# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ



Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»



#### РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

# ОСНОВЫ ПРОТОТИПИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ МАШИН

Направление подготовки (специальность) 15.03.02 Технологические машины и оборудование

Направленность (профиль/специализация) программы Компьютерное моделирование и проектирование в машиностроении

Уровень высшего образования - бакалавриат

Форма обучения очная

Институт/ факультет Институт металлургии, машиностроения и материалообработки

Кафедра Проектирования и эксплуатации металлургических машин и

оборудования

4

Курс

Семестр 8

Магнитогорск 2025 год Рабочая программа составлена на основе ФГОС ВО - бакалавриат по направлению подготовки 15.03.02 Технологические машины и оборудование (приказ Минобрнауки России от 09.08.2021 г. № 728)

|       | Рабочая   | программа     | рассмотрена     | и од      | обрена   | на за   | седании  | кафедры    |
|-------|-----------|---------------|-----------------|-----------|----------|---------|----------|------------|
| Проек | тирования | и эксплуатац  | ии металлургич  | неских м  | ашин и с | борудов | зания    |            |
| •     | 27.01.202 | 5, протокол № |                 |           | -        | 17      | 7        |            |
|       |           |               | Зав. кафе       | дрой      | - (Re    | 1       | Α.Γ.     | Корчунов   |
|       |           |               |                 |           |          |         |          |            |
|       | Рабочая г | грограмма одо | обрена методич  | еской ко  | миссией  | ИММ     | иМ       |            |
|       | 04.02.202 | 5 г. протоко. | л № 4           |           |          | _       |          | -          |
|       |           |               | Председа        | атель     | XC       |         | (A.C     | С. Савинов |
|       |           |               |                 |           | 1        | 1       |          |            |
|       | Рабочая г | грограмма сос | тавлена:        |           |          | /       |          |            |
|       | доцент П  | иЭММиО, ка    | нд.техн.наук    |           | 11       |         | М.Г. Сло | бодянский  |
|       |           |               |                 |           |          |         |          |            |
|       |           |               |                 | //        |          |         |          |            |
|       |           |               |                 |           |          |         | 1        |            |
|       | Рецензент | r:            |                 |           | (        |         | /./      |            |
|       | гл. механ | ик ООО «НП    | Ц Гальва», канд | ц.техн.на | ук       |         | B.A      | А. Русанов |

# Лист актуализации рабочей программы

| Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2026 - 2027 учебном году на заседании кафедры Проектирования и эксплуатации |                                                                           |                      |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------|--|--|--|
|                                                                                                                                                   | Протокол от                                                               | №<br>А.Г. Корчунов   |  |  |  |
|                                                                                                                                                   | рена, обсуждена и одобрена для реали<br>афедры Проектирования и эксплуата |                      |  |  |  |
|                                                                                                                                                   | Протокол от                                                               | №<br>А.Г. Корчунов   |  |  |  |
|                                                                                                                                                   | рена, обсуждена и одобрена для реали<br>афедры Проектирования и эксплуата |                      |  |  |  |
|                                                                                                                                                   | Протокол от                                                               | №<br>А.Г. Корчунов   |  |  |  |
| Рабочая программа пересмотр                                                                                                                       | рена, обсуждена и одобрена для реал                                       | изации в 2029 - 2030 |  |  |  |
| учеоном году на заседании ка                                                                                                                      | афедры Проектирования и эксплуата                                         |                      |  |  |  |

### 1 Цели освоения дисциплины (модуля)

Целью дисциплины «Основы прототипирования технологических машин» является ознакомление студентов с современными технологиями подготовки прототипов оборудования и выработка практических навыков применения аддитивных технологий в металлургическом машиностроении.

#### 2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Основы прототипирования технологических машин входит в обязательную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Монтаж, эксплуатация и ремонт металлургических машин и оборудования

Безопасность жизнедеятельности

Металлургические подъемно-транспортные машины

Проектная оценка надежности технических объектов

Реверсивный инжиниринг

Современные системы инженерного анализа

Инженерный дизайн

Механическое оборудование металлургических заводов

Нормоконтроль и экспертиза конструкторской документации

Основы взаимозаменяемости

Детали машин

Метрология, стандартизация и сертификация

Основы технологии машиностроения

Проектирование металлоконструкций

Технологии AR/VR в проектировании промышленного оборудования

Технологические линии и комплексы металлургических цехов

Моделирование в машиностроении

Основы визуализации проектных решений

Основы проектирования

Теория машин и механизмов

Математика

Сопротивление материалов

Физика

Введение в направление

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Подготовка к процедуре защиты и защита выпускной квалификационной работы

Подготовка к сдаче и сдача государственного экзамена

Производственная – преддипломная практика

# 3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Основы прототипирования технологических машин» обучающийся должен обладать следующими компетенциями:

| Код индикатора                                                            | Индикатор достижения компетенции |  |  |  |  |
|---------------------------------------------------------------------------|----------------------------------|--|--|--|--|
| ОПК-6 Способен решать стандартные задачи профессиональной деятельности на |                                  |  |  |  |  |
| основе информационной и библиографической культуры с применением          |                                  |  |  |  |  |
| информационно-коммуникационных технологий;                                |                                  |  |  |  |  |

| ОПК-6.1 | Решает стандартные задачи профессиональной деятельности на |
|---------|------------------------------------------------------------|
|         | основе информационной и библиографической культуры с       |
|         | применением информационно-коммуникационных технологий      |

# 4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 4 зачетных единиц 144 акад. часов, в том числе:

- контактная работа 94,1 акад. часов:
- аудиторная 90 акад. часов;
- внеаудиторная -4,1 акад. часов;
- самостоятельная работа 14,2 акад. часов;
- в форме практической подготовки 0 акад. час;
- подготовка к экзамену 35,7 акад. час

Форма аттестации - экзамен

| Раздел/ тема<br>дисциплины                                                   | Семестр | кон | Аудиторн<br>гактная р<br>акад. час<br>лаб.<br>зан. | абота | Самостоятельная<br>работа студента | Вид<br>самостоятельной<br>работы    | Форма текущего контроля успеваемости и промежуточной аттестации | Код<br>компетенции |
|------------------------------------------------------------------------------|---------|-----|----------------------------------------------------|-------|------------------------------------|-------------------------------------|-----------------------------------------------------------------|--------------------|
| 1. 1. Введение в дисциплину<br>Основные термины и<br>определения             |         |     |                                                    |       |                                    |                                     |                                                                 |                    |
| 1.1 Основные термины и определения                                           | 8       | 4   |                                                    |       |                                    | Самостоятельное изучение литературы | Устный опрос                                                    |                    |
| Итого по разделу                                                             |         | 4   |                                                    |       |                                    |                                     |                                                                 |                    |
| 2. 2. Аддитивные технологии                                                  | 4       |     |                                                    |       |                                    |                                     |                                                                 |                    |
| 2.1 Виды технологий                                                          |         | 4   |                                                    |       | 2                                  | Самостоятельное изучение литературы | Устный опрос                                                    | ОПК-6.1            |
| 2.2 Классификация<br>аддитивных технологий                                   |         | 4   |                                                    |       | 2                                  | Самостоятельное изучение литературы | Устный опрос                                                    | ОПК-6.1            |
| 2.3 Технологии и машины для выращивания металлических изделий                | 8       | 4   |                                                    |       |                                    | Самостоятельное изучение литературы | Устный опрос                                                    |                    |
| 2.4 Аддитивные технологии и литейное производство                            |         | 4   |                                                    |       | 2                                  | Самостоятельное изучение литературы | Устный опрос                                                    | ОПК-6.1            |
| 2.5 Аддитивные технологии и порошковая металлургия                           |         | 4   |                                                    |       | 2                                  | Самостоятельное изучение литературы | Устный опрос                                                    | ОПК-6.1            |
| Итого по разделу                                                             | •       | 20  |                                                    |       | 8                                  |                                     |                                                                 |                    |
| 3. 3. САПР для работы с аддитивными технологиями разработки прототипов изде. |         |     |                                                    |       |                                    |                                     |                                                                 |                    |
| 3.1 Классификация                                                            | 8       | 6   |                                                    |       | 2                                  | Самостоятельное изучение литературы | Устный опрос                                                    | ОПК-6.1            |
| 3.2 Методика подготовки 3d модели к печати                                   | o       | 6   |                                                    | 24    | 2,2                                | Подготовка к практической работе    | Практическая<br>работа                                          | ОПК-6.1            |

| 3.3 Разработка литейной формы для подготовки прототипа методом литья пластиком под давлением | 8 |    | 30 | 2    | Подготовка к<br>практической<br>работе | Практическая<br>работа | ОПК-6.1 |
|----------------------------------------------------------------------------------------------|---|----|----|------|----------------------------------------|------------------------|---------|
| Итого по разделу                                                                             |   | 12 | 54 | 6,2  |                                        |                        |         |
| 4. Экзамен                                                                                   |   |    |    |      |                                        |                        |         |
| 4.1 Экзамен                                                                                  | 8 |    |    |      |                                        |                        | ОПК-6.1 |
| Итого по разделу                                                                             |   |    |    |      |                                        |                        |         |
| Итого за семестр                                                                             |   | 36 | 54 | 14,2 |                                        | экзамен                |         |
| Итого по дисциплине                                                                          |   | 36 | 54 | 14,2 |                                        | экзамен                |         |

### 5 Образовательные технологии

Дляреализациипредусмотренных видовучебной работыв качестве образовательных технологий в преподавании дисциплины «Технологии прототи пирования в металлургическом машиностроении» используется традиционная технология.

Передачанеобходимых теоретических знаний иформирование основных представлени й покурсу «Защита интеллектуальной собственности» происходитси спользованием мультиме дийного оборудования.

Припроведениипрактических занятийи спользуются контекстное обучение и эвристическая беседа.

Самостоятельнаяработастимулируетстудентоввпроцессеподготовкикпрактически мзанятиямиитоговойаттестации.

### 6 Учебно-методическое обеспечение самостоятельной работы обучающихся

Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

# 8 Учебно-методическое и информационное обеспечение дисциплины а) Основная литература:

1. Андрушко, И. Н. Технологическое оборудование для термоформирования изделий из пластмасс: учебное пособие [для вузов] / И. Н. Андрушко, А. П. Пономарев, О. А. Мишурина; Магнитогорский гос. технический ун-т им. Г. И. Носова. - Магнитогорск: МГТУ им. Г. И. Носова, 2020. - 1 CD-ROM. - ISBN 978-5-9967-2030-9. - Загл. с титул. экрана. - URL: <a href="https://host.megaprolib.net/MP0109/Download/MObject/3107">https://host.megaprolib.net/MP0109/Download/MObject/3107</a> (дата обращения: 30.04.2025). - Макрообъект. - Текст: электронный. - Сведения доступны также на CD-

#### б) Дополнительная литература:

ROM.

1.Точилкин,В.В. Проектирование элементов металлургических машин и оборудования: учебное пособие /В.В.Точилкин, О.А.Филатова; МГТУ.-Магнитогорск: МГТУ,2017.-1электрон.опт.диск(CD-ROM).-Загл.ститул.экрана.-URL: <a href="https://host.megaprolib.net/MP0109/Download/MObject/1853">https://host.megaprolib.net/MP0109/Download/MObject/1853</a>

(датаобращения:17.01.2025).-Макрообъект.-Текст:электронный.-Сведениядоступнытакжен aCD-ROM.

2.Пожидаев,Ю.А. Компьютерное моделирование и создание проектно-конструкторской документации в машиностроении средствами САПР. Инженерная и компьютерная графика в Autodesk Inventor, AutoCAD: учебное пособие.Ч.1 /Ю.А.Пожидаев,Е.А.Свистунова,О.М.Веремей;МГТУ.-Магнитогорск:МГТУ,2016.-1элект рон.опт.диск(CD-ROM).-Загл.ститул.экрана.-URL:

https://host.megaprolib.net/MP0109/Download/MObject/20788 (дата обращения:06.04.2025) .-Макрообъект. - Текст:электронный. –Сведения доступны также на CD-ROM.

## в) Методические указания:

Савельева,И.А. Инженерная и компьютерная графика. Основы оформления машиностроительных чертежей на примере эскизирования с 3D модели детали: учебное пособие [длявузов]/ И.А.Савельева,Е.С.Решетникова,Е.А.Свистунова; Магнитогорский гос.техническийун-т им.Г.И.Носова.- Магнитогорск: МГТУим.Г.И.Носова, 2020.-1CD-ROM.- ISBN978-5-9967-2033-0.- Загл.ститул.экрана.- URL: <a href="https://host.megaprolib.net/MP0109/Download/MObject/2908">https://host.megaprolib.net/MP0109/Download/MObject/2908</a> (дата обращения:13.04.2025). -Макрообъект. -Текст: электронный.- Сведения доступны также на CD-ROM.

# г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

| Наименование                                                |                              |                        |
|-------------------------------------------------------------|------------------------------|------------------------|
| ПО                                                          | № договора                   | Срок действия лицензии |
| MS Office 2007<br>Professional                              | № 135 от 17.09.2007          | бессрочно              |
| Autodesk<br>Inventor<br>Professional 2011<br>Master Suite   | К-526-11 от 22.11.2011       | бессрочно              |
| Autodesk<br>Simulation<br>Multiphysics<br>2011 Master Suite | К-526-11 от 22.11.2011       | бессрочно              |
| АСКОН Компас<br>3D в.16                                     | Д-261-17 от 16.03.2017       | бессрочно              |
| FAR Manager                                                 | свободно распространяемое ПО | бессрочно              |
| 7Zip                                                        | свободно распространяемое ПО | бессрочно              |

### Профессиональные базы данных и информационные справочные системы

| <br>r r        | T - I - · · · |        |  |
|----------------|---------------|--------|--|
| Название курса |               | Ссылка |  |

| Информационная система - Нормативные правовые акты, организационно-распорядительные документы, нормативные и методические документы и подготовленные проекты документов по технической защите информации ФСТЭК России | https://fstec.ru/tekhnicheskaya<br>-zashchita-<br>informatsii/dokumenty-tzi?<br>ysclid=lujknksfy724757053 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Информационная система - Банк данных угроз безопасности информации ФСТЭК России                                                                                                                                       | https://bdu.fstec.ru/?<br>ysclid=lujkqy7cnw630508962                                                      |
| Электронные ресурсы библиотеки МГТУ им. Г.И. Носова                                                                                                                                                                   | https://host.megaprolib.net/M<br>P0109/Web                                                                |
| Российская Государственная библиотека. Каталоги                                                                                                                                                                       | https://www.rsl.ru/ru/4readers/catalogues/                                                                |
| Федеральное государственное бюджетное учреждение «Федеральный институт промышленной собственности»                                                                                                                    | URL: http://www1.fips.ru/                                                                                 |
| Национальная информационно-аналитическая система – Российский индекс научного цитирования (РИНЦ)                                                                                                                      | URL: https://elibrary.ru/project_risc. asp                                                                |

## 9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Аудитории для проведения лекционных занятий:

- ауд. 1-407 (пр-кт Ленина 38);
- ауд. 1-404 (пр-кт Ленина 38).

Аудитории для проведения практических занятий:

- ауд. 1-407а (пр-кт Ленина 38).

Аудитории для самостоятельной работы:

- ауд. 1-407а (пр-кт Ленина 38).

Аудитории для промежуточной аттестации работы:

- ауд. 1-402 (пр-кт Ленина 38);
- ауд. 1-407а (пр-кт Ленина 38);
- ауд. 1-404 (пр-кт Ленина 38).

Учебные аудитории для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оснащение: Доска, мультимедийный проектор, экран

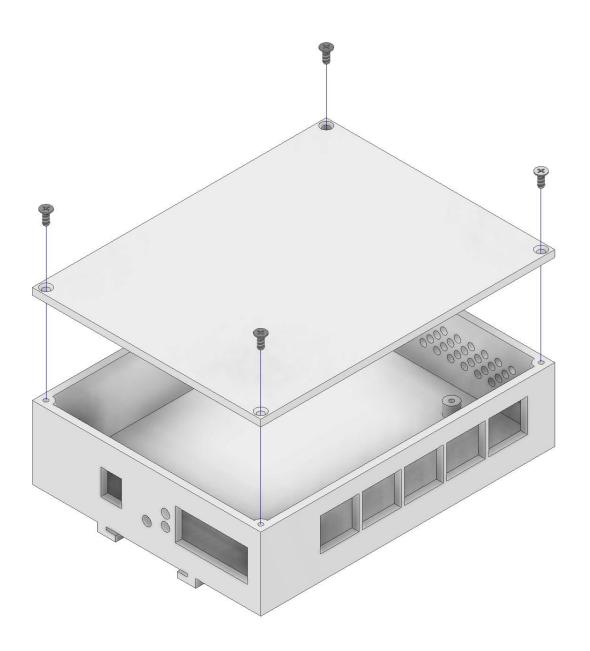
Помещения для самостоятельной работы обучающихся. Оснащение: Персональные компьютеры с пакетом MSOffice, выходом в интернет и с доступом в электронную информационную-образовательную среду университета

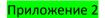
Помещение для хранения и профилактического обслуживания учебного оборудования. Оснащение: Стеллажи для хранения учебно-наглядных пособий и учебно-методической документации

#### 6. Учебно-методическое обеспечение самостоятельной работы обучающегося

#### Пример теста к разделу «Аддитивные технологии»

- 1. Выберете правильную последовательность подготовки прототипа с использованием 3D печати:
  - a) CAD-модель→ AM-машина→ деталь;
  - b) CAD-модель $\rightarrow$  деталь $\rightarrow$  AM-машина;
  - с) AM-машина $\rightarrow$  деталь $\rightarrow$  CAD-модель.
- 2. Что подразумевают «Вычитающие технологии»?
  - а) механообработка удаление («вычитание») материала из массива заготовки;
  - b) технологии резки удаление материала газовой резкой;
  - с) сварка технологии наращивания материала путем расплавления основного.
- 3. Что такое аддитивные технологии?
  - а) процесс объединения материала с целью создания объекта из данных 3D-модели, как правило, слой за слоем, в отличие от «вычитающих» производственных технологий;
  - b) процесс разделения материала с целью создания объекта из данных 3D-модели, как правило, слой за слоем, в отличие от «вычитающих» производственных технологий;
  - с) процесс наращивания материала с целью создания объекта из данных 3D-модели, как правило, слой за слоем, в отличие от «вычитающих» производственных технологий;
- 4. Перечислите категории аддитивных технологий согласно классификации ASTM:
  - a) Material Extrusion «выдавливание материала» или послойное нанесение расплавленного строительного материала через экструдер;
  - b) Material Jetting «разбрызгивание (строительного) материала» или послойное струйное нанесение строительного материала;
  - c) Binder Jetting «разбрызгивание связующего» или послойное струйное нанесение связующего материала;
  - d) Sheet Lamination «соединение листовых материалов» или послойное формирование изделия из листовых строительных материалов;
  - e) Vat Photopolymerization «фотополимеризация в ванне» или послойное отверждение фотополимерных смол;
  - f) Powder Bed Fusion «расплавление материала в заранее сформированном слое» или последовательное формирование слоев порошковых строительных материалов и выборочное (селективное) спекание частиц строительного материала;
  - g) Directed energy deposition «прямой подвод энергии непосредственно в место построения» или послойное формирование изделия методом внесения строительного материала непосредственно в место подвода энергии.
- 5. Какие из нижеперечисленных технологий относятся к группе АМ?


- a) SLA, Steriolithography Apparatus отверждение слоя фотополимера посредством лазерного луча;
- b) SLS, Selective Laser Sintering послойное лазерное спекание порошковых материалов, в частности полимеров;
- c) DMF, Direct Metal Fabrication разновидность SLS-технологии, послойное лазерное спекание металлопорошковых композиций; иногда также называют DMLS, Direct Metal Laser Sintering;
- d) SLM, Selective Laser Melting разновидность SLS-технологии, послойное лазерное плавление металлопорошковых композиций;
- e) DLP, Digital Light Procession засветка слоя фотополимера с помощью цифрового прожектора;
- f) Poly-Jet нанесение слоя фотополимера через многосопловую головку и его отверждение посредством засветки ультрафиолетовой лампой;
- g) FDM, Fused Deposition Modeling послойное наложение расплавляемых нитевидных полимеров;
- h) Ink-Jet отверждение слоя порошкового материала путем нанесения связующего состава через многосопловую головку (по типу струйного 3D-принтера).
- 6. Литейные модели могут быть получены («выращены») из следующих материалов:
  - а) порошковых полимеров для последующего литья по выжигаемым моделям;
  - b) фотополимерных композиций, в частности, по технологииQuick-Cast для последующего литья по выжигаемым моделям или потехнологии MJ (Multi Jet) для литья по выплавляемым моделям.


#### Пример задания для практической работы.

Разработать 3d модель корпуса платы MikroTikRB450 для изготовления её прототипа методом 3D-печати. В конструкции корпуса учесть возможность крепления с использованием DIN-рейки. Подготовить предложение по выбору принтера и режимов печати. Оформить комплект конструкторской документации.



Пример выполнения практического задания





# 7 Оценочные средства для проведения промежуточной аттестации

# а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

| Код индикатора | Индикатор достижения<br>компетенции                                | Оценочные средства                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|----------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                | -<br>ешатьстандартныезадачипрофесс<br>/льтурысприменениеминформаци | иональнойдеятельностинаосновеинформационнойибибл                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| ОПК-6.1        | Решаетстандартныезадачипроф                                        | <u>Тест на тему аддитивные технологии</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                | ессиональнойдеятельностина                                         | <ul> <li>7. Выберете правильную последовательность подготовки прототипа с использованием 3D печати:  d) САD-модель → АМ-машина → деталь; e) САD-модель → деталь → АМ-машина; f) АМ-машина → деталь → САD-модель.</li> <li>8. Что подразумевают «Вычитающие технологии»? d) механообработка – удаление («вычитание») материала из массива заготовки; e) технологии резки – удаление материала газовой резкой; f) сварка – технологии наращивания</li> </ul>                                                                                                                           |  |  |  |
|                |                                                                    | материала путем расплавления основного.  9. Что такое аддитивные технологии?  d) процесс объединения материала с целью создания объекта из данных 3D-модели, как правило, слой за слоем, в отличие от «вычитающих» производственных технологий;  e) процесс разделения материала с целью создания объекта из данных 3D-модели, как правило, слой за слоем, в отличие от «вычитающих» производственных технологий;  f) процесс наращивания материала с целью создания объекта из данных 3D-модели, как правило, слой за слоем, в отличие от «вычитающих» производственных технологий; |  |  |  |
|                |                                                                    | <ul> <li>10. Перечислите категории аддитивных технологий согласно классификации ASTM:</li> <li>h) MaterialExtrusion – «выдавливание материала» или послойное нанесение расплавленного строительного материала через экструдер;</li> <li>i) MaterialJetting – «разбрызгивание (строительного) материала» или послойное струйное нанесение строительного материала;</li> <li>j) BinderJetting – «разбрызгивание связующего» или послойное струйное нанесение струйное нанесение струйное нанесение связующего материала;</li> </ul>                                                    |  |  |  |

| Код индикатора | Индикатор достижения компетенции | Оценочные средства                                                      |
|----------------|----------------------------------|-------------------------------------------------------------------------|
|                |                                  | k) SheetLamination — «соединение листовь<br>материалов» или послойно    |
|                |                                  | формирование изделия из листовы                                         |
|                |                                  | строительных материалов;  I) VatPhotopolymerization                     |
|                |                                  | «фотополимеризация в ванне» ил                                          |
|                |                                  | послойное отверждение фотополимерны<br>смол;                            |
|                |                                  | m) PowderBedFusion — «расплавлени                                       |
|                |                                  | материала в заранее сформированно                                       |
|                |                                  | слое» или последовательно формирование слоев порошковь                  |
|                |                                  | строительных материалов и выборочно                                     |
|                |                                  | (селективное) спекание части                                            |
|                |                                  | строительного материала;<br>n) Directedenergydeposition – «прямой подво |
|                |                                  | энергии непосредственно в мест                                          |
|                |                                  | построения» или послойное формировани                                   |
|                |                                  | изделия методом внесения строительног материала непосредственно в мест  |
|                |                                  | подвода энергии.                                                        |
|                |                                  | 11. Какие из нижеперечисленных технологи относятся к группе АМ?         |
|                |                                  | i) SLA, SteriolithographyApparatus                                      |
|                |                                  | отверждение слоя фотополимер посредством лазерного луча;                |
|                |                                  | j) SLS, SelectiveLaserSintering — послойно                              |
|                |                                  | лазерное спекание порошковь                                             |
|                |                                  | материалов, в частности полимеров;<br>k) DMF, DirectMetalFabrication    |
|                |                                  | разновидность SLS-технологии, послойно                                  |
|                |                                  | лазерное спекание металлопорошковь                                      |
|                |                                  | композиций; иногда также называют DML<br>Direct Metal Laser Sintering;  |
|                |                                  | I) SLM, Selective Laser Melting                                         |
|                |                                  | разновидность SLS-технологии, послойно                                  |
|                |                                  | лазерное плавление металлопорошковь композиций;                         |
|                |                                  | m) DLP, DigitalLightProcession – засветка сло                           |
|                |                                  | фотополимера с помощью цифровог                                         |
|                |                                  | прожектора;<br>n) Poly-Jet — нанесение слоя фотополимер                 |
|                |                                  | через многосопловую головку и ег                                        |
|                |                                  | отверждение посредством засветн<br>ультрафиолетовой лампой;             |
|                |                                  | o) FDM, FusedDepositionModeling – послойно                              |
|                |                                  | наложение расплавляемых нитевиднь                                       |
|                |                                  | полимеров;<br>p) Ink-Jet — отверждение слоя порошковою                  |
|                |                                  | материала путем нанесения связующе                                      |
|                |                                  | состава через многосопловую головку (г                                  |
|                |                                  | типу струйного 3D-принтера).                                            |
|                |                                  | 12. Литейные модели могут быть получен                                  |

| Код индикатора | Индикатор достижения компетенции | Оценочные средства                                                                                                                                                                                                                                                                             |
|----------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                                  | («выращены») из следующих материалов: c) порошковых полимеров для последующего литья по выжигаемым моделям; d) фотополимерных композиций, в частности, по технологииQuick-Cast для последующего литья по выжигаемым моделям или потехнологии МЈ (MultiJet) для литья по выплавляемым моделям.  |
|                |                                  | Практическое занятие на тему: «Разработать прототип опоры барабанного окомкователя»                                                                                                                                                                                                            |
|                |                                  | Практическое занятие на тему «Разработать технологию изготовления прототипа элемента металлургической машины».                                                                                                                                                                                 |
|                |                                  | Вопросы для подготовки к экзамену 1. Дайте определение термину «Прототип». 2. Из каких материалов могут быть получены литейные модели? 3. Перечислите технологии группы АМ. 4. Что такое аддитивные технологии? 5. Что подразумевают «Вычитающие технологии»?                                  |
|                |                                  | Практическое занятие на тему «Разработать технологию изготовления прототипа элемента металлургической машины».                                                                                                                                                                                 |
|                |                                  | Практическое задание                                                                                                                                                                                                                                                                           |
|                |                                  | Разработать 3d модель корпуса платы MikroTikRB450 для изготовления её прототипа методом 3D-печати. В конструкции корпуса учесть возможность крепления с использованием DIN-рейки. Подготовить предложение по выбору принтера и режимов печати. Оформить комплект конструкторской документации. |
|                |                                  | MikroTikRB450                                                                                                                                                                                                                                                                                  |
|                |                                  | Пример выполнения практического задания                                                                                                                                                                                                                                                        |

| Код индикатора | Индикатор достижения<br>компетенции | Оценочные средства |
|----------------|-------------------------------------|--------------------|
|                |                                     |                    |

# б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Технологии прототипирования в металлургическом машиностроении» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме экзамена.

Экзамен по данной дисциплине проводится в устной форме по экзаменационным билетам, каждый из которых включает 2 теоретических вопроса.

#### Показатели и критерии оценивания экзамена:

- на оценку **«отлично»** (5 баллов) обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку **«хорошо»** (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку **«удовлетворительно»** (3 балла) обучающийся демонстрирует пороговый уровень сформированности компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку **«неудовлетворительно»** (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку **«неудовлетворительно»** (1 балл) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.