МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ральное государственное бюджетное образовательное учрежд

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И.

Носова»

УТВЕРЖДАЮ Директор ИЕиС __ Ю.В. Сомова

03.02.2025 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

МАТЕМАТИКА

Направление подготовки (специальность) 15.03.02 Технологические машины и оборудование

Направленность (профиль/специализация) программы Компьютерное моделирование и проектирование в машиностроении

Уровень высшего образования - бакалавриат

Форма обучения очная

Институт/ факультет Институт естествознания и стандартизации

Кафедра Прикладной математики и информатики

Курс 1, 2

Семестр 1, 2, 3

Магнитогорск 2025 год

направлению подготовки 15.03.02 Технологические машины и оборудование (приказ Минобрнауки России от 09.08.2021 г. № 728) Рабочая программа рассмотрена и одобрена на заседании кафедры Прикладной математики и информатики 14.01.2025, протокол № 5 Зав. кафедрой Ю.А. Извеков Рабочая программа одобрена методической комиссией, 03.02.2025 г. протокол № 3 Председатель Ю.В. Сомова Согласовано: Зав. кафедрой Проектирования и эксплуатации металлургических машин и оборудования А.Г. Корчунов Рабочая программа составлена: ассистент кафедры ПМиИ,

Рецензент:

Долгушин

зав. кафедрой Физики, канд. физ.-мат. наук

Рабочая программа составлена на основе ФГОС ВО - бакалавриат по

Лист актуализации рабочей программы

 рена, обсуждена и одобрена дл афедры Прикладной математ	-
Протокол от Зав. кафедрой	г. № Ю.А. Извеков
грена, обсуждена и одобрена дл афедры Прикладной математ	
Протокол от	г. № Ю.А. Извеков
грена, обсуждена и одобрена дл афедры Прикладной математ	
Протокол от	г. № Ю.А. Извеков
грена, обсуждена и одобрена дл афедры Прикладной математ	

1 Цели освоения дисциплины (модуля)

Цель изучения дисциплины "Математика" состоит в овладении студентами необходимым уровнем общепрофессиональных компетенций, предполагающих формирование у них целостного научного представления о математике и её приложениях, математического мышления, приобретение навыков решения ряда прикладных задач, соответствующих осуществлению деятельности по профилю подготовки «Системная инженерия в машиностроении»

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Математика входит в обязательную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Дисциплина Математика входит в обязательную часть учебного плана образовательной программы. Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения курса математики в объёме программы средней. школы.

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Физика

Прикладная механика

Логика в решении технических задач

Информатика

Системный анализ

Цифровое моделирование физико-химических процессов

Анализ финансово-хозяйственной деятельности предприятия

Химия

Моделирование и прототипирование сложных пространственных объектов Экономика предприятия

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Математика» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции								
	ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы								
математического а	нализа и моделирования в профессиональной деятельности;								
ОПК-1.1	Решает стандартные профессиональные задачи с применением								
	общеинженерных знаний								
ОПК-1.2	Применяет методы моделирования и математического анализа для								
	решения задач в профессиональной деятельности								

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 15 зачетных единиц 540 акад. часов, в том числе:

- контактная работа 219,8 акад. часов:
- аудиторная 212 акад. часов;
- внеаудиторная 7,8 акад. часов;
- самостоятельная работа 284,5 акад. часов;
- в форме практической подготовки 0 акад. час;
- подготовка к экзамену 35,7 акад. час

Форма аттестации - зачет, экзамен

Раздел/ тема дисциплины	Семестр	конт	Аудиторн гактная р акад. час лаб.	абота	Самостоятельная работа студента	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной	Код компетенции
		Лек.	зан.	зан.	Ca _N pa6		аттестации	
1. Раздел 1. Линейная и векторная алгебра								
1.1 Линейная алгебра. Действия над матрицами. Определители и их свойства. Методы решения систем линейных уравнений: метод обратной матрицы, по формулам Крамера, метод Гаусса	1	7		4	20	- Самостоятельное изучение учебной литературы; усвоение конспекта	Проверка индивидуальных заданий. Контрольная работа	ОПК-1.1, ОПК-1.2
1.2 Векторная алгебра. Понятие вектора. Проекция вектора на ось. Линейные операции над векторами и их свойства. Разложение вектора по базису. Нелинейные операции над векторами	1	4		4	20	Поиск дополнительной информации по заданной теме	Проверка конспектов. Письменный опрос, обсуждение	ОПК-1.1, ОПК-1.2
Итого по разделу		11		8	40			
2. Раздел 2. Аналитическая геометрия								
2.1 Аналитическая геометрия на плоскости. Прямая на плоскости. Кривые второго порядка на плоскости		4		4	20	Поиск дополнительной информации по заданной теме	Устный опрос, проверка конспектов	ОПК-1.1, ОПК-1.2
2.2 Аналитическая геометрия в пространстве. Взаимное расположение плоскостей, прямых в пространстве, а также прямой и плоскости. Угол между прямой и плоскостью. Поверхности	1	4		6	22	Работа с электронными тестовыми средствами	Проверка интернет-теста, выполненного в домашних условиях	ОПК-1.1, ОПК-1.2

второго порядка							
Итого по разделу		8	10	42			
3. Раздел 3. Введение в							
математический анализ			 				
3.1 Числовые множества. Поле комплексных чисел С. Решение алгебраических уравнений над полем С		2	2	22	Подготовка к практическому занятию	Проверка конспектов. Письменный опрос, обсуждени	ОПК-1.1, ОПК-1.2
3.2 Основные элементарные функции. Последовательности и их пределы. Пределы и непрерывность функции одной переменной	1	4	4	22	Самостоятельное изучение учебной литературы; усвоение конспекта	Проверка индивидуальных заданий. Контрольная работа	ОПК-1.1, ОПК-1.2
Итого по разделу		6	6	44			
4. Раздел 4. Дифференциальнисчисление функции одной переменной	юе						
4.1 Производная. Механический, геометрический и экономический смысл производной и дифференциала. Правила дифференцирования. Дифференцирование неявно заданной и параметрически заданной функции. Логарифмическое дифференцирование. Теоремы о средних значениях		3	4	22	Поиск дополнительной информации по заданной теме. Самостоятельное изучение учебной и научной литературы	Проверка индивидуальных заданий. Контрольная работа	ОПК-1.1, ОПК-1.2
4.2 Производные и дифференциалы высших порядков. Формула Тейлора. Правило Лопиталя.	1	4	4	20,1	Самостоятельное изучение учебной и научной литературы. Подготовка к практическому занятию	Проверка конспектов. Письменный опрос, обсуждение.Прове рка индивидуальных заданий	ОПК-1.1, ОПК-1.2
4.3 Исследование функций одной переменной с помощью дифференциального исчисления и построение их графиков		4	4	10	Самостоятельное изучение учебной и научной литературы. Работа с электронными тестовыми средствами	Проверка индивидуальных заданий. Контрольная работа	ОПК-1.1, ОПК-1.2
Итого по разделу		11	12	52,1			
Итого за семестр		36	36	178,1		зачёт	
5. Раздел 5. Интегральное исчисление функции одной переменной			 				
5.1 Первообразная функция. Неопределенный интеграл и его основные свойства.	2	3	2	10	Выполнение тренировочных комплексов	Обсуждение, письменный опрос	ОПК-1.1, ОПК-1.2

				1		T		1
Таблица неопределенных. Методы непосредственного интегрирования. Основные методы интегрирования%: подстановкой (заменой переменной) и по частям								
5.2 Интегрирование дробно-рациональных функции. Интегрирование тригонометрических и иррациональных выражений.		4		4	12	Самостоятельное изучение учебной и научной литературы. Подготовка к практическому занятию	Тестирование	ОПК-1.1, ОПК-1.2
5.3 Определенный интеграл. Формула Ньютона-Лейбница. Свойства определенного интеграла. Замена переменной и интегрирование по частям в определенном интеграле. Вычисление площадей, длин дуг и объемов тел вращения	2	4		4	12	Подготовка к практическим занятиям. Работа с электронными тестовыми средствами	Проверка интернет-теста, выполненного в домашних условиях	ОПК-1.1, ОПК-1.2
5.4 Несобственные интегралы. Абсолютная сходимость. Признаки сходимости.		2		4	6	Самостоятельное изучение учебной и научной литературы	Контрольная работа	ОПК-1.1, ОПК-1.2
Итого по разделу		13		14	40			
6. Раздел 6. Дифференциальнисчисление функции нескольких переменных	юе		•					
6.1 Определение ФНП. Предел и непрерывность ФНП. Частные производные явно и неявно заданных функций. Производная по направлению. Градиент. Касательная плоскость и нормаль к поверхности	2	3		2	8	Самостоятельное изучение учебной и научной литературы	Проверка конспектов. Письменный опрос, обсуждени	ОПК-1.1, ОПК-1.2
6.2 Локальный, условный и глобальный экстремум ФНП		3		2	12	Поиск дополнительной информации по заданной теме	Проверка индивидуальных заданий	ОПК-1.1, ОПК-1.2
Итого по разделу		6		4	20			
7. Раздел 7. Интегральное исчисление функций нескольких переменных								
7.1 Двойной интеграл и его основные свойства. Сведение двойного интеграла к повторному интегралу. Двойной интеграл в полярных координатах. Геометрические и физические приложения	2	3		4	5,2	Самостоятельное изучение учебной и научной литературы. Подготовка к практическому занятию	Проверка индивидуальных заданий	ОПК-1.1, ОПК-1.2

двойного интеграла							
7.2 Тройной интеграл, его свойства и вычисление. Тройной интеграл в цилиндрических и сферических координатах. Геометрические и физические приложения тройного интеграла	2	4	4	2	Выполнение тренировочных комплексов	Обсуждение, письменный опрос	ОПК-1.1, ОПК-1.2
Итого по разделу		7	8	7,2			
8. Раздел 8. Обыкновенные дифференциальные уравнени							
8.1 Обыкновенные дифференциальные уравнения 1 порядка. Основные понятия, виды решений. Задача Коши. Теорема существования и единственности решения задачи Коши. Геометрический смысл дифференциального уравнения первого порядка. Методы решения дифференциальных уравнений первого порядка.	2	3	4	5	Подготовка к практическим занятиям. Работа с электронными тестовыми средствами	Контрольная работа	ОПК-1.1, ОПК-1.2
8.2 Дифференциальные уравнения высших порядков, допускающие понижение порядка. Линейные однородные и линейные неоднородные дифференциальные уравнения п -ого порядка с постоянными коэффициентами. Системы дифференциальных уравнений и методы их решения.		5	4	2	- Самостоятельное изучение учебной и научной литературы. Подготовка к практическому занятию	Обсуждение, письменный опрос	ОПК-1.1, ОПК-1.2
Итого по разделу		8	8	7			
Итого за семестр		34	34	74,2		зачёт	
9. Раздел 9. Числовые и функциональные ряды Числовые и функциональные ряды							
9.1 Числовые ряды: основные понятия. Числовые ряды с неотрицательными членами и признаки их сходимости Знкочередующиеся ряды: абсолютная и условная сходимость. Сходимость знакопеременных рядов	3	6	8	2	- Самостоятельное изучение учебной литературы, выполнение индивидуальных заданий	Проверка индивидуальных задний. Контрольная работа	ОПК-1.1, ОПК-1.2
9.2 Функциональные ряды. Область и типы сходимости функционального ряда.		6	7	2	Поиск дополнительной информации по заданной теме	Проверка конспектов. Письменный опрос,	ОПК-1.1, ОПК-1.2

			I					 1
Степенные ряды. Разложение функций в степенные ряды. Приложения рядов в приближенных вычислениях и раскрытию неопределённостей. Ряды Фурье по тригонометрическим системам функций. Разложение функций в ряд Фурье.							обсуждение	
Итого по разделу		12		15	4			
10. Раздел 10. Теория вероятностей и математическ статистика	кая							
10.1 Случайные события. Классическое, геометрическое и статистическое определения вероятности. Теоремы сложения и умножения. Условная вероятность. Формула полной вероятности и формула Байеса. Схема Бернулли, приближения Лапласа и Пуассона.		6		5	4,2	Подготовка к практическим занятиям. Выполнение ТР «Случайные события	Защита ТР	ОПК-1.1, ОПК-1.2
10.2 Случайные величины. Дискретные и непрерывные случайные величины. Ряд распределения, функция и плотность распределения. Математическое ожидание и дисперсия, начальные и центральные моменты. Известные распределения (показательное, равномерное, нормальное) и их числовые характеристики.	3	6		5	4	Подготовка к практическим занятиям. Выполнение ИДЗ «Случайные величины»	Проверка конспектов, устный опрос, обсуждение	ОПК-1.1, ОПК-1.2
10.3 Двумерные дискретные случайные величины. Функция распределения, свойства. Числовые характеристики. Элементы теории корреляции.		2		2	5	Подготовка к практическим занятиям. Выполнение ИДЗ «Случайные величины»	Проверка индивидуальных заданий	ОПК-1.1, ОПК-1.2
10.4 Генеральная и выборочная совокупность. Статистические оценки параметров распределения. Точечные и интервальные оценки. Эмпирическая функция распределения.		4		4	5	Подготовка к практическим занятиям. Выполнение ИДЗ «Обработка статистических данных. Исследование статистических зависимостей»	Письменный опрос	ОПК-1.1, ОПК-1.2

10.5 Статистическая гипотеза и схема ее проверки. Критерии Пирсона и Колмогорова-Смирнова проверки гипотезы о виде распределения.	3	2	2	4	Подготовка к практическим занятиям. Выполнение ИДЗ «Обработка статистических данных. Исследование статистических зависимостей»	Проверка конспектов, устный опрос, обсуждение	ОПК-1.1, ОПК-1.2
10.6 Оценка статистической зависимости. Выборочный коэффициент корреляции. Линейная регрессия.	3	4	3	6	Подготовка к практическим занятиям. Выполнение ИДЗ «Обработка статистических данных. Исследование статистических зависимостей»	Проверка индивидуальных заданий	ОПК-1.1, ОПК-1.2
Итого по разделу		24	21	28,2			
Итого за семестр		36	36	32,2		экзамен	
Итого по дисциплине		106	106	284,5		зачет, экзамен	

5 Образовательные технологии

С целью успешного усвоения дисциплины «Математика» и формирования требуемых компетенций предполагается применение различных образовательных технологий (личностно-ориентированные и развивающие), которые обеспечивают достижение планируемых результатов образования согласно основной образовательной программе. В их числе: дифференцированный подход, компетентностный подход, проблемное обучение, эвристическое обучение, использование системы «Интернет-тренажеры» в сфере образования» и др. Интернет- тренажеры могут быть полезны для самообучения, самоконтроля студентов при подготовке их к промежуточным и итоговым аттестациям и позволяют применять дистанционные технологии обучения.

Основными формами занятий являются лекции, практические занятия, контрольно-оценочные занятия, консультации. Лекции строятся на основе сочетания информационной и проблемной составляющих, а также элементов беседы и визуализации.

В ходе проведения лекционных занятий предусматривается:

- обсуждение задач, приводящих к тем или иным математическим понятиям;
- изложение теоретического материала в режиме диалога с целью развития критического мышления студентов и привития им исследовательских умений;
- обсуждение и систематизация теоретических вопросов темы с целью лучшего понимания их взаимосвязи и практического применения.

Практические занятия по данной дисциплине направлены на привитие прочных навыков решения задач по каждой теме и сочетают применение методов обучения в сотрудничестве, дифференцированный подход, классические контрольные и тестовые технологии. При этом предполагается проведение некоторых таких занятий в интерактивной форме (деловые и ролевые игры, разбор конкретных ситуаций).

Реализация компетентностного подхода предусматривает использование в учебном процессе активных и интерактивных форм проведения занятий (компьютерных симуляций, деловых и ролевых игр, разбор конкретных ситуаций, психологические и иные тренинги) в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся.

Выбирая ту или иную технологию работы со студентами, необходимо иметь в виду, что наибольшего эффекта от ее применения можно достичь, если учитывать цели образования, на реализацию которых должна быть направлена избираемая технология, содержание, которое предстоит передать обучающимся с ее помощью, а также условия, в которых она будет использоваться.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся

Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины а) Основная литература:

1. Шипачев В. С. Высшая математика: учебник / В.С. Шипачев. — Москва: ИНФРА-М, 2024. — 479 с. — (Высшее образование). - ISBN 978-5-16-101787-6. - Текст: электронный. - URL:

<u>https://znanium.ru/read?id=432301</u> . — Режим доступа: для авториз. пользователей.

2. Теория вероятностей и математическая статистика: Учебное пособие / Бирюкова Л.Г., Бобрик Г.И., Матвеев В.И., - 2-е изд. - Москва: НИЦ ИНФРА-М, 2020. - 289 с. (Высшее образование: Бакалавриат) ISBN 978-5-16-011793-5. - Текст: электронный. - URL: https://znanium.ru/read?id=363087 .— Режим доступа: для авториз. пользователей

б) Дополнительная литература:

- 1. . Шипачев В. С. Задачник по высшей математике: учеб. пособие / В.С. Шипачев. 10-е изд., стереотип. Москва: ИНФРА-М, 2020. 304 с. (Высшее образование). ISBN 978-5-16-101831-6. Текст: электронный. URL: https://new.znanium.com/catalog/product/1042456 Режим доступа: для авториз. пользователей.
- 2. Булычева, С. В. Математика: пределы и непрерывность функции одной переменной. Практикум: учебное пособие / С. В. Булычева; МГТУ. Магнитогорск: МГТУ, 2017. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://host.megaprolib.net/MP0109/Download/MObject/1874 (дата обращения: 02.04.2025). Макрообъект. Текст: электронный. Сведения доступны также на CD-ROM..
- 3. Данко, П.Е. Высшая математика в упражнениях и задачах. (В 2-х частях) [Текст] / П. Е. Данко, А. Г. Попов, Т. Я. Кожевникова. М.: Высшая школа, 1986-2009. ISBN: 978-5-488-02201-0. более 1000 шт.
- 4 Акманова, С. В. Сборник задач и упражнений по курсу математического анализа : практикум / С. В. Акманова, Л. Н. Малышева ; МГТУ. Магнитогорск : МГТУ, 2018. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://host.megaprolib.net/MP0109/Download/MObject/2065 (дата обращения: 02.04.2025). Макрообъект. Текст : электронный. Сведения доступны также на CD-ROM.
- 5. Математический анализ в вопросах и задачах : учеб. пособие / В. Ф. Бутузов, Н. Ч. Крутицкая, Г. Н. Медведев, А. А. Шишкин. 5-е изд. Москва : ФИЗМАТЛИТ, 2002. 480 с. ISBN 5-9221-0284-1. Текст : электронный. URL: https://new.znanium.com/catalog/product/544581 Режим доступа: для авториз. пользователей.

в) Методические указания:

- 1. Бондаренко, Т. А. Интегральное исчисление функции одной переменной : учебное пособие / Т. А. Бондаренко ; МГТУ. Магнитогорск : МГТУ, 2017. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://host.megaprolib.net/MP0109/Download/MObject/1879 (дата обращения: 02.04.2025). Макрообъект. Текст : электронный. Сведения доступны также на CD-ROM.
- 2. Акманова, З. С. Неопределенный интеграл: от теории к практике: учебное пособие / З. С. Акманова; МГТУ. Магнитогорск: МГТУ, 2015. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://host.megaprolib.net/MP0109/Download/MObject/325 (дата обращения: 02.04.2025). Макрообъект. Текст: электронный. Сведения доступны также на CD-ROM.
- 3. Аналитическая геометрия : практикум / Т. Г. Кузина, О. С. Андросенко, Т. В. Морозова, О. В. Петрова; МГТУ. Магнитогорск, 2010. 114 с. : ил., табл. URL: https://host.megaprolib.net/MP0109/Download/MObject/1801 (дата обращения: 02.04.2025). Макрообъект. Текст : электронный.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

11		
Наименование ПО	№ договора	Срок действия лицензии
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
7Zip	свободно распространяемое ПО	бессрочно
Adobe Reader	свободно распространяемое ПО	бессрочно
MAXIMA	свободно распространяемое ПО	бессрочно
FAR Manager	свободно распространяемое ПО	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Национальная	
информационно-аналитическая	URL:
система – Российский индекс научного	https://elibrary.ru/project_risc.
цитирования	asp
(РИНЦ)	

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

- 1) Учебные аудитории для проведения занятий лекционного типа (ауд. 292, 365, 374, 388). Оснащение: мультимедийные средства хранения, передачи и представления информации;
- 2) Учебные аудитории для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля, самостоятельной работы обучающихся и промежуточной аттестации (ауд. 2116, 2118, 245, 247, 279, 343, 372). Оснащение: доска, мультимедийный проектор, экран. Комплекс тестовых заданий для проведения промежуточных и рубежных контроля;
- 3) Помещение для хранения и профилактического обслуживания учебного оборудования (ауд. 293а,2109). Оснащение: шкафы для хранения учебно-методической документации, учебно-наглядных пособий и учебного оборудования;
- 4) Помещения для самостоятельной работы обучающихся (ауд. 245, 247, 279, 343, 372). Оснащение: персональные компьютеры с пакетом MS Office и выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Учебно-методическое обеспечение самостоятельной работы обучающихся

По дисциплине «Математика» предусмотрена аудиторная и внеаудиторная самостоятельная работа обучающихся.

Аудиторная самостоятельная работа студентов предполагает решение контрольных задач на практических занятиях.

Примерные аудиторные контрольные и проверочные работы (АКР), а так же индивидуальные домашние задания (ИДЗ):

АКР: вариант теста «Матрицы и определители»

1. Если
$$A = \begin{pmatrix} -1 & 1 \\ 0 & 4 \end{pmatrix}, \ B = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
, тогда матрица

 $C = A \cdot B$ имеет вид...

1)
$$\begin{pmatrix} -2\\4 \end{pmatrix}$$
; 2) $\begin{pmatrix} -1\\4 \end{pmatrix}$; 3) $\begin{pmatrix} 4\\-1 \end{pmatrix}$; 4) $\begin{pmatrix} 4\\-1 \end{pmatrix}$.

- 2. Матрица $\,$ А имеет размер 3x4, матрица $\,$ В имеет размер 4x3, при этом $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ матрица $\,$ С имеет размер
- 1) 3x3; 2) 4x4; 3) 3x4; 4) 4x3.
- 1) $2b_2c_3 + b_2c_1$; 2) $2b_2c_3 b_2c_1$;

3)
$$-2b_2c_3-b_2c_1$$
; 4) $-2b_2c_3+b_2c_1$.

4. Даны матрицы
$$A = \begin{pmatrix} 1 & 2 \\ -1 & -3 \end{pmatrix}$$
 и $B = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$. Тогда определитель $\begin{vmatrix} B^T \cdot A \end{vmatrix}$, где B^T -

транспонированная матрица, равен:

5. Алгебраическое дополнение элемента
$$a_{13}$$
 матрицы $A = \begin{pmatrix} 4 & 2 & -1 \\ 0 & 5 & 1 \\ 3 & 2 & 4 \end{pmatrix}$ равно...

6. Определитель
$$\begin{vmatrix} a_{11} & 0 & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & 0 & a_{33} \end{vmatrix}$$
 равен...

1)
$$-a_{22}(a_{11}a_{33}-a_{31}a_{13});$$

2)
$$-(a_{11}a_{33}-a_{31}a_{13});$$
 3) $a_{11}a_{33}-a_{31}a_{13};$

4)
$$a_{22}(a_{11}a_{33}-a_{31}a_{13})$$
.

7. Определитель

- 8. Матрица $\begin{pmatrix} 1 & 4+\alpha \\ -2 & 6 \end{pmatrix}$ не имеет обратной при α равном...
- 1) 1; 2) -1; 3) -7; 4) 2.

Примерный вариант ИДЗ «Системы линейных уравнений»

Задание 1. Решить систему линейных уравнений методом обратной матрицы.

$$\begin{cases} 5x_1 + 8x_2 + x_3 = 2, \\ 3x_1 - 2x_2 + 6x_3 = -7, \\ 2x_1 + x_2 - x_3 = -5. \end{cases}$$

Задание 2. Решить систему линейных уравнений по формулам Крамера.

$$\begin{cases} 2x_1 + 3x_2 - x_3 + x_4 = 5, \\ 6x_1 + 4x_2 + 4x_3 + 6x_4 = 1, \\ 3x_1 - x_2 - 2x_3 + x_4 = 1, \\ x_1 + 2x_2 + 3x_3 + 4x_4 = 6; \end{cases}$$

Задание 3. Решить систему линейных уравнений методом Гаусса.

$$\begin{cases} 2x_1 + 7x_2 + 3x_3 + x_4 = 6, \\ 3x_1 + 5x_2 + 2x_3 + 2x_4 = 4, \\ 9x_1 + 4x_2 + x_3 + 7x_4 = 2; \end{cases}$$

Примерный вариант ИДЗ «Векторная алгебра»

Задание 1. Дана пирамида АВСД. Средствами векторной алгебры найти:

а) длины рёбер АД и ВС; б) угол между ребрами АВ и СД; с) площадь грани ВСД; д) угол между гранями АВС и АВД; е) объём тетраэдра АВСД, если A(0,1,0), B(4,2,0), C(-1,3,0), D(1,-2,4).

Задание 2. Установите, является ли данная система векторов линейно зависимой.

$$\bar{a}(5,-7,19), \bar{b}(7,5,-7), \bar{c}(7,-8,14);$$

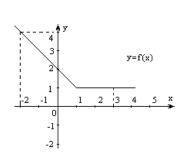
Примерный вариант ИДЗ «Аналитическая геометрия в пространстве»

- 1. Даны уравнения двух сторон параллелограмма 2x-y+2=0, x+3y-6=0 и точка пересечения диагоналей O(-1; 4). Составить уравнения диагоналей параллелограмма.
- 2. Будут ли прямые l_1 : $\begin{cases} x-2y+z=3, \\ y+2z=1 \end{cases}$ и l_2 : $\begin{cases} x=3t-1, \\ y=4, \\ z=-2t \end{cases}$ лежать в одной плоскости?
- 3. При каких значениях a и b плоскость ax-4y+bz-1=0 перпендикулярна прямой, проходящей через две точки $M_1(0;1;2)$, $M_2(1;0;-2)$. Построить эту плоскость.
- 4. Написать параметрические и канонические уравнения прямой l_1 : $\begin{cases} 5x y + 9 = 0, \\ x + y 2z = 0. \end{cases}$
- 5. Найти угол между плоскостями 2x y + 3z + 5 = 0 и $\frac{x}{1} \frac{y}{2} + \frac{z}{3} = 1$.

АКР: «Комплексные числа»

- 1. Выполнить действия, представить результат в алгебраической форме $(3-2i)(4i-1)+\frac{2i}{2-i}$
- 2. Изобразить на комплексной плоскости и представить в тригонометрической и показательной формах числа: $z_1 = -i$; $z_2 = 1 i$; $z_3 = -1 + \sqrt{3}i$.
- 3. Вычислить a) $(z_2)^{10}$; б) все значения корня $\sqrt[3]{z_1}$.
- 4. Решить уравнения a) $z^2 4z + 8 = 0$ б) x y + ixy = i, $x, y \in R$.
- 5. Построить на комплексной плоскости множество точек, удовлетворяющих соотношению $|z-2i| \leq 2$

АКР: Примерный вариант обобщённого теста по математическому анализу:


- **1**. Областью определения функции $y = \frac{3\sqrt{4-x}}{x+1}$ является следующее множество точек:
 - 1) (-1;4);
 - 2) (-1;4];
 - 3) $(-\infty;-1)\cup(-1;4];$
 - 4) $(-\infty;-1)\cup(4;+\infty)$.
- **2.** $\lim_{x \to \infty} \frac{3x^2 + 2x 1}{x^2 5}$ pabeh
- 1) ∞ ; 2)1; 3) $-\frac{2}{5}$; 4) 3.
- **3**. Производная функции $y = \cos(6 + x^3)$ равна
- 1) $-\sin(6+x^3)$; 2) $-3x^2\sin(6+x^3)$;
- 3) $3x^2\sin(6+x^3)$; 4) $\frac{x^4}{4}\sin(6+x^3)$.

4. Дана функция $f(x) = \begin{cases} x+2, x \le 1, \\ 5-bx^2, x > 1 \end{cases}$. Укажите число **b**, при котором данная функция непрерывна на D(f):

- 1) такого числа не существует;
- 2) b = 1;
- 3) b = 2;
- 4) b = -2.
- **5**. $f(x) = \frac{\ln x}{e^x}$, тогда f'(1) равно:
 - 1) 0; 2) $-\frac{2}{e}$; 3) $\frac{1}{e}$; 4) $\frac{e-1}{e}$.
- **6**. Выражение $\frac{d(\arcsin x)}{}$ равно: $d(\arccos x)$
 - 1) 1 при |x| < 1;
 - 2) -1 при |x| < 1;
 - 3) dx при |x| < 1;
 - 4) $1-x^2$ при |x|<1.
- **7.** Угловой коэффициент касательной к параболе $y = x^2 2x + 3$ в точке с абсциссой x = 2 Ра вен:

 - 1) 2; 2) 3;
- 3) -2; 4) -6

- **8**. Функция $f(x) = x \sin x$:
 - 1) возрастающая на **R**;
 - 2) убывающая на **R**;
 - 3) немонотонная на \mathbf{R} ; 4) возрастает на $\left[-\frac{3\pi}{2} + 2\pi\kappa, -\frac{\pi}{2} + 2\pi\kappa\right]\kappa \in \Re$
- **9**. Интеграл $\int \sqrt{x} \cdot (x^2 + 1) dx$ равен:
- 1) $\frac{2}{7}x^{\frac{7}{2}} + \frac{2}{3}x^{\frac{3}{2}} + C$; 2) $-\frac{2}{7}x^{\frac{7}{2}} \frac{2}{3}x^{\frac{3}{2}} + C$; 3) $\frac{7}{2}x^{\frac{7}{2}} + \frac{3}{2}x^{\frac{3}{2}} + C$; 4) $\frac{1}{5}x^5 + C$.
- **10**. Вычислите $\int_{0}^{3} f(x)dx$, если график функции y = f(x) изображен на рисунке:

- 1. 8.5; 2.9; 3.9.5;
- 4.10.

11.Интеграл
$$\int_{1}^{2} \frac{dx}{x}$$
 равен:

- 1) $\ln 2 e$;
- 2) 0; 3) $\ln 2 1$; 4) $\ln 2$.
- **12**. Площадь фигуры, ограниченной линиями $y = x^2 + 1$, x = 5 и осями координат, равна:
- 1) 0;

- $2)\frac{140}{3}$; 3) -14; 4) $\frac{110}{3}$.

Примерный вариант ИДЗ «Несобственные интегралы»

Вычислить несобственные интегралы первого рода (или установить их расходимость)

$$1. \quad \int\limits_{2}^{+\infty} \frac{\ln(x+1)}{(x+1)} dx \, .$$

$$2. \int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 2}.$$

Вычислить несобственные интегралы второго рода (или установить их расходимость)

$$3. \int_{1}^{2} \frac{xdx}{\sqrt{x-1}}$$

4.
$$\int_{-1}^{1} \frac{3x^2 + 2}{\sqrt[3]{x^2}} dx$$
.

Исследовать сходимость интегралов

$$5. \int_{1}^{+\infty} \frac{dx}{\sqrt{1+x^3}}.$$

$$6. \quad \int_{0}^{1} \frac{\sqrt{x}}{e^x - 1} dx.$$

АКР: «Обыуновенные дифференциальные уравнения»

1. Найти общее решение дифференциального уравнения:

1)
$$y'''x \ln x = y''$$
, 2) $(1+x^2)y'' + 2xy' = 12x^2$.

2. Найти решение задачи Коши:
$$\begin{cases} y'' = 2\sin^3 y \cos y \\ y(1) = \frac{\pi}{2}, \ y'(1) = 1 \end{cases}.$$

3. Найти общее решение дифференциального уравнения (в примере д) решить задачу Коши):

1)
$$y'' - 2y' + y = xe^x$$
, 2) $y'' + 4y' + 5y = x^2$

3)
$$y''' - 4y'' + 5y' = 6x^2 + 2x - 5$$
, 4) $y''' + 2y'' - 3y' = (8x + 6)e^x$,

3)
$$y'' + 3y = 6x + 2x + 3$$
, $y'' + 2y + 3y = (6x + 6)e^{-x}$,
5) $y'' - 4y' + 4y = e^{2x}(\cos x + 3\sin x)$, 6) $y''' - 64y' = 128\cos 8x - 64e^{8x}$,
7)
$$\begin{cases} y'' + y = 1/\sin x \\ y(\pi/2) = 1, \ y'(\pi/2) = \pi/2 \end{cases}$$

7)
$$\begin{cases} y'' + y = 1/\sin x \\ y(\pi/2) = 1, \ y'(\pi/2) = \pi/2 \end{cases}$$

4. Решите систему ДУ первого порядка двумя способами - подстановки и методом Эйлера

$$\begin{cases} y' = 2x - 5y + e^t \\ x' = y - 6x + e^{-2t} \end{cases}$$

Примерный вариант ИДЗ «Случайные величины»

Один раз брошены две игральные кости. Случайная величина Х сумма очков, выпавших на верхних гранях. Составить ряд распределения данной случайной величины, вычислить математическое ожидание и дисперсию. eë

2. Дан ряд распределения дискретной случайной

величи	іны Л	•			
X		4	6	8	10
	2				
P		0,4	0,2	c	
	0,1				0,1

Найти значение параметра «с». вычислить математическое ожидание, среднее квадратическое отклонение случайной величины X. Построить график функции распределения и многоугольник распределения. Найти вероятность того, что случайная величина X не превосходит 5.

3. Случайная величина X задана своей функцией распределения

$$F(x) = \begin{cases} \frac{1}{2} \cdot e^{\frac{X-1}{2}}, & x < 1; \\ 1 - \frac{1}{2} e^{\frac{X-1}{2}}, & x \ge 1. \end{cases}$$

Найти плотность распределения. Построить графики функции и плотности распределения. Вычислить математическое ожидание и дисперсию.

4. Случайная величина X подчинена закону распределения с плотностью:

$$f(x) = \begin{cases} 0, & x < 0; \\ \frac{ax}{(1+x^2)^2}, & x \ge 0. \end{cases}$$

Найти значение параметра «а», функцию распределения, определить математическое ожидание, дисперсию и вероятность того, что случайная величина X попадает в промежуток (0,2).

5. Дана таблица, определяющая закон распределения системы случайных величин (X, У):

77.77			
Xy	20	40	60
	_		_
10	3 a	a	0
20	2 a	4 a	2 a
30	a	2 a	5 a

Найти: параметр «а»; математические ожидания m_x , m_y ;

дисперсии σ_x^2 , σ_y^2 ; коэффициент корреляции r_{xy} .

Примерный вариант ИДЗ «Обработка статистических данных. Исследование статистических зависимостей»

Дан статистический ряд (исходные значения величин)

X	У	X	У	X	У	X	У	X	У
38,4	18,7	40,7	24	30,3	18	27,3	25,1	22	21
40,2	11,7	50,8	9	28,4	15,7	38	20,6	32	28,6
24,1	20,9	38,2	22,8	47,6	11,3	52,8	15,2	19,5	19,7
32,5	22,4	36	19,8	30,3	21,3	48	24,5	46	20,3
25	29,5	35,7	15,3	30,5	27,8	26	28,7	27,8	15,5
38,1	19,6	34,3	20,7	48,7	11,5	32,5	28	35,2	30,7
16,8	32,2	43,8	13	16,8	18,3	57,1	2,9	41,6	18,2
28,8	29,7	35,5	24	23,9	20,2	40	23,8	42,5	15,3
47,1	14,7	45,9	24	54,3	14,2	50,7	15,9	32,9	22,5

50,1	15,9	29,3	21,9	60,8	27,2	58,6	9,3	35,6	22,7
30,2	25	54,2	14,2	21,4	19,8	40,1	17,4	47	17,3
36,9	23,2	59,8	6,1	38,4	23	34,4	23,4	31,4	30,2
36,6	7,9	32,2	22,3	46,8	20,5	53,7	12,4	28,2	30
38	15,4	52	6,1	23,8	18,3	42,1	28,5	33,7	19,8
55	11	31,2	24,2	37,9	32,6	43	20,2	27,6	18,5
16,2	25,2	51,2	14,2	30,6	21,5	23,5	14,6	36,8	10,7
49,7	15,9	32,2	20,4	37	24,5	32,9	25,8	45,5	14,8
49,7	19,5	30,9	20,7	57,6	20,3	54	14,4	18,6	15,3
42,3	19,7	41,5	10,8	41,9	14,6	42,3	23,5	25,8	27,4
35,7	11,9	41,2	9,8	34,1	26,3	58,8	9,2	39,2	17,5

- 1) По данным оцените генеральные параметры: найдите среднее, дисперсию, среднее квадратичное отклонение, асимметрию, эксцесс, моду, медиану, коэффициент вариации для признаков X и У.
- 2) По данным провести статистическую проверку статистической гипотезы о нормальном распределении измеряемого признака по следующим критериям: а) критерию Пирсона χ^2 (уровень значимости принять равным 0.05)., б) критерию Колмогорова-Смирнова. В случае принятия гипотезы о нормальности распределения найти доверительные интервалы для математического ожидания и среднего квадратичного отклонения при уровне надёжности 0.95.
- 3) Найти исправленный корреляционный момент и коэффициент корреляции. Проверить гипотезу о независимости признаков X и Y (уровень значимости принять равным 0.05). Рассчитать коэффициенты линейной регрессии (X на Y или Y на X). Проверить значимость уравнения регрессии. Найти доверительные интервалы для коэффициентов корреляции и линейной регрессии (при уровне надёжности 0.95).
- 4) Построить поле корреляций величин X и Y. И на этом же графике построить линию регрессии. Дать смысловую интерпретацию коэффициентов уравнения регрессии. Оценить его пригодность для аналитических расчетов.

Примерный вариант TP «Случайные события» (типовой расчёт)

- **Задача 1.** Бросаются две игральные кости. Определить вероятность того, что: а) сумма числа очков не превосходит 3; б) произведение числа очков не превосходит 3; в) произведение числа очков делится на 3.
- **Задача 2.** Среди 10 лотерейных билетов 6выигрышных. Наудачу взяли 4 билета. Определить вероятность того, что среди них 2 выигрышных.
- **Задача 3.** Моменты начала двух событий наудачу распределены в промежутке времени от 9:00до 10:00. Одно из событий длится 10 мин., другое -10 мин. Определить вероятность того, что :a) события «перекрываются» во времени; б) «не переркрываются».
- **Задача 4.** В двух партиях 71 % и 47 % доброкачественных изделий соответственно. Наудачу вбирают по одному изделию из каждой партии. Какова вероятность обнаружить среди них: а) хотя бы одно бракованное; б) два бракованных; в) одно доброкачественное и одно бракованное?
- **Задача 5.** Вероятность того, что цель поражена при одном выстреле первым стрелком, равна 0,61, вторым -0,55. Первый сделал 2, второй -3 выстрела. Определить вероятность того, что цель не поражена.
- **Задача 6.** В первой урне 4 белых и 1 черный шар, во второй -2 белых и 5 черных. Из первой во вторую переложено 3 шаров. Затем из второй урны извлечен один шар. Определить вероятность того, что выбранный из второй урны шар белый.
- **Задача 7.** В магазин поступают однотипные изделия с трех заводов, причем i-й завод поставляет m_i % изделий (i=1, 2, 3). Среди изделий i-го завода n_i % первосортных. Куплено

одно изделие. Оно оказалось первосортным. Определить вероятность того, что купленное изделие выпущено *j*-м заводом. m_1 =50, m_2 =30, m_3 =20, n_1 =70, n_2 =80, n_3 =90, j=1.

Задача 8. Вероятность выигрыша в лотерею на один билет равна 0,3. Куплено 10 билетов. Найти наивероятнейшее число выигравших билетов и соответствующую вероятность.

Задача 9. Вероятность «сбоя» в работе телефонной станции при каждом вызове равна p=0,02. Поступило 1000 вызовов. Определить вероятность 7 «сбоев».

Задача 10. Вероятность наступления некоторого события в каждом из *100* независимых испытаний равна p=0,8. Определить вероятность того, что число mнаступлений события удовлетворяет следующему неравенству: $k_1 \le m \le k_2$; k_1 =80, k_2 =90.

Приложение 2

Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Код	Индикатор										
компетенц	достижения	Оценочные средства									
ИИ	компетенции										
	ОПК-1: Способен применять естественнонаучные и общеинженерные знания, методы										
математич	еского анализа і	и моделирования в профессиональной деятельности;									
ОПК-1.1	Решает	Владеет основным содержанием дисциплины в рамках									
	стандартные	следующих теоретических вопросов:									
	профессиональ	1. Матрицы. Действия над матрицами.									
	ные задачи с	2. Определители матриц, их свойства (любые два с док-вом).									
	применением	3. Минор, алгебраическое дополнение. Вычисление									
	общеинженерн	определителя разложением по строке (столбцу), понижением									
	ых знаний	порядка.									
		4. Обратная матрица, теорема о существовании и									
		единственности обратной матрицы (док-во).									
		5. Элементарные преобразования матриц. Эквивалентные									
		матрицы. Ранг матрицы. Свойства ранга. Теорема о рангах									
		эквивалентных матриц (без док-ва).									
		6. Ступенчатая матрица. Теорема о ранге ступенчатой матрицы (док-во).									
		7. Системы линейных алгебраических уравнений (СЛАУ)									
		(определения: совместной, несовместной СЛАУ, решения									
		СЛАУ). Условия совместности СЛАУ.									
		8. Матричная запись СЛАУ. Решение СЛАУ с помощью									
		обратной матрицы.									
		9. Формулы Крамера (вывод).									
		10. Определенные и неопределенные СЛАУ. Метод Гаусса.									
		11. Однородные СЛАУ. Фундаментальная система решений.									
		12. Векторы. Линейные операции над векторами. Коллинеарные									
		и компланарные векторы. Деление отрезка в данном									
		отношении.									
		13. Скалярное произведение векторов, его свойства. Угол между									
		векторами. Условие перпендикулярности двух векторов.									

Код компетенц	Индикатор достижения	Оценочные средства
ИИ	компетенции	
		Проекция вектора \bar{a} на вектор \bar{b} . Механический смысл
		скалярного произведения.
		14. Скалярное произведение в базисе $\bar{i}, \bar{j}, \bar{k}$ (вывод).
		15. Векторное произведение векторов, его свойства.
		Геометрический и механический смысл векторного
		произведения. Условие коллинеарности двух векторов.
		16. Векторное произведение в базисе i, j, k (вывод).
		17. Смешанное произведение векторов, его свойства.
		Геометрический смысл смешанного произведения. Условие компланарности трех векторов.
		18. Смешанное произведение в базисе $\bar{i}, \bar{j}, \bar{k}$ (вывод).
		19. Уравнение прямой на плоскости. Способы задания. Основные задачи.
		20. Уравнение плоскости в пространстве. Способы задания. Основные задачи.
		21. Уравнение прямой в пространстве. Прямая и плоскость в пространстве. Основные задачи.
		22. Функция. Способы задания. Область определения. Основные
		элементарные функции, их свойства, графики.
		23. Предел функции в точке. Предел функции в бесконечности. Односторонние пределы.
		24. Бесконечно малые и бесконечно большие функции, связь
		между ними. Свойства бесконечно малых функций.
		25. Теоремы о пределах. Раскрытие неопределенностей.
		26. Замечательные пределы.
		27. Сравнение бесконечно малых функций. Эквивалентные
		бесконечно малые функции и основные теоремы о них.
		Применение к вычислению пределов.
		28. Непрерывность функции в точке. Точки разрыва и их классификация.
		29. Основные теоремы о непрерывных функциях. Свойства
		функций непрерывных на отрезке.
		30. Производная функции, ее геометрический и физический смысл.
		31. Уравнения касательной и нормали к кривой.
		Дифференцируемость функции в точке.
		32. Производная суммы, разности, произведения, частного
		функций. Производная сложной и обратной функций.
		33. Дифференцирование неявных и параметрически заданных
		функций. Логарифмическое дифференцирование.
		34. Производные высших порядков.
		35. Дифференциал функции. Геометрический смысл
		дифференциала. Основные теоремы о дифференциалах.
		36. Применение дифференциала к приближенным вычислениям.
		37. Основные теоремы дифференциального исчисления: Ролля,
		Лагранжа и Коши.
		38. Правило Лопиталя.
		39. Условия монотонности функций. Экстремумы функций. Необходимое и достаточное условия экстремума функции.
		псооходимое и достаточное условия экстремума функции.

Код	Индикатор	
компетенц	достижения	Оценочные средства
ии	компетенции	1
		40. Наибольшее и наименьшее значения функции на отрезке.
		41. Выпуклость графика функции. Точки перегиба. Необходимое
		и достаточное условия точек перегиба.
		42. Асимптоты графика функции.
		43. Первообразная. Неопределенный интеграл и его свойства.
		Таблица основных интегралов.
		44. Основные методы интегрирования: замена переменной и
		интегрирование по частям.
		45. Интегрирование рациональных функций.
		46. Интегрирование тригонометрических функций.
		47. Интегрирование иррациональных функций.
		48. Определенный интеграл как предел интегральной суммы, его свойства.
		49. Формула Ньютона – Лейбница. Основные свойства определенного интеграла.
		50. Вычисление определенного интеграла (замена переменной,
		интегрирование по частям). Интегрирование четных и
		нечетных функций в симметричных пределах.
		51. Несобственные интегралы.
		52. Геометрические и физические приложения определенного интеграла.
		53. Область определения ФНП. Предел, непрерывность.
		Свойства функций, непрерывных в ограниченной замкнутой области.
		54. Частные производные первого порядка, их геометрическое
		истолкование.
		55. Частные производные высших порядков.
		56. Дифференцируемость и полный дифференциал функции.
		57. Применение полного дифференциала к приближенным
		вычислениям. Дифференциалы высших порядков.
		58. Производная сложной функции. Полная производная.
		59. Инвариантность формы полного дифференциала.
		60. Дифференцирование неявной функции.
		61. Касательная плоскость и нормаль к поверхности.
		62. Экстремум функции двух переменных. Необходимое и
		достаточное условие экстремума.
		63. Условный экстремум. Метод множителей Лагранжа.
		64. Наибольшее и наименьшее значения функции в замкнутой области.
		65. Дифференциальные уравнения первого порядка и методы их
		решения. 66. Решение линейных однородных уравнений n-ого порядка с
		постоянными коэффициентами. 67. Решение линейных неоднородных уравнений n-ого порядка с
		постоянными коэффициентами.
		68. Системы дифференуиальных уравнений и методы их
		решения
		69. Основные понятия теории вероятностей: испытание,
		событие, вероятность события.
		70. Действия над событиями. Алгебра событий.

Код	Индикатор						
компетенц	достижения	Оценочные средства					
ии	компетенции						
		71. Теоремы сложения и умножения вероятностей.					
		72. Формула полной вероятности. Формула Бейеса.					
		73. Последовательность независимых испытаний. Формула Бернулли.					
		бернулли. 74. Случайные величины, их виды.					
		75. Ряд распределения. Функция распределения, ее свойства.					
		Плотность распределения, свойства.					
		76. Числовые характеристики случайных величин:					
		математическое ожидание, дисперсия, среднее					
		квадратическое отклонение.					
		77. Нормальный закон распределения случайной величины.					
		78. Системы случайных величин. Закон распределения. Числовые характеристики системы случайных величин.					
		Зависимость случайных величин.					
ОПК-1.2	Применяет	Примерные практические задания для экзаменов:					
	методы	1. Вычислите пределы:					
	моделирования	a) $\lim_{x \to \infty} \frac{1 + 4x - x^4}{x + 3x^2 + 2x^4}$; 6) $\lim_{x \to 0} \frac{3x \cdot \arcsin 2x}{\cos x - \cos^3 x}$; B) $\lim_{x \to 3} \frac{\sqrt{2x - 1} - \sqrt{5}}{x - 3}$.					
	и математическо	\sim 3					
	го анализа для	2. Найдите $\frac{dy}{dx}$ для функций: a) $y = e^{4x-x^2}$. б) $\begin{cases} x = ctg2t, \\ y = \ln(\sin 2t). \end{cases}$					
	решения задач	3. Найти экстремум функции и точки перегиба					
	профессиональ	$y = x^4 - 4x^3 - 48x^2 + 6x - 9$					
	ной	4. Найти неопределённый интеграл: a) $\int \sin 3x \cdot \cos 5x dx$, б)					
	деятельности	$\int \frac{1-\cos x}{(x-\sin x)^2} dx. \mathbf{B} \int (2x+5) \cdot e^x dx.$					
		$(x - \sin x)^2$ 5. Вычислить определенный интеграл $\int_{2}^{\sqrt{20}} \frac{x dx}{\sqrt{x^2 + 5}}$.					
		6. Вычислить определенный интеграл $\int_{0}^{1} 4x \cdot \arcsin x dx$					
		7. Найти площадь фигуры, ограниченной линиями:					
		$x = 4, y^2 = 4x.$					
		8. Найти и построить область определения функции					
		$u = \sqrt{9 - x^2 - y^2} + (x - y)^3$					
		9. Найти полный дифференциал функции:					
		$z = x^3 \ln y - \sin 2xy.$					
		10. Найти частные производные первого порядка функции:					
		$z = 5x^2y^3 + ln(x+4y).$					
		11. Написать уравнение касательной плоскости и нормали к					
		поверхности $z = \sqrt{x^2 + y^2}$ в точке (3, 4, 5).					
		12. Исследовать на экстремум функцию $z = x^2 - 2xy + 4y^3$					
		13. Решите задачу Коши: $y\cos^2 x dy = (y^2 + 1)dx$, $y(0) = 0$.					
		14. При доставке с завода на базу 1000 радиоприемников, у 55 вышли из строя лампы. Найти вероятность того, что взятый					
		наудачу приемник будет исправным.					

Код	Индикатор									
компетенц ии	достижения компетенции				Оцено	чные с	редства			
	No miles e marie	вопрос	а, котој	рые не і	повторя	іются, з	илетов экзамен го, что з	ующий	ся знает	только сдан,
			ЭТОТС RI		_		ь на два		-	
		16. Прі	инимае				ния мал			
				ти верс ільчика		ь того,	что сред	ди 10 но	ворож	денных
			17. Дан закон распределения дискретной случайной величины:							
			x: 110 120 130 140 150 p: 0.1 0.2 0.3 0.2 0.2							
			вычислить ее математическое ожидание, дисперсию и среднее							
		18. Дан	квадратическое отклонение. 18. Дана функция распределения непрерывной случайной величины X							
		$\mathbf{F(x)} = \begin{cases} 0 & npu & x < 0 \\ 0.25x^{3}(x+3) & npu & 0 <= x <= 1 \\ 1 & npu & x > 1 \end{cases}$								
		Найти плотность распределения f(x), построить ее график,								
		вероятность попадания в заданный								
		интервал [0,5; 2], Мх, Dx , σ_x . 19. Задано распределение вероятностей дискретной двумерной случайной величины:								
				1					1	
			$\frac{Y \setminus X}{0,4}$	0,1	5		5 0,30		0,35	
			0,4	0,0			$\frac{0,30}{0,12}$		0,03	
		Найти	-				вляющи	их, коэф		НТ
		коррел 20. По		се при з	заланно	m vnori	не значи	имости	$\alpha = 0.0$)5
			_	_			потезу			
				_		•	пности. ении наі	•	-	
				_	_	_	лнии наг кидания		_	
		квадра $\gamma = 1 -$		ого отк.	понения	яσпр	и уровн	не надеж	кности	
		$\begin{cases} \gamma - 1 - \\ x_i \end{cases}$	4	7	10	13	16	19	22	25
		n_i	6	11	14	22	20	13	9	5
						ной сог	вокупно	сти изв	лечена	
		выборка объема $n = 15$: 143, 121, 135, 132, 120, 116, 115, 143, 115, 120, 138, 133, 148, 133, 134.								
										улевую
							качест:			
				-		-	$^{2} > 55$ и	-	$\sigma^2 < 55$	В
							ния σ^2 задания			

Код	Индикатор										
компетенц	достижения		Оценочные средства								
ии	компетенции										
		Задача 1	1. Продавец м	иожет за	купить о	т 1 до 5 б	илетов	на спек	стакль по		
		цене 100	руб. и про	одать пе	ред спе	ктаклем	по 20	0 руб.	каждый.		
		Составит	ъ матрицу в	ыручки	продавц	а в завис	симости	и от ко.	личества		
		купленны	пленных им билетов (строка матрицы) и от результатов продажи								
		(столбец	матрицы).	` -	-				-		
		Задача 2	* '								
		, ,	Имеются	данны	е о раб	оте сист	гемы і	несколі	ьких отр	аслей в	
		прошл	ом периоде	и план	выпуск	а конечн	юй пр	одукци	ии <i>Y</i> _I в б	удущем	
		период	це (усл. ден.	ед.):							
		Om-		Потр	гбление			Чистая і	продук-	План	
		расль	I			II		ци	Я	Y_1	
		I	80			120		30	0	350	
			70			30	- 1	20	.	300	
			йти матриц	_			-		-		
			кции в план	HOBOM I	ериоде,	, обеспеч	чиваю	щей в	ыпуск ко	энечной	
		продуг	продукции Y_1 .								
		Задача 3	 Зависимо 	сть пути	от врем	мени при	прям	олиней	НОМ		
		прижени	и точки зад	aeteg vr	ариени	$\frac{1}{2}$	t ³ ± 2t	_t ² _ 3 т	спе с		
						3					
			в м, а <i>t</i> — в		:. Вычис	слите ее с	скорос	сть и ус	корение		
			т времени <i>t</i>								
			4 . Для изуче			-					
		генерали	ьной совоку	пности і	извлече	на выбор	ока x_1	$, \cdots, x_n$	объема		
		n, имен	ощая данное	статис	гическо	е распре,	делени	ие.			
		1).	Постройте і	толигон	частот.						
			Постройте						ния.		
			Постройте і								
		4).	Найдите вы	борочн	ое средн	Hee \bar{x} , BI	ыборо	чную			
		дисперс	ию $D_{_{\mathrm{B}}}$, выб	орочно	е средне	е квадра	тичесн	кое отк.	лонение		
		σ_{ϵ} , испр	оавленную д	исперсі	s^2 и	и исправл	ленно	е средн	ee		
		σ_{s} , исправленную дисперсию s^{2} и исправленное среднее квадратическое отклонение s .									
		5). При данном уровне значимости α проверьте по									
		критерию Пирсона гипотезу о нормальном распределении									
		генеральной совокупности.									
		6). В случае принятия гипотезы о нормальном									
		распределении найдите доверительные интервалы для									
		математического ожидания а и среднего квадратического									
		отклонения σ при данном уровне надежности $\gamma=1-\alpha$. (
		Принять	$\alpha = 0.01$).								
			9 13	17	21	25	29	33	37		
		I	5 10	19	23	25	19	12	7		
		1		="		-	-			J	

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Математика» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме экзамена (1 и 3 семестры) и зачёта (2 семестр).

Критерием получения «зачтено» служит выполнение обучающимся всех контрольных работ, проведённых в течение семестра, на положительные оценки, в противном случае, обучающийся получает по дисциплине «не зачтено».

Экзамен по данной дисциплине проводится в устной форме по экзаменационным билетам, каждый из которых включает 2 теоретических вопроса и одно практическое задание.

Критерии оценки (в соответствии с формируемыми компетенциями и планируемыми результатами обучения):

- на оценку **«отлично»** (5 баллов) обучающийся должен показать высокий уровень знаний не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам, оценки и вынесения критических суждений;
- на оценку **«хорошо»** (4 балла) обучающийся должен показать знания не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам;
- на оценку **«удовлетворительно»** (3 балла) обучающийся должен показать знания на уровне воспроизведения и объяснения информации, интеллектуальные навыки решения простых задач;
- на оценку «**неудовлетворительно**» (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку **«неудовлетворительно»** (1 балл) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.