

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

МЕТОДЫ И АЛГОРИТМЫ ОБРАБОТКИ ИЗОБРАЖЕНИЙ

Направление подготовки (специальность) 15.04.06 Мехатроника и робототехника

Направленность (профиль/специализация) программы Искусственный интеллект в робототехнике

Уровень высшего образования - магистратура

Форма обучения очная

Институт/ факультет Институт энергетики и автоматизированных систем

Кафедра Автоматизированного электропривода и мехатроники

Kypc

1

Семестр 2

Магнитогорск 2025 год Рабочая программа составлена на основе ФГОС ВО - магистратура по направлению подготовки 15.04.06 Мехатроника и робототехника (приказ Минобрнауки России от 14.08.2020 г. № 1023)

кафед		программа сгизированного 5, протокол №	электро 3	емотрена опривода и Вав. кафедр		одобрен: гроники Ш	a pra	засе, А.А. Ни	дании
	THE INCOME FOR THE STATE OF THE	рограмма одоб 5 г. протокол Ј	ірена мет № 3		i комы	осней ИЭн. Премен	fr.	B.P. Xpa	мшия
		рограмма сост федры АЭПиМ		гехн. наук	(Muf		С.А. Лип	њков
наук	Рецензент зам. нач	апыника ЦЭТ	л ПАО Ю.Юди		по	электропри	воду ,	канд.	техн

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2026 - 2027 учебном году на заседании кафедры Автоматизированного электропривода и						
	Протокол от Зав. кафедрой	_ 20 г. № А.А. Николаев				
Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2027 - 2028 учебном году на заседании кафедры Автоматизированного электропривода и						
	Протокол от	_ 20 г. № А.А. Николаев				

1 Цели освоения дисциплины (модуля)

Целью дисциплины является получение навыков обработки изображений методами

компьютерного зрения для идентификации на них различных объектов. Для этого изучаются методы и алгоритмы обработки изображений, а также рассматриваются готовые технические решения для промышленной робототехники.

В курсе изучаются различные представления цифрового изображения, методы его хранения и обработки. Рассматриваются алгоритмы подготовки изображений к распознаванию объектов и их контуров, а также для разметки данных на изображении, для занесения в обучающие базы данных алгоритмов машинного обучения. Изучаемые алгоритмы реализуются на языке программирования Python с применением наиболее распространённых библиотек

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Методы и алгоритмы обработки изображений входит в часть учебного плана формируемую участниками образовательных отношений образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Программирование на языке Python

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Подготовка к защите и процедура защиты выпускной квалификационной работы

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Методы и алгоритмы обработки изображений» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции					
	ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности;					
ОПК-1.1	Знает: Методы решения экстремальных задач с применением естественнонаучных и общеинженерных знаний, методы математического анализа и моделирования при поиске оптимальных режимов работы мехатронной или робототехнической системы; Методы математического анализа, в том числе теорию рядов и математическую статистику, матричное представления изображения					
ОПК-1.2	Умеет: Рассчитывать по результатам эксперимента линейные и нелинейные регрессионные модели, проверять их адекватность и принимать обоснованные решения о выборе модели; Рассчитывать математические модели интенсивностей пикселей в изображении, применять матричные алгоритмы преобразования и проверять их адекватность					
ОПК-1.3	Имеет практический опыт: Применение естественнонаучных и общеинженерных знаний, методы математического анализа и моделирования, оценки и обеспечения надежности результатов эксперимента в профессиональной деятельности; Применение математических и статистических функций, законов и разложений для разработки алгоритмов обработки изображений					

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 6 зачетных единиц 216 акад. часов, в том числе:

- контактная работа 64 акад. часов:
- аудиторная 64 акад. часов;
- внеаудиторная 0 акад. часов;
- самостоятельная работа 152 акад. часов;
- в форме практической подготовки 0 акад. час;

Форма аттестации - зачет с оценкой

Раздел/ тема дисциплины	Семестр	конт	Аудиторн гактная р акад. ча	абота	Самостоятельная работа студента	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной	Код компетенции	
)	Лек.	лаб. зан.	практ. зан.	Самос	расоты	аттестации		
1.									
1.1 Обзор программы курса. Введение в компьютерное зрение, цели и задачи. Цвет и свет. Основы восприятия света человеком и техникой. Обзор распространённых библиотек компьютерного зрения Python.		4		4	20	Проработка конспекта лекций и учебно- методической литературы	Устный опрос по контрольным вопросам	ОПК-1.1, ОПК-1.2, ОПК-1.3	
1.2 Цифровая обработка сигналов. Аналоговое и дискретное изображение. Классификация цифровых изображений, математическое представление. Форматы цифровых изображений. Особенности и проблемы получения изображений естественных сцен	2	8		8	30	Практическое задание №1	Проверка практического задания №1	ОПК-1.1, ОПК-1.2, ОПК-1.3	
1.3 Анализ бинарных изображений. Понятие окрестности и маски. Морфология бинарных изображений.		6		6	32	Практическое задание №2	Проверка практического задания №2	ОПК-1.1, ОПК-1.2, ОПК-1.3	
1.4 Цели и задачи предобработки в вопросах распознавания объектов на фото. Фильтрация и улучшение изображения. Шум и изображение. Шумоподавление.		10		10	40	Практическое задание №3	Проверка практического задания №3	ОПК-1.1, ОПК-1.2, ОПК-1.3	

Свертка и фильтрация. Сглаживание. Медианная фильтрация. Сравнительный анализ изученных методов обработки изображений и определение их области применения. Камеры компьютерного зрения, обзор. Smart-камеры.							
1.5 Сегментация изображение и обнаружение контуров. Разметка данных, подготовка, поиск выборок.	2	4	4	20	Практическое задание №4	Проверка практического задания №4	ОПК-1.1, ОПК-1.2, ОПК-1.3
Итого по разделу		32	32	152			
Итого за семестр		32	32	142		зао	
Итого по дисциплине		32	32	152		зачет с оценкой	

5 Образовательные технологии

Для реализации предусмотренных видов учебной работы в качестве образовательных технологий в преподавании дисциплины «Методы и алгоритмы обработки изображений» используются традиционная и модульно - компетентностная технологии.

Передача необходимых теоретических знаний и формирование основных представлений по курсу «Методы и алгоритмы обработки изображений» происходит с использованием мультимедийного оборудования.

Лекции проходят в традиционной форме, а так же, в форме лекций-консультаций и проблемных лекций. Теоретический материал на проблемных лекциях является результатом усвоения полученной информации посредством постановки проблемного вопроса и поиска путей его решения. На лекциях — консультациях изложение нового материала сопровождается постановкой вопросов и дискуссией в поисках ответов на эти вопросы.

При проведении практических занятий используются работа в команде и методы IT.

Самостоятельная работа стимулирует студентов в процессе подготовки домашних заданий, при решении задач на практических занятиях, при подготовке к домашним заданиям и итоговой аттестации.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся

Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины а) Основная литература:

1. Широбокова, С. Н. Программирование на языке Руthon для лабораторных занятий: учебное пособие / С. Н. Широбокова, А. А. Кацупеев, А. В. Сулыз. — Новочеркасск: ЮРГПУ, 2020. — 104 с. — ISBN 978-5-9997-0725-3. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/180938 (дата обращения: 28.05.2023). — Режим доступа: для авториз. пользователей.

б) Дополнительная литература:

1. Селянкин, В. В. Компьютерное зрение. Анализ и обработка изображений: учебник для вузов / В. В. Селянкин. — 2-е изд., стер. — Санкт-Петербург: Лань, 2021. — 152 с. — ISBN 978-5-8114-8259-7. — Текст: электронный // Лань: электронно-библиотечная система. https://e.lanbook.com/book/173806

в) Методические указания:

- 1. Методическое пособие по выполнению семестровой работы "Компьютерное зрение в промышленности"
 - г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии		
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно		
Anaconda Python	свободно распространяемое ПО	бессрочно		
MathWorks MathLab v.2014 Classroom License	К-89-14 от 08.12.2014	бессрочно		

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка	
Национальная информационно-аналитическая	URL:	
система – Российский индекс научного цитирования	https://elibrary.ru/project_risc.	
(РИНЦ)	asp	
Российская Государственная библиотека. Каталоги	https://www.rsl.ru/ru/4readers	
Госсийская государственная ополнотека. Каталоги	/catalogues/	
Электронные ресурсы библиотеки МГТУ им. Г.И.	https://host.megaprolib.net/M	
Носова	P0109/Web	

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Тип и название аудитории	Оснащение аудитории
Лекционная аудитория № 123,	Мультимедийные средства хранения, передачи и
227, 023	представления информации
Аудитория для практических	Персональные компьютеры с пакетом MS Office,
занятий № 227а, 023	выходом в Интернет и с доступом в электронную
	информационно-образовательную среду университета
Аудитории для самостоятельной	Персональные компьютеры с пакетом MS Office,
работы: компьютерные классы	выходом в Интернет и с доступом в электронную
(ауд. 227а, 023); читальные залы	информационно-образовательную среду университета
библиотеки	

Приложение 1

Учебно-методическое обеспечение самостоятельной работы обучающихся

Теоретические вопросы для промежуточной аттестации

- 1. Задачи компьютерного зрения
- 2. Дайте определение понятию пространственная реконструкция
- 3. Какие факторы помогают и мешают при распознавании изображения
- 4. Дайте определение цифровому и аналоговому изображению.
- 5. Какие типы цифровых изображений существуют?
- 6. Дайте определение дискретизации изображений
- 7. 5 систем координат
- 8. Модификация пикселей в малых окрестностях
- 9. Глобальное улучшение качества изображения
- 10. Комбинация нескольких изображений
- 11. Вычисление характерных признаков изображения
- 12. Пиксели и окрестности пикселей. Маски
- 13. Подсчёт объектов на изображении. Морфология
- 14. Пакет NumPyu SciPyназначение и отличие
- 15. Преобразование уровня яркости
- 16. Гистограмма, выравнивание гистограммы
- 17. Метод главных компонент изображений
- 18. Фильтры (Гаусса, Собеля, Прюита)

Приложение 2 Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Код	Индикатор					
индикато достижения		Оценочные средства				
pa	компетенции	-				
ОПК-1: Спо	особен применять е	стественнонаучные и общеинженерные знания, методы				
математиче	ского анализа и мод	делирования в профессиональной деятельности				
ОПК-1.1	Знает: Методы	Контрольные вопросы				
	решения					
	экстремальных	1. Задачи компьютерного зрения				
	задач с	2. Дайте определение понятию пространственная				
	применением	реконструкция				
	естественнонауч	3. Какие факторы помогают и мешают при				
	ных и	распознавании изображения				
	общеинженерны	4. Дайте определение цифровому и аналоговому				
	х знаний, методы	изображению.				
	математического	5. Какие типы цифровых изображений существуют?				
	анализа и	6. Дайте определение дискретизации изображений				
	моделирования	7. 5 систем координат				
	при поиске	8. Модификация пикселей в малых окрестностях				
	оптимальных	9. Глобальное улучшение качества изображения				
	режимов работы	10. Комбинация нескольких изображений				
	мехатронной или	11. Вычисление характерных признаков изображения				
	робототехническ	12. Пиксели и окрестности пикселей. Маски				
	ой системы;	13. Подсчёт объектов на изображении. Морфология				
	Методы	14. Пакет NumPyu SciPyназначение и отличие				
	математического	15. Преобразование уровня яркости				
	анализа, в том	16. Гистограмма, выравнивание гистограммы				
	числе теорию	17. Метод главных компонент изображений				
	рядов и	18. Фильтры (Гаусса, Собеля, Прюита)				
	математическую					
	статистику,					
	матричное					
	представления изображения					
ОПК-1.2	Умеет:	Практическая работа № 1				
OHK-1.2	Рассчитывать по	Типовое задание				
	результатам	Необходимо определить, как влияют алгоритмы обработки				
	эксперимента	изображений на различные типы изображений, а также как				
	линейные и	они влияют на удобство распознавание объектов на				
	нелинейные	изображении (на сколько удобнее и легче станет искать				
	регрессионные	объекты на изображении после применения алгоритма				
	модели,	обработки).				
	проверять их	Шаг 1. Выбрать не менее 5 изображений и определить к				
	адекватность и	какому типу они относятся, какую проблему обработки в				
	принимать	себе содержат (пример: изображение зашумлённое,				
	обоснованные	затемненное, градиентное и т.д.)				
	решения о	Шаг 2. Тестировать изученные на лекциях алгоритмы на				
	выборе модели;	каждом изображении				
	Рассчитывать	Шаг 3. Сделать заключение по каждому алгоритму, как он				
	1 accantinibalb	шаг э. Сделать заключение по каждому алгоритму, как он				

математические модели интенсивностей пикселей в изображении, применять матричные алгоритмы преобразования и проверять их адекватность

работает с различными типами изображениями Шаг 4. Сформировать отчёт

Практическая работа № 2

Типовое задание

Шаг 1. Написать программу вычисляющая производные заданного изображения и модуль градиента с помощью операторов Собеля и Прюита.

Шаг 2. Исследовать изменение полученных изображений при наложении фильтра Гаусса с разным ядром (например, σ =2, σ =5, σ =10)

Шаг 3. Сделать выводы по работе

Практическая работа № 3

Типовое задание

По заданному преподавателем виду камеры составить реферат, освещающий:

- принцип работы и внутреннее устройство камеры,
- возможности применения в системах технического зрения (с примерами из доступных источников),
- особенности функционирования и использования,
- особенности внедрения программ компьютерного зрения с камерой заданного вила.

Объём реферата не более 15 страниц.

Практическая работа № 4

Типовое задание

Шаг 1. Разработать программу, определяющую границы предметов на изображении с использованием оператора Кэнни.

Шаг 2. Протестировать разработанный код на 3 изображения, сделанных самостоятельно (пример изображения – рис. 1)

Шаг 3. Сделать выводы, представить их в письменном виде

Рисунок 1 – Пример тестового изображения

ОПК-1.3

Имеет практический опыт: Применение естественнонауч ных и общеинженерны х знаний, методы математического анализа и моделирования, оценки и обеспечения надежности результатов эксперимента в профессиональн ой деятельности; Применение математических и статистических функций, законов и разложений для разработки алгоритмов обработки изображений

Типовое задание

Реализовать задачу подсчёта тёмных фигур с различным количеством отверстий (рис. 1).

Для решения задачи рекомендуется использовать изученные алгоритмы морфологии и преобразования изображений.

Дополнительное задание*: Перед апробацией алгоритмы необходимо программное зашумить изображение и наложить фильтр Гаусса. Внести в код корректировки для успешного выполнения задачи.

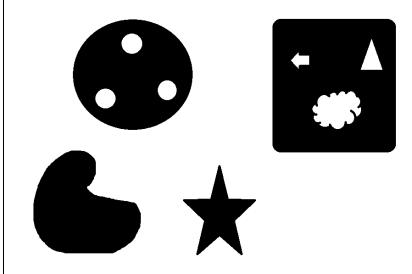


Рис. 1. – Пример обрабатываемого изобр

Типовое задание

- 1. Очистить тестовое изображение от шумов, перевести в полутоновое.
- 2. Реализовать детектор углов Харриса

Рисунок 1 – Пример тестового изображения

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Методы и алгоритмы обработки изображений» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений.

Показатели и критерии промежуточной аттестации:

- на оценку **«отлично»** (5 баллов) обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку **«хорошо»** (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку **«удовлетворительно»** (3 балла) обучающийся демонстрирует пороговый уровень сформированности компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку **«неудовлетворительно»** (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку **«неудовлетворительно»** (1 балл) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.