.
- 2. Для сечения балки, в котором действует наибольший изгибающий момент, построить эпюру нормальных напряжений и проверить выполнение условия прочности по нормальным напряжениям.

7 Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Промежуточная аттестация имеет целью определить степень достижения запланированных результатов обучения по дисциплине «Сопротивление материалов» и проводится в форме экзамена на 1 курсе.

Структур ный элемент компетенции	Планируемые результаты обучения	Оценочные средства
технологическо		огического процесса, использовать технические средства для контроля параметров ии, осуществлять изменение параметров технологического процесса при изменении свойств
ОПК-4.1	Определяет технические средства на производстве для обеспечения технологических процессов	 Перечень теоретических вопросов к экзамену: Цель и задачи курса "Сопротивление материалов" и его связь с другими дисциплинами. Свойства, которыми наделяется основная модель твердого деформируемого тела в механике. Характерные формы элементов конструкций. Виды основных деформаций стержня. Внешние силы. Отличие во взгляде на внешние силы в сопротивлении материалов и в теоретической механике. Внутренние силы. Метод сечений. Понятие о напряжении, его компоненты. Закон Гука для материала. Принцип Сен-Венана. Принцип независимости действия сил. Условия его применимости. Внутреннее усилие при осевом растяжении (сжатии) прямоосного призматического стержня. Эпюра продольной силы и характерные особенности ее очертания. Вывод формулы для нормального напряжения в поперечных сечениях стержня при растяжении (сжатии). Основная гипотеза. Условие прочности при растяжении (сжатии) и задачи, решаемые с его помощью. Допускаемое напряжение, коэффициент запаса по прочности. Продольная и поперечная деформации при растяжении (сжатии). Упругие постоянные материала. Закон Гука для осевой деформации стержня. Формула для определения абсолютной деформации при осевом растяжении (сжатии) Анализ напряженно-деформированного состояния в окрестности точки тела. Понятие главных напряжений. Экстремальность главных напряжений.

Структур ный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		 Экстремальные значения касательных напряжений. Закон парности касательных напряжений. Обобщенный закон Гука для изотропного материала. Понятие о хрупком и вязком разрушении материала. Теории прочности для хрупкого состояния материала (I и II теории). Основные гипотезы. Эквивалентные напряжения по первой и второй теориям прочности. Теории пластического деформирования (III и IV теории). Основные гипотезы. Эквивалентные напряжения по третьей и четвертой теориям прочности. Сдвиг. Чистый сдвиг. Закон Гука при чистом сдвиге. Связь между упругими постоянными изотропного материала. Кручение. Понятие о кручении вала. Внутренние усилия при кручении. Построение эпюры крутящего момента. Вывод формулы для касательного напряжения в поперечном сечении вала кругового сечения. Основные гипотезы. Условие прочности при кручении. Полярный момент сопротивления. Подбор сечения вала по условию прочности.
ОПК-4.2	Оценивает и контролирует параметры и эффективность технологических процессов, свойства сырья и готовой продукции в области химической технологии	

Структур ный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		R_1 qa^2
ОПК-4.3	Прогнозирует и регулирует изменение параметров технологических процессов в зависимости от свойств сырья	Примерное практическое задания для экзамена: Статически определимая рама, расчетная схема которой показана на рисунке, загружена внешней нагрузкой. а=2м, q=4kH/м Требуется: 1. Определить опорные реакции. 2. Записать выражения для внутренних усилий М z, Qy и N на каждом из участков рамы. 3. Построить эпюры внутренних усилий М z, Qy и N.

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Сопротивление материалов» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме экзамена на 1 курсе.

Показатели и критерии оценивания экзамена:

- на оценку «отлично» (5 баллов) обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку «хорошо» (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку «удовлетворительно» (3 балла) обучающийся демонстрирует пороговый уровень сформированности компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку «неудовлетворительно» (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку «неудовлетворительно» (1 балл) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.