МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Направление подготовки (специальность) 01.03.02 Прикладная математика и информатика

Направленность (профиль/специализация) программы Большие и открытые данные

Уровень высшего образования - бакалавриат

Форма обучения очная

Институт/ факультет Институт естествознания и стандартизации

Кафедра Прикладной математики и информатики

Kypc 3

Семестр 5

Магнитогорск 2025 год Рабочая программа составлена на основе ФГОС ВО - бакалавриат по направлению подготовки 01.03.02 Прикладная математика и информатика (приказ Минобрнауки России от 10.01.2018 г. № 9)

e.	Рабочая программа рассмот	рена и одобрена	на заседании кафед	ры Прикладной
матем	атики и информатики			
	14.01.2025, протокол № 5	Зав. кафедрой		Ю.А. Извеков
	Рабочая программа одобрена	и метолической к	омиссией/ИЕиС	
	03.02.2025 г. протокол № 3	Председатель	/40°D	Ю.В. Сомова
	Рабочая программа составле доцент кафедры ПМиИ, канд		CBAKUJ	_С.В. Акманова
	Рецензент: зав. кафедрой Физики, канд.	физмат. наук_	De f	_Д.М. Долгушин

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2026 - 2027 учебном году на заседании кафедры Прикладной математики и информатики						
	Протокол отЗав. кафедрой	20 г. № Ю.А. Извеков				
	Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2027 - 2028 учебном году на заседании кафедры Прикладной математики и информатики					
	Протокол от Зав. кафедрой	20 г. № Ю.А. Извеков				
	грена, обсуждена и одобрена дл афедры Прикладной математи					
	Протокол от Зав. кафедрой	20 г. № Ю.А. Извеков				
	грена, обсуждена и одобрена дл афедры Прикладной математи					

1 Цели освоения дисциплины (модуля)

Целью освоения дисциплины "Уравнение математической физики" является изучение различных методов решения начально-краевых задач в теории уравнений математической физики, формирование представлений о фундаментальных математических конструкциях, используемых в современных экономикоматематических моделях.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Уравнения математической физики входит в обязательную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Математический анализ

Комплексный анализ

Физика

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Математическое моделирование

Численные методы математической физики

Выполнение и защита выпускной квалификационной работы

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Уравнения математической физики» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции
ОПК-1 Способен п	рименять фундаментальные знания, полученные в области
математических и	(или) естественных наук, и использовать их в профессиональной
деятельности	
ОПК-1.1	Решает профессиональные задачи с области фундаментальной и
	прикладной математики
ОПК-1.2	Владеет способами и приемами решения исследовательских задач в
	области фундаментальной и прикладной математики
ОПК-1.3	Применяет фундаментальные междисциплинарные знания для
	решения задач в профессиональной деятельности

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 6 зачетных единиц 216 акад. часов, в том числе:

- контактная работа 76,1 акад. часов:
- аудиторная 72 акад. часов;
- внеаудиторная -4,1 акад. часов;
- самостоятельная работа 104,2 акад. часов;
- в форме практической подготовки 0 акад. час;
- подготовка к экзамену 35,7 акад. час

Форма аттестации - экзамен

Раздел/ тема дисциплины	Семестр	конт	Аудиторн гактная р акад. ча лаб. зан.	абота	Самостоятельная работа студента	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код компетенции
1. Классио	рикап	ия лин	ейных ур	авнений	с частн	ыми производными	и второго порядка	
1.1 Простейшие дифференциальные уравнения первого и второго порядка с частными производными. Общее решение		2	2		7	Подготовка к лабораторному занятию	Контрольная работа	ОПК-1.2 ОПК-1.3
1.2 Классификация уравнений с частными производными второго порядка с двумя независимыми переменными. Характеристики.	5	4	4		7,1	Самостоятельное изучение учебной и научной литературы	Проверка конспектов. Письменный опрос, обсуждение	ОПК-1.2 ОПК-1.3
1.3 Приведение к каноническому виду линейных дифференциальных уравнений с частными производными второго порядка		2	4		7	Подготовка к лабораторному занятию	Проверка индивидуальных заданий	ОПК-1.2 ОПК-1.3
Итого по разделу		8	10		21,1			
	2. Уравнения гиперболического типа							
2.1 Вывод уравнения малых поперечных колебаний однородной закреплённой струны. Постановка задачи Коши и начально-краевых задач для волнового уравнения.	5	2	2		8	Самостоятельное изучение учебной и научной литературы	Проверка конспектов. Письменный опрос, обсуждение	ОПК-1.1 ОПК-1.2 ОПК-1.3
2.2 Решение Даламбера. Физический смысл.		1	2		6	Подготовка к лабораторному	Проверка конспектов.	ОПК-1.1 ОПК-1.2

Метод характеристик.						занятию	Письменный опрос, обсуждение	ОПК-1.3
2.3 Полубесконечная струна и метод продолжения. Устойчивость решения. Пример Адамара.	_	2	2		6	Работа с электронными тестовыми средствами	Проверка интернет-теста, выполненного в домашних условиях	ОПК-1.1 ОПК-1.2 ОПК-1.3
2.4 Начально-краевая задача для одномерного волнового уравнения. Единственность решения. Метод Фурье.	. 5	2	4		8	Подготовка к лабораторному занятию	Контрольная работа	ОПК-1.1 ОПК-1.2 ОПК-1.3
Итого по разделу		7	10		28			
			3. Урав	нения па	раболи	ческого типа		
3.1 Вывод уравнения распространения тепла в стержне и в теле. Постановка краевых задач.		2	2		8	Поиск дополнительной информации по заданной теме	Проверка индивидуальных заданий	ОПК-1.1 ОПК-1.2 ОПК-1.3
3.2 Задача Коши для одномерного уравнения теплопроводности. Формула Пуассона. Фундаментальное решение. Принцип максимума. Единственность решения.	5	4	2		10	Подготовка к лабораторному занятию	Контрольная работа	ОПК-1.1 ОПК-1.2 ОПК-1.3
3.3 Начально-краевая задача для одномерного уравнения теплопроводности. Единственность решения. Метод Фурье.		4	2		7	Поиск дополнительной информации по заданной теме	Проверка индивидуальных заданий	ОПК-1.1 ОПК-1.2 ОПК-1.3
Итого по разделу		10	6		25			
			4. Ура	внения эл	ілиптич	неского типа		
4.1 Постановка краевых задач.Стационарное тепловое поле. Оператора Лапласа в полярных координатах. Гармонические и аналитические функции комплексного переменного.		3	2		5,1	Самостоятельное изучение учебной и научной литературы	Проверка конспектов. Письменный опрос, обсуждение	ОПК-1.1 ОПК-1.2 ОПК-1.3
4.2 Свойства гармонических функций. Принцип максимального значения. Задача Дирихле. Единственность решения	5	2	2		4	Подготовка к лабораторному занятию	Проверка конспектов. Письменный опрос, обсуждение	ОПК-1.1 ОПК-1.2 ОПК-1.3
4.3 Метод Фурье. Решение задачи Дирихле для круга. Интеграл Пуассона.		2	2		8	Подготовка к лабораторному занятию	Контрольная работа	ОПК-1.1 ОПК-1.2 ОПК-1.3
Итого по разделу		7	6		17,1			
5. Урав	нения	с часті	ными пј	ооизводн	ыми в (ринансово-экономи	ческих задачах	

5.1 Уравнение Блэка- Шоулса.	5	2	2	6	Самостоятельное изучение учебной и научной литературы	Проверка конспектов. Письменный опрос, обсуждение	ОПК-1.1 ОПК-1.2 ОПК-1.3
5.2 Определение цены опциона из уравнения Блэка-Шоулса	3	2	2	7	Самостоятельное изучение учебной и научной литературы	Проверка конспектов.	ОПК-1.1 ОПК-1.2 ОПК-1.3
Итого по разделу		4	4	13			
Итого за семестр		36	36	104,2		экзамен	
Итого по дисциплине		36	36	104,2		экзамен	

5 Образовательные технологии

С целью успешного усвоения дисциплины «Уравнение математической физики» и формирования требуемых компетенций предполагается применение различных образовательных технологий (личностно-ориентированных и развивающих), которые обеспечивают достижение планируемых результатов образования согласно основной образовательной программе. В их числе: дифференцированный подход, проблемное обучение, эвристическое обучение.

Основными формами занятий являются лекции, практические занятия, контрольно-оценочные занятия, консультации. Лекции строятся на основе сочетания информационной и проблемной составляющих, а также элементов беседы и визуализации.

В ходе проведения лекционных занятий предусматривается:

- обсуждение задач, приводящих к тем или иным математическим понятиям;
- изложение теоретического материала в режиме диалога с целью развития критического мышления студентов и привития им исследовательских умений;
- обсуждение и систематизация теоретических вопросов темы с целью лучшего понимания их взаимосвязи и практического применения.

Лабораторные занятия по данной дисциплине направлены на привитие прочных навыков решения задач по каждой теме и сочетают применение методов обучения в сотрудничестве, дифференцированный подход, классические контрольные и тестовые технологии. При этом предполагается проведение некоторых таких занятий в интерактивной форме (деловые и ролевые игры, разбор конкретных ситуаций).

Выбирая ту или иную технологию работы со студентами, необходимо иметь в виду, что наибольшего эффекта от ее применения можно достичь, если учитывать :

- а) цели образования, на реализацию которых должна быть направлена избираемая технология;
- б) содержание материала, которое предстоит передать обучающимся с ее помощью;
 - в) условия, в которых она будет использоваться;
 - г) направленность её на самообразование и медиаобразование студентов.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся

Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины а) Основная литература:

- 1. Пичугина, А.Н. Уравнения математической физики: задачник: учебное пособие / А.Н. Пичугина, Б.Ю. Пичугин. Омск: ОмГУ, 2019. 78 с. ISBN 978-5-7779-2346-2. Текст: электронный // Электронно-библиотечная система «Лань»: [сайт]. URL: https://e.lanbook.com/book/118027 (дата обращения: 10.04.2025. Режим доступа: для авториз. пользователей.
- 2. Полянин, А. Д. Уравнения и задачи математической физики в 2 ч часть 1 : справочник для академического бакалавриата / А. Д. Полянин. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2019. 261 с. (Бакалавр. Академический курс). ISBN 978-5-534-01644-4. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://biblio-online.ru/bcode/437082.

3. Деревич, И.В. Практикум по уравнениям математической физики : учебное пособие / И.В. Деревич. — 2-е изд., стер. — Санкт-Петербург: Лань, 2018. — 428 с. — ISBN 978-5-8114-2601-0. — Текст : электронный // Электронно-библиотечная система «Лань» : [сайт]. — URL: https://e.lanbook.com/book/104942 (дата обращения: 10.04.2025). — Режим доступа: для авториз. пользователей.

б) Дополнительная литература:

- 1. Деревич, И.В. Практикум по уравнениям математической физики : учебное пособие / И.В. Деревич. Санкт-Петербург : Лань, 2017. 428 с. ISBN 978-5-8114 -2601-0. Текст : электронный // Электронно-библиотечная систе-ма «Лань» : [сайт]. URL: https://e.lanbook.com/book/95131 (дата обращения:10.04.2025). Режим доступа: для авториз. пользователей.
- 2. Полянин, А. Д. Нелинейные уравнения математической физики и механики. Методы решения: учебник и практикум для академического бакалавриата / А. Д. Полянин, В. Ф. Зайцев, А. И. Журов. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2019. 256 с. (Бакалавр. Академический курс). ISBN 978-5-534-02317-6. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://biblio-online.ru/bcode/437088.

в) Методические указания:

1. Практикум по курсу "Уравнения математической физики" [Электронный ресурс] : методические указания / [сост.: О. А. Торшина]; МГТУ. - [2-е изд., подгот. попеч. изд. 2012 г.]. - Магнитогорск : МГТУ, 2016. - 1 электрон. опт. диск (CD-ROM). - Режим доступа: https://magtu.informsystema.ru/uploader/fileUpload? name=2668.pdf&show=dcatalogues/1/1131371/2668.pdf&view=true. - Макрообъект.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
7Zip	свободно распространяемое ПО	бессрочно
FAR Manager	свободно распространяемое ПО	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
1	https://host.megaprolib.net/M
Носова	P0109/Web

Национальная информационно-аналитическая	URL:
система – Российский индекс научного цитирования	https://elibrary.ru/project_risc.
(РИНЦ)	asp

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Материально-техническое обеспечение дисциплины включает:

- 1) Учебные аудитории для проведения занятий лекционного типа. Оснащение: мультимедийные средства хранения, передачи и представления информации;
- 2) Учебные аудитории для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля, самостоятельной работы обучающихся и промежуточной аттестации. Оснащение: доска, мультимедийный проектор, экран. Комплекс тестовых заданий для проведения промежуточных и рубежных контроля;
- 3) Помещение для хранения и профилактического обслуживания учебного оборудования. Оснащение: шкафы для хранения учебно-методической документации, учебно-наглядных пособий и учебного оборудования;
- 4) Помещения для самостоятельной работы обучающихся. Оснащение: персональные компьютеры с пакетом MS Office и выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Приложение 1

Учебно-методическое обеспечение самостоятельной работы обучающихся

По дисциплине «Уравнение математической физики» предусмотрена аудиторная и внеаудиторная самостоятельная работа обучающихся.

Аудиторная самостоятельная работа студентов предполагает решение контрольных задач на практических занятиях.

Примерные аудиторные контрольные работы (АКР):

АКР №1 «Простейшие уравнения с частными производными»

1. Проверить, является ли функция и решением данного уравнения:

$$\frac{\partial^2 u}{\partial x^2} - 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0$$
, если $u = x \varphi(x + y) + y \psi(x + y)$, где φ и ψ —

произвольные дифференцируемые функции;

$$x^2\frac{\partial^2 u}{\partial x^2} + 2xy\frac{\partial^2 u}{\partial x \partial y} + y^2\frac{\partial^2 u}{\partial y^2} = 0 \; , \; \text{если} \; u = \phi\bigg(\frac{y}{x}\bigg) + x\psi\bigg(\frac{y}{x}\bigg), \; \text{где} \; \phi \; \text{и} \; \psi \; - \phi\bigg(\frac{y}{x}\bigg) + y\psi\bigg(\frac{y}{x}\bigg) + y\psi\bigg(\frac{y}{x}$$

произвольные дифференцируемые функции.

2. Решить уравнения:

a)
$$\frac{\partial^2 z}{\partial x \partial y} = 0$$
, если $z = z(x, y)$;

б)
$$\frac{\partial^2 z}{\partial x \partial y} = x + y$$
 при условии $z(x,y)\big|_{y=0} = x$, $z(x,y)\big|_{x=0} = y^2$;

B)
$$\frac{\partial^2 z}{\partial x \partial y} = 1$$
; Γ) $\frac{\partial^4 z}{\partial x^2 \partial y^2} = 0$

АКР №2 «Классификация уравнений с частными производными второго порядка»

1. Определить тип дифференциального уравнения:

a)
$$5u_{xx} + u_{yy} + 5u_{zz} + 4u_{xy} - 8u_{xz} - 4u_{yz} - u + yz^2 \sin x = 0$$

$$\int_{0}^{\infty} u_{xx} + 2u_{xy} + 2u_{yy} + 4u_{yz} + 5u_{zz} - xu_{x} + yu_{z} = 0.$$

2. Установить тип дифференциального уравнения, привести его к каноническому виду и решить его:

a)
$$\frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} = 0$$
; $\frac{\partial^2 u}{\partial x^2} - 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0$

Привести уравнения к каноническому виду в каждой из областей, где сохраняется тип рассматриваемого уравнения:

a)
$$x \frac{\partial^2 u}{\partial x^2} + 2x \frac{\partial^2 u}{\partial x \partial y} + (x-1) \frac{\partial^2 u}{\partial y^2} = 0$$
;

3. 6)
$$y \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
;

АКР №3 «Уравнения гиперболического типа»

1. Решить по формуле Даламбера в области $-\infty < x < \infty, t > 0$ задачу:

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \\ u(x,0) = x^2, & \frac{\partial u(x,0)}{\partial t} = 1 \end{cases}$$

2. Решить задачу на полупрямой методом продолжений:

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, & x > 0, t > 0, \\ u(0,t) = 0, & t > 0, \\ u(x,0) = f(x), \frac{\partial u(x,0)}{\partial t} = g(x), x > 0 \end{cases}$$

3. Решить начально-краевую задачу методом Фурье:

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}, \\ u(x,0) = 1, & \frac{\partial u(x,0)}{\partial t} = 0, \\ u(0,t) = 0, & u\left(\frac{\pi}{2},t\right) = 0; \end{cases}$$

АКР №5 «Уравнения параболического и эллиптического типа»

1. Решить начально-краевую задачу методом Фурье:

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, & 0 < x < l, \quad t > 0, \\ u(x,0) = Ax, & 0 \le x \le l, \\ u(0,t) = 0, & u(l,t) = 0, \quad t \ge 0; \end{cases}$$

2.

Дан тонкий однородный стержень длины l, изолированный от внешнего пространства, начальная температура которого $\varphi(x) = \frac{cx(l-x)}{l^2}$. Концы стержня поддерживаются при температуре, равной нулю. Определить температуру стержня в момент времени t>0.

3. В круге $x^2+y^2=\rho^2 < R^2$ решить задачу Дирихле: $\begin{cases} \Delta u(x,y)=0, & 0<\rho < R, \\ u(x,y)=x+xy, & \rho = R; \end{cases}$ Найти гармоническую внутри круга радиуса R с центром в начале координат функцию u(x,y), принимающую на его границе значения $\frac{y^2}{R}+Rxy$.

Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Код индикатора	Индикатор достижения компетенции	Оценочные средства
	тен применять фундаментальные знания, их в профессиональной деятельности	полученные в области математических и (или) естественных наук, и
ОПК-1.1	Решает профессиональные задачи в области фундаментальной и прикладной математики	 Владеет основным содержанием дисциплины в рамках следующих теоретических вопросов: Простейшие дифференциальные уравнения с частными производными. Общее решение. Основные типы уравнений математической физики. Начальные и краевые условия. Корректность постановки задач математической физики. Приведение уравнения второго порядка к каноническому виду. Уравнение гиперболического типа. Приведение уравнения второго порядка к каноническому виду. Уравнение параболического типа. Приведение уравнения второго порядка к каноническому виду. Уравнение эллиптического типа. Бесконечная струна. Формула Даламбера. Решение Даламбера для полубесконечной струны. Применение метода характеристик. Задача Коши. Метод Фурье. Исследование колебаний струны конечной длины.

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		 Метод Фурье. Исследование вынужденных колебаний струны конечной длины. Метод Фурье. Исследование колебаний струны конечной длины в среде с сопротивлением. Общая схема метода Фурье. Задача Коши для одномерного уравнения теплопроводности. Формула Пуассона. Фундаментальное решение. Принцип максимума. Единственность решения. Вывод уравнения распространения тепла в стержне и в теле. Постановка краевых задач. Начально-краевая задача для одномерного уравнения теплопроводности. Единственность решения. Метод Фурье в решении начально-краевой задачи для одномерного уравнения теплопроводности. Постановка краевых задач для уравнений эллиптического типа. Стационарное тепловое поле. Оператора Лапласа в полярных координатах. Гармонические и аналитические функции комплексного переменного. Свойства гармонических функций. Принцип максимального значения. Задача Дирихле. Единственность решения. Метод Фурье в решении задачи Дирихле. Решение задачи Дирихле для круга. Интеграл Пуассона. Уравнение Блэка-Шоулса. Определение цены опциона из уравнения Блэка-Шоулса.
ОПК-1.2	Владеет способами и приемами решения исследовательских задач в области	Владеет фундаментальными методами и способами решения классических задач

Код индикатора	Индикатор достижения компетенции	Оценочные средства
	фундаментальной и прикладной математики	Оисциплины исследовательского характера: 1. а) Поставить краевую задачу о поперечных колебаниях тяжелой струны относительно вертикального положения равновесия, если ее верхний конец ($x = 0$) жестко закреплен, а нижний свободен. б) Исследовать корректность полученной постановки задачи. 2. а) Поставить краевую задачу о нагревании полубесконечного стержня, конец которого горит, причем фронт горения распространяется со скоростью v и имеет температуру $\varphi(t)$. б) Исследовать корректность полученной постановки задачи. 3. Решить начально-краевую задачу и выполнить интерпретацию её решения: $\left[\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \frac{\partial u(x,0)}{\partial t} = 0, \left\{ \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, 0 < x < 1, t > 0, u(x,0) = x^2, 0 \le x \le 1, u(x,0) = 0, u(1,t) = 0, t \ge 0. \right\}$ a)

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		Найти гармоническую внутри круга радиуса R с центром в начал координат функцию $u(x,y)$, принимающую на его границе значе $\frac{x^3}{R^3}$.
		5. Решить задачу Дирихле в круге $\begin{cases} \Delta u(x,y) = 0, & 0 < \rho < R, \\ u(x,y) = 3 \frac{y^4}{R^4}, & \rho = R. \end{cases}$
ОПК-1.3	Применяет фундаментальные междисциплинарные знания для решения задач в профессиональной деятельности	3адания на решение задач из профессиональной области, комплексные задания: 1. Струна закреплена на концах $x = 0$ и $x = 3$. В начальный момент времени форма струны имеет вид ломаной OAB , где $O(0,0)$, $A(2,-0.1)$, $B(3,0)$. Найти форму струны для любого момента времени, если начальные скорости точек струны отсутствуют. 2. Дан тонкий однородный стержень длины I , изолированный от внешнего пространства, начальная температура которого $\phi(x) = \frac{cx(I-x)}{I^2}$. Концы стержня поддерживаются при температуре, равной нулю. Определить температуру стержня в момент времени $t > 0$. 3. Абсолютно гибкая однородная нить закреплена на одном из концов и под действием своего веса находится в вертикальном положении равновесия. Вывести уравнение малых колебаний нити.

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		Исходя из Максвелла, в вакууме

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Студенты сдают по дисциплине в 5- м семестре экзамен.

Критерием успешного освоения программы дисциплины являются:

- умение интерпретировать понятия и утверждения, применять к решению задач изученную теорию;
- усвоение методов и приемов решения основных задач дисциплины; приобретение навыков работы с наиболее часто встречающимися объектами комплексного анализа.
- знание основных теоретических положений, формулировок и доказательств ряда теорем.

Критерии оценки (в соответствии с формируемыми компетенциями и планируемыми результатами обучения):

- на оценку **«отлично»** студент должен показать высокий уровень знаний не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам, оценки и вынесения критических суждений;
- на оценку **«хорошо»** студент должен показать знания не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам;

– на оценку « удовлетворительно » – студент должен показать знания на уровне воспроизведения и объяснения информации,
интеллектуальные навыки решения простых задач;
– на оценку «неудовлетворительно» – студент не может показать знания на уровне воспроизведения и объяснения информации, не может
показать интеллектуальные навыки решения простых задач.