МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

СОВРЕМЕННЫЕ СРЕДСТВА КОНТРОЛЯ КАЧЕСТВА ПРОДУКЦИИ И АВТОМАТИЗАЦИЯ ИЗМЕРЕНИЙ

Направление подготовки (специальность) 27.04.01 Стандартизация и метрология

Направленность (профиль/специализация) программы Испытания и сертификация

Уровень высшего образования - магистратура

Форма обучения очная

Институт/ факультет Институт естествознания и стандартизации Кафедра Физики
Курс 1
Семестр 2

Магнитогорск 2024 год Рабочая программа составлена на основе ФГОС ВО - магистратура по направлению подготовки 27.04.01 Стандартизация и метрология (приказ Минобрнауки России от 11.08.2020 г. № 943)

02.02.2024, протокол № 4 Зав. кафедрой Д.М. Долгушин
Рабочая программа одобрена методической комиссией ИЕиС 19.02.2024 г. протокол № 5
Председатель И.Ю. Мезин
Согласовано: Зав. кафедрой Технологии, сертификации и сервиса автомобилей
И.Ю. Мезин
Рабочая программа составлена: доцент кафедры Физики, канд. техн. наук
Рецензент: зав. кафедрой ПМиИ, д-р техн. наук Ю. А. Извеков

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2025 - 2026 учебном году на заседании кафедры Физики						
	Протокол от Зав. кафедрой	20 г. № Д.М. Долгушин				
Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2026 - 2027 учебном году на заседании кафедры Физики						
	Протокол от Зав. кафедрой	20 г. № Д.М. Долгушин				

1 Цели освоения дисциплины (модуля)

Основная цель дисциплины «Современные средства контроля качества продукции и автоматизации измерений» формирование высокого профессионального уровня магистров по вопросам использования в производственных процессах современных средств контроля качества металлопродукции, обеспечения необходимой эффективности измерительных систем и достоверности контроля за счет автоматизации измерений, планирования постоянного улучшения измерительных систем.

Задачами изучения дисциплины является формирование у студентов комплекса знаний по следующим разделам дисциплины:

- методы и средства получения измерительной информации при автоматическом измерении и контроле;
 - характеристики средств измерения;
 - микропроцессорная техника и комплексы;
- средства обмена информацией в автоматических средствах измерений, контроля и испытаний;
 - виртуальные информационно-измерительные приборы (комплексы);
- разработка мероприятий и выполнения заданий по повышению и контролю качества продукции.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Современные средства контроля качества продукции и автоматизация измерений входит в обязательную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Методология и методы научного исследования

Надежность технических систем

Информационная поддержка жизненного цикла продукции

Метрологическое обеспечение технологических систем и производства продукции

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Современные методы анализа структуры и свойств металлов и сплавов

Основы теории эксперимента

Основы научных исследований, организация и планирование эксперимента

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Современные средства контроля качества продукции и автоматизация измерений» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции								
ОПК-2 Способен (ОПК-2 Способен формулировать задачи в области стандартизации и метрологического								
обеспечения и обос	сновывать методы их решения								
ОПК-2.1	Производит поиск, систематизирует и обобщает информацию и опыт в								
	области стандартизации и метрологического обеспечения								
ОПК-2.2	Формулирует задачи в области стандартизации и метрологического								
	обеспечения и обосновывает методы их решения								
ОПК-3 Способен	ОПК-3 Способен самостоятельно решать задачи стандартизации и метрологического								
обеспечения на баз	обеспечения на базе последних достижений науки и техники								

ОПК-3.1	Самостоятельно решает задачи стандартизации и метрологического						
	обеспечения на базе последних достижений науки и техники						
ОПК-3.2	Оценивает результаты научно-технических разработок по						
	совокупности методологических признаков для выбора оптимальных						
	решений по совершенствованию существующих методов испытания и						
	контроля						
ОПК-6 Способен	управлять процессами по контролю соблюдения на предприятии						
метрологических т	ребований						
ОПК-6.1	Демонстрирует знания современных требований к техническим						
	измерениям, способам и средствам контроля на предприятии						
ОПК-6.2	Применяет методы анализа и совершенствования метрологического						
	обеспечения на предприятии для достижения большей эффективности						
	технологических процессов						
ОПК-6.3	Проводит мониторинг состояния производства и процессов по						
	контролю соблюдения метрологических требований, выявляет						
	несоответствия в обеспечении контрольно-измерительными и						
	испытательными средствами и разрабатывает мероприятия по						
	устранению этих несоответствий						

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц 108 акад. часов, в том числе:

- контактная работа 39,2 акад. часов:
- аудиторная 36 акад. часов;
- внеаудиторная 3,2 акад. часов;
- самостоятельная работа 33,1 акад. часов;
- в форме практической подготовки 0 акад. час;
- подготовка к экзамену 35,7 акад. час

Форма аттестации - экзамен

Раздел/ тема дисциплины	Семестр	конта	удитор ктная кад. ч лаб. зан.	работа	Самостоятельная работа студента	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код компетенции
1. Раздел 1					<u> </u>			
1.1 Общие вопросы автоматизации измерений, контроля и испытаний. Задачи и компоненты систем автоматизации измерений, испытаний и контроля. Автоматизация измерительного процесса. Обобщенные структурные схемы автоматических средств измерений. Автоматический контроль. Основные компоненты структур автоматических средств измерений и контроля. Методы и средства получения измерительной информации при автоматическом измерении и контроле.	2	4	2		6	Самостоятельное изучение учебной литературы.	Устный опрос. Проверка конспекта.	ОПК-2.1, ОПК-2.2
Итого по разделу		4	2		6			
2. Раздел 2								
2.1 Характеристики средств измерений. Статические и динамические характеристики средств измерений. Первичные измерительные преобразователи. Нормирующие преобразователи Вторичные регистрирующие приборы.	2	2	4		5,7	Самостоятельное изучение учебной литературы Подготовка к выполнению лаб. работы №1. Оформление конспекта.	Устный опрос. Проверка конспекта.	ОПК-2.1, ОПК-2.2, ОПК-6.2
Итого по разделу		2	4		5,7			

3. Раздел 3							
. г аздел э ————————————————————————————————————					 		
3.1 Автоматические средства измерений детерминированных электрических и неэлектрических величин. Выбор метода построения автоматических средств измерений.	2	3	3	6	Самостоятельное изучение учебной литературы	Устный опрос. Проверка конспекта.	ОПК-6.1, ОПК-6.2
Итого по разделу		3	3	6			
4. Раздел 4							
4.1 Средства обмена информацией в автоматических средствах измерений, контроля и испытаний. Организация системного интерфейса. Организация программного обмена информацией. Примеры построения автоматических средств измерений и контроля с микропроцессорным управлением: цифровые вольтметры с микропроцессорным управлением, автоматический цифровой измеритель мощности. ЦАП и АЦП	2	3	3		Самостоятельное изучение учебной литературы Подготовка к выполнению лаб. работ №2. Оформление конспекта. Подготовка к защите темы	Устный опрос. Проверка конспектов. Устная защита темы	ОПК-6.3, ОПК-2.2, ОПК-6.1
Итого по разделу		3	3				
5. Раздел 5							
5.1 Виртуальные информационно-измерительные приборы. Основные понятия. Роль информационных процессов. Виды и структуры измерительных информационных систем (ИИС). Основные компоненты ИИС. Разновидности ИИС: многоканальная ИС параллельного действия; мультиплицированные ИС; сканирующие ИС; многоточечные ИС; многомерные ИС; аппроксимирующие измерительные системы (АИС)	2	3	3	8	Самостоятельное изучение учебной литературы	Проверка индивидуальных задач	ОПК-2.1, ОПК-2.2, ОПК-3.1, ОПК-3.2, ОПК-6.3
Итого по разделу		3	3	8			
6. Раздел 6							

6.1 Телеизмерительные системы, особенности построения. Системы технической диагностики: последовательный метод; комбинационный метод. Система распознавания образов: цель, выбор параметров, структурная схема системы распознавания.	2	3	3	7,4	Самостоятельное изучение учебной литературы Подготовка к выполнению лабораторной работы №3. Оформление конспекта.	Проверка индивидуальных задач Устный опрос. Проверка конспекта.	ОПК-2.1, ОПК-6.1
Итого по разделу		3	3	7,4			
7. Экзамен							
7.1 Экзамен	2						
Итого по разделу							
Итого за семестр		18	18	33,1		экзамен	
Итого по дисциплине	·	18	18	33,1		экзамен	

5 Образовательные технологии

Для освоения дисциплины используются преимущественно традиционные образовательные технологии.

Информационные лекции — для изложения основных теоретических понятий, законов и принципов описания физических процессов,

Лабораторные занятия — для усвоения и закрепления навыков проведения измерений на реальных физических объектах и их моделей, а также обработки результатов эксперимента.

Для повышения информационной насыщенности наряду с информационной лекцией используются лекции-визуализации, а также практические занятия в форме презентации.

Самостоятельная работа стимулирует студентов в процессе подготовки домашних заданий, при расчете и защите лабораторных работ, при подготовке к контрольным работам и итоговой аттестации.

Внеаудиторная самостоятельная работа студентов осуществляется в виде чтения с проработкой материала и выполнения домашних заданий с консультациями преподавателя.

Результаты обучения контролируется экзаменом.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

1. Шалыгин, М. Г. Автоматизация измерений, контроля и испытаний : учебное пособие / М. Г. Шалыгин, Я. А. Вавилин. — Санкт-Петербург : Лань, 2019. — 172 с. — ISBN 978-5-8114-3531-9. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/115498 (дата обращения: 12.09.2020). — Режим доступа: для авториз. пользователей.

б) Дополнительная литература:

- 1. Сафиуллин, Р. К. Основы автоматики и автоматизация процессов : учебное пособие для вузов / Р. К. Сафиуллин. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2020. 146 с. (Высшее образование). ISBN 978-5-534-06491-9. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/454025 (дата обращения: 12.09.2020).
- 2 Физические методы контроля. Дефекты продукции. Контроль качества продукции : учебное пособие / [Ю. И. Савченко, И. В. Рыскужина, Н. И. Мишенева и др.] ; МГТУ. [2-е изд., подгот. по печ. изд. 2015 г.]. Магнитогорск : МГТУ, 2017. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=2906.pdf&show=dcatalogues/1/1134 421/2906.pdf&view=true (дата обращения: 23.10.2020). Макрообъект. Текст : электронный. Сведения доступны также на CD-ROM.
- 3. Физические методы контроля. Тепловой контроль: учебное пособие / Ю. И. Савченко, Н. И. Мишенева, О. Н. Вострокнутова, О. Ю. Шефер; МГТУ. [2-е изд., подгот. по печ. изд. 2015 г.]. Магнитогорск: МГТУ, 2017. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=2894.pdf&show=dcatalogues/1/1134 257/2894.pdf&view=true (дата обращения: 23.10.2020). Макрообъект. Текст: электронный. Сведения доступны также на CD-ROM.

в) Методические указания:

1. Латышенко, К. П. Автоматизация измерений, контроля и испытаний. Практикум: учебное пособие для вузов / К. П. Латышенко, В. В. Головин. — 3-е изд., испр. и доп. — Москва : Издательство Юрайт, 2020. — 161 с. — (Высшее образование). — ISBN 978-5-534-08688-1. — Текст : электронный // ЭБС Юрайт [сайт]. — URL: https://urait.ru/bcode/452418 (дата обращения: 12.09.2020).

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
7Zip	свободно распространяемое	бессрочно
Электронные плакаты по дисциплине "Основы метрологии и электрические измерения"	Д-903-13 от 14.06.2013	бессрочно
Браузер Yandex	свободно распространяемое	бессрочно
FAR Manager	свободно распространяемое	бессрочно

Профессиональные базы данных и информационные справочные системы

1_1	<u> </u>
Название курса	Ссылка
Национальная информационно-аналитическая	
система - Российский индекс научного	URL: https://elibrary.ru/project_risc.asp
цитирования (РИНЦ)	
Российская Государственная библиотека.	https://www.rsl.ru/ru/4readers/catalogues/
Электронные ресурсы библиотеки МГТУ им. Г.И. Носова	https://host.magaprolib.not/MD0100/Wab
Г.И. Носова	intips.//nost.megaptono.net/MP0109/Web

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Лекционная аудитория 388, 394. Мультимедийные средства хранения, передачи и представления информации

Лабораторная аудитория 179. Лабораторные установки, измерительные приборы для выполнения лабораторных работ: многофункциональный лабораторный стенд; GOS620; мультиметры двухканальный осциллограф цифровые APPA-102; многопредельный магазин сопротивлений; многопредельный магазин емкостей; многопредельный магазин индуктивностей; генератор многофункциональный; регулируемый источник питания постоянного тока; регулируемый источник питания переменного тока.

Лабораторная аудитория 193 Узлы и элементы радиотехнических устройств: аналоговый вольтметр; многопредельный аналоговый милливольтметр; аналоговой амперметр; многопредельный аналоговый миллиамперметр; мультиметр аналоговый; измерительный мост постоянного тока; измерительный мост переменного тока; усилитель низкочастотный; частотомер.

Инструменты и приборы: паяльная станция и расходные материалы для пайки; осциллограф аналоговый двухканальный GOS620FG; осциллограф цифровой двухканальный DSO2020; генератор многофункциональный; лабораторный автотрансформатор.

Межкафедральная лабораторная аудитория 454. Лабораторные установки, измерительные приборы для выполнения лабораторных работ: многофункциональный лабораторный стенд «Физические основы электроники»; многофункциональный лабораторный стенд «Электроника»; двухканальный осциллограф GOS620; мультиметры; лабораторная установка для изучения активных фильтров.

Аудитории для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации Персональные компьютеры с пакетом MS Office, MathCAD, Scilab и выходом в Интернет

Учебные аудитории 182, 183, 185, 188, 198. Доска, мультимедийный проектор, экран.

Аудитории для самостоятельной работы с выходом в Интернет и с доступом в электронную информационно-образовательную среду университета. Компьютерные классы, включающие персональные компьютеры с пакетом MS Office, MathCAD, Scilab; читальные залы библиотеки

Помещение для хранения и профилактического обслуживания учебного оборудования. Стеллажи, сейфы для хранения учебного оборудования. Инструменты для ремонта оборудования.

Приложение 1

Учебно-методическое обеспечение самостоятельной работы обучающихся

По дисциплине предусмотрена аудиторная и внеаудиторная самостоятельная работа обучающихся.

Аудиторная самостоятельная работа студентов предполагает решение контрольных задач и устную защиту тем на лабораторных занятиях.

Лабораторные работы:

Лабораторная работа №1 «Исследование формирования информационного потока в тензометрическом комплексе при измерении силы прокатки»;

Лабораторная работа №2 «Изучение работы многоканального цифрового регистратора данных»;

Лабораторная работа №3 «Изучение работы аналогового и цифрового осциллографа».

Перечень вопросов для подготовки к экзамену:

- 1. Роль информационных процессов.
- 2. Понятие информации. Измерительный сигнал и его спектр.
- 3. Временное представление сигнала. Понятие дискретизации и квантования.
- 4. Понятие оператора как технической системы и человека. Автоматические и автоматизированные системы управления (регулирования).
- 5. Понятие модуляции. Виды модуляции.
- 6. Математическая модель процесса управления.
- 7. Электронно-лучевые индикаторы. Виды и структура измерительных информационных систем.
- 8. Светодиодные преобразователи.
- 9. Основные компоненты измерительных информационных систем.
- 10. Воздействие внешних факторов на технологическую систему. Формирование правляющего воздействия.
- 11. Характеристики ИИС.
- 12. Математическая модель процесса регулирования.
- 13. Технические характеристики ИИС.
- 14. Технологическая операция как объект контроля и управлении.
- 15. Многоканальные ИИС параллельного действия.
- 16. Жидкокристаллические преобразователи.
- 17. Мультиплицированные ИИС.

2

- 18. Преобразование цифрового сигнала в аналоговый. Схема ЦАП с двоично-взвешенной матрицей резисторов.
- 19. Сканирующие ИИИ.
- 20. ЦАП с матрицей резисторов R-2R.
- 21. ИИС последовательно- параллельного действия.
- 22. Преобразование аналогового сигнала в цифровой. АЦП последовательного счета.
- 23. Многомерные ИИС.
- 24. АЦП интегрирующего вида.
- 25. Система телеизмерения. Особенности построения.
- 26. Поисковая система измерений.
- 27. Логические аргументы и логические функции. Функция "И".ТТЛ-реализация.
- 28. Поисковая система измерений.
- 29. Логические аргументы и логические функции. Функция "ИЛИ". ТТЛ-реализация.
- 30. Системы автоматического контроля. Функция. Структура.
- 31. Логические аргументы и логические функции. Функция "НЕ". ТТЛ- реализация.

- 32. Системы технической диагностики. Последовательный метод.
- 33. Структурная схема системы автоматического регулирования на примере САРТ.
- 34. Системы технической диагностики. Комбинационный метод.
- 35. Структурная схема системы автоматического регулирования на примере САРФ(П).
- 36. Системы распознавания образов.
- 37. Структурная схема системы автоматического регулирования на примере САРН.
- 38. Виртуальные информационно-измерительные приборы. Основные понятия.
- 39. Газоразрядные преобразователи.
- 40. Виртуальные информационно-измерительные приборы. Средства измерения и тестирования.
- 41. Понятие спектра измерительного сигнала. Частотное описание сигналов.

Методические рекомендации для самостоятельной работы студентов

Методические указания по выполнению домашнего задания рекомендуется следовать следующему общему алгоритму:

- 1. Проработать конспект лекции на предмет выявления непонятных моментов темы.
- 2. В случае наличия непонятных моментов сформулировать вопросы.
- 3. Найти и изучить дополнительный материал по теме, используя рекомендованную литературу и электронные ресурсы учебных пособий в сети Интернет.
- 4. Ответить на возникшие в ходе изучения темы вопросы.
- 5. Выписать трактовки основных понятий, законов, принципов и т.п. по теме лекции.
- 6. Из перечня вопросов к зачету выбрать те, которые отражают содержание лекции.
- 7. Найти ответы на эти вопросы в тексте лекций и дополнительном материале.
- 8. Оформить материал в письменном виде

Подготовка к выполнению лабораторной работы

Лабораторные работы являются одним из видов практического обучения. Их цель – закрепление теоретических знаний, проверка на опыте некоторых положений теории и законов, приобретение практических навыков, проведении эксперимента, использовании простейших приборов и аппаратов.

Задание на работу выдается за несколько дней до ее выполнения. Для качественного выполнения лабораторных работ студентам необходимо:

- 1) повторить теоретический материал по конспекту и учебнику (согласно списку литературы)
 - 2) ознакомиться с описанием лабораторной работы:
- 3) в специальной рабочей тетради записать название и номер работы, вычертить таблицы для записи показаний приборов и результатов расчета, подготовить миллиметровую бумагу, если требуются графические построения и т.д.
- 3) выяснив цель работы, четко представить себе поставленную задачу и способы ее достижения, продумать ожидаемые результатов опытов
 - 4) сделать предварительный домашний расчет, если требуется в задании
 - 5) ответить устно и письменно на контрольные вопросы.
 - 6) Соблюдать основные правила безопасности при работе в лаборатории.

ПРАВИЛА ВЫПОЛНЕНИЯ ЛАБОРАТОРНЫХ РАБОТ

- 1. За каждой лабораторной установкой работает не более 2х студентов. Группа разбивается на подгруппы из 2х человек обычно по желанию студентов. Подгруппы фиксируются в журнале преподавателем.
 - 2. При опоздании студента на ЛР:
 - менее 15 мин: студент допускается в лабораторию;
- более 15 мин: студент допускается в лабораторию с соответствующей отметкой в журнале группы. К следующей ЛР студент допускается при наличии допуска из деканата с указанием причины получения допуска;
- 3. Во время ЛР в лаборатории могут находиться только сотрудники кафедры и студенты из соответствующей группы по расписанию. Обязательно присутствие хотя бы одного преподавателя или сотрудника кафедры.
- 4. Студент допускается преподавателем к выполнению лабораторной работы только после:
- проведения инструктажа по технике безопасности и подписи получившего и проводившего инструктаж в журнале группы;
- при наличии оформленного журнала (смотри «Требования к оформлению журнала для ЛР»). При отсутствии или не полностью заполненном журнале ЛР:
 - проставляется соответствующая отметка в журнале группы;
 - студент готовит журнал в лаборатории;
- при наличии времени студент допускается к выполнению ЛР (время начала выполнения ЛР в этом случае проставляется в журнале).

Готовый журнал подписывается преподавателем, также делается соответствующая отметка в журнале группы.

- 5. Студенты выполняют опыты в соответствии с инструкцией по технике безопасности
- 6. В ходе выполнения ЛР преподаватель отвечает на все вопросы студентов по теме ЛР.
 - 7. В ходе ЛР в журнал заносятся:
- исходные параметры (характеристики опытной установки, атмосферные данные, точность измерительного оборудования и т.п.);
 - измеряемые параметры;
 - условия опытов;
 - результаты вычислений (в том числе промежуточные и черновые).
- 8. После снятия замеров, проведения необходимых расчетов и построения графиков, студент должен представить полученные результаты преподавателю на подпись. Также делается соответствующая отметка в журнале группы.

Подготовка к сдаче лабораторной работы

Для защиты лабораторной работы необходимо заполнить отчет о ЛР

- 2. Защита выполненной лабораторной работы проводится:
- для 4хчасовых ЛР: в часы данной ЛР в соответствии с расписанием;
- для 2хчасовых ЛР: в этот или другие дни в часы в соответствии с расписанием.
- 3. Защита выполненной лабораторной работы проводится тому же преподавателю, с кем проходило её выполнение. Допускается сдача ЛР лектору кафедры
 - 4. Требования при защите ЛР:
- 4.1. Преподаватель оценивает ЛР в соответствии с программой курса и проставляет оценку в журнале ЛР и в журнале группы.

- 4.2. Преподаватель вправе отказать в приеме ЛР по личным причинам.
- 4.3. Преподаватель обязан принять ЛР при:
- наличии журнала ЛР, оформленного в соответствии с «Требования к оформлению журнала для ЛР»;
 - личном выполнении студентом ЛР;
- совпадении результатов опытов с контрольными замерами с точностью до 20 % или до отдельно указанной в конкретной ЛР точности.
- письменном верном ответе на контрольные (тестовые) вопросы из утвержденного кафедрой списка, написанном в присутствии преподавателя.

Приложение 2

«Оценочные средства для проведения промежуточной аттестации»

По данной дисциплине предусмотрены различные виды контроля результатов обучения: текущий контроль (проверка выполнения лабораторных заданий), итоговый контроль в виде экзамена.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства				
		овать задачи в области стандартизации и ия и обосновывать методы их решения				
ОПК-2.1	Производит поиск, систематизирует и обобщает информацию и опыт в области стандартизации и метрологическог о обеспечения	Пример типового задания Проведите сравнительный анализ измерительных систем для контроля температуры (100-300 °C) технологического объекта построенных на следующих видах измерительных преобразователей: термопара, металлический терморезистор, полупроводниковый терморезистор. Рассмотрите возможность реализации аналоговой и цифровой системы. Оцените экономическую эффективность каждой из систем.				
ОПК-2.2	Формулирует задачи в области стандартизации и метрологическог о обеспечения и обосновывает методы их решения	силоизмерительной установки, с использованием тензорезистивного измерительного преобразователя. Установка должна обеспечивать возможность сохранения, обработки и отображения измерительной информации. Укажите возможные области применения.				
		асинхронных электроприводов. ельно решать задачи стандартизации и ия на базе последних достижений науки и техники				
ОПК-3.1	Самостоятельно решает задачи стандартизации и метрологическог о обеспечения на базе последних достижений науки и техники	 Перечень вопросов для подготовки к экзамену: Роль информационных процессов. Понятие информации. Измерительный сигнал и его спектр. Временное представление сигнала. Понятие дискретизации и квантования. Понятие оператора как технической системы и человека. Автоматические и автоматизированные системы управления (регулирования). 				

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		 Понятие модуляции. Виды модуляции. Математическая модель процесса управления. Электронно-лучевые индикаторы. Виды и структура измерительных информационных систем. Светодиодные преобразователи. Основные компоненты измерительных
		информационных систем. 10. Воздействие внешних факторов на
		технологическую систему. 11. Формирование правляющего воздействия.
		12. Характеристики ИИС. 13. Математическая модель процесса регулирования. 14. Технические характеристики ИИС.
		15. Технологическая операция как объект контроля и управлении.
		16. Многоканальные ИИС параллельного действия. 17. Преобразование цифрового сигнала в аналоговый. Схема ЦАП с двоичновзвешенной матрицей
		резисторов. 18. Сканирующие ИИИ. 19. ЦАП с матрицей резисторов R-2R.
		20. ИИС последовательно- параллельного действия. 21. Преобразование аналогового сигнала в цифровой. АЦП последовательного счета.
		22. Многомерные ИИС.23. АЦП интегрирующего вида.24. Система телеизмерения. Особенности построения.
		25. Поисковая система измерений. 26. Логические аргументы и логические функции. Функция "И". ТТЛ-реализация.
		27. Поисковая система измерений.28. Логические аргументы и логические функции.
		Функция "ИЛИ". ТТЛреализация. 29. Системы автоматического контроля. Функция. Структура.
		30. Системы технической диагностики. Последовательный метод.
		31. Структурная схема системы автоматического регулирования на примере САРТ. 32. Системы технической диагностики.
		Комбинационный метод. 33. Структурная схема системы автоматического
		регулирования на примере САРН. 34. Виртуальные информационно-измерительные приборы. Основные понятия.
		35. Газоразрядные преобразователи. 36. Виртуальные информационно-измерительные приборы. Средства измерения и тестирования.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		37. Понятие спектра измерительного сигнала. Частотное описание сигналов.
	Опенивает	
ОПК-3.2	Оценивает результаты научно-техничес ких разработок по совокупности методологически х признаков для выбора оптимальных решений по совершенствован ию существующих методов испытания и контроля	Пример типового задания ———————————————————————————————————
ОПК-6: Сп	особен управлять	процессами по контролю соблюдения на предприятии
	ческих требованиі	
ОПК-6.1	Демонстрирует знания современных требований к техническим измерениям, способам и средствам контроля на	Примеры типовой задачи на владение навыками оценки достоверности измерений: Задача 1. Термографирование производится в спектральном интервале 714 мкм. Коэффициент излучения объекта известен с относительной погрешностью 5%. Истинная температура поверхности объекта, измеренная контактным способом, составила 68°C, а температура окружающей среды в момент измерения равна –10°C. Оцените модуль абсолютной погрешности измерения температуры, считая, что

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
	предприятии	«отраженная» температура равна температуре окружающей среды. Задача 2. Номинальная функция преобразования термопреобразователя сопротивления имеет следующий вид: R t ном = (1 + 0,00428 t) 100 Ом. Определите относительную погрешность преобразователя по входу, если в результате эксперимента получены следующие действительные значения температуры и сопротивления: tд= 20,0 °C, Rtд = 109,0 Ом.
ОПК-6.2	Применяет методы анализа и совершенствован ия метрологическог о обеспечения на предприятии для достижения большей эффективности технологических процессов	 Приведите необходимые условия автоматизации технологических процессов. Что такое степень автоматизации? Объясните схему циркуляции информации в системе автоматического регулирования, структура которой приведена на рисунке.
ОПК-6.3	Проводит мониторинг состояния производства и процессов по контролю соблюдения метрологических требований, выявляет несоответствия в обеспечении контрольно-изме рительными и испытательными средствами и разрабатывает мероприятия по	Для обеспечения высокого качества продукции требуется

Структурный элемент компетенции	результаты	Оценочные средства
	устранению этих несоответствий	использования готовых решений. Разработайте структуру измерительной установки. Оцените затраты на автоматизацию.

Критерии оценки (в соответствии с формируемыми компетенциями и планируемыми результатами обучения):

- на оценку **«отлично»** студент должен показать высокий уровень знаний не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам, оценки и вынесения критических суждений;
- на оценку **«хорошо»** студент должен показать знания не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам;
- на оценку **«удовлетворительно»** студент должен показать знания на уровне воспроизведения и объяснения информации, интеллектуальные навыки решения простых задач;
- на оценку **«неудовлетворительно»** студент не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.