МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИЭиАС В.Р. Храмшин

10.02.2023 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ВЫСОКОТЕМПЕРАТУРНЫЕ ПРОЦЕССЫ И УСТАНОВКИ

Направление подготовки (специальность) 13.03.01 Теплоэнергетика и теплотехника

Направленность (профиль/специализация) программы Энергообеспечение предприятий

Уровень высшего образования - бакалавриат

Форма обучения заочная

Институт/ факультет Институт энергетики и автоматизированных систем

Кафедра . Теплотехнических и энергетических систем

Kypc 5

Магнитогорск 2023 год Рабочая программа составлена на основе ФГОС ВО - бакалавриат по направлению подготовки 13.03.01 Теплоэнергетика и теплотехника (приказ Минобрнауки России от 28.02.2018 г. № 143)

Рабочая программа рассмотрена и одобрена на заседании кафедры
Теплотехнических и энергетических систем
17.01.2023 г. протокол № 5 Зав. кафедройЕ.Г. Нешпоренко
Рабочая программа одобрена методической комиссией ИЭиАС
10.02.2023 г. протокол № 7 Председатель Намин В.Р. Храмшин
Рабочая программа составлена: ст. преподаватель кафедры ТиЭС, канд. техн. наук <u>Alleref</u> М.А. Лемешко
Рецензент:
Зам. начальника ЦЭСТ ПАО "ММК",
канд. техн. наук В.Н. Михайловский

Лист актуализации рабочей программы

	на, обсуждена и одобрена для реалиедры Теплотехнических и энергет	
П 3	Тротокол от20г. Зав. кафедрой	. № <u>—</u> Е.Г. Нешпоренко
	ена, обсуждена и одобрена для реали ведры Теплотехнических и энергет	
З	Протокол от20г. Вав. кафедрой	. № Е.Г. Нешпоренко
	ена, обсуждена и одобрена для реали ведры Теплотехнических и энергет	
I 3	Тротокол от20г. Вав. кафедрой	. № Е.Г. Нешпоренко
	ена, обсуждена и одобрена для реали ведры Теплотехнических и энергет	
П 3	Протокол от	. № Е.Г. Нешпоренко
	ена, обсуждена и одобрена для реали ведры Теплотехнических и энергет	
Г 3	Тротокол от20г. Зав. кафедрой	. № <u>—</u> Е.Г. Нешпоренко

1 Цели освоения дисциплины (модуля)

Целями освоения дисциплины (модуля) «Высокотемпературные процессы и установки» являются:

изучение характеристик высокотемпературных теплотехнологических процессов и установок, методов расчетного анализа их материальных и тепловых балансов, оценки потенциала энергосбережения, овладение подходами к выбору и разработке энергосберегающих мероприятий;

- конструкций и элементов высокотемпературных металлургических печей, а также технологии тепловой обработки металлов в них, устройств и материалов применяемых при сооружении печей;
- формирование умений выполнения теплотехнических расчетов и анализа процессов, совершаемых в промышленных печах и теплоэнергетических установках;
- формирование умений определять пути совершенствования технологических процессов и разработки экологически безвредных и малоотходных технологий.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Высокотемпературные процессы и установки входит в часть учебного плана формируемую участниками образовательных отношений образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Математика

Физика

Химия

Гидрогазодинамика

Техническая термодинамика

Тепломассообмен

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Энергетика теплотехнологий

Производственная-технологическая практика

Производственная-преддипломная практика

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Высокотемпературные процессы и установки» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции
ПК-3 Способен к о	сбору, обработке, анализу и обобщению результатов экспериментов и
исследований в соо	тветствующей области знаний
ПК-3.1	Осуществляет сбор, обработку, анализ и обобщение результатов
	экспериментов и исследований
ПК-3.2	Подготавливает предложения для составления планов и методических
	программ экспериментальных исследований и разработок,
	практических рекомендаций по исполнению их результатов

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 5 зачетных единиц 180 акад. часов, в том числе:

- контактная работа 17,2 акад. часов:
- аудиторная 14 акад. часов;
- внеаудиторная 3,2 акад. часов;
- самостоятельная работа 154,1 акад. часов;
- в форме практической подготовки 0 акад. час;
- подготовка к экзамену 8,7 акад. час

Форма аттестации - экзамен

Раздел/ тема дисциплины		Аудиторная контактная работа (в акад. часах)		9 1	Вид самостоятельной	Форма текущего контроля успеваемости и	Код компетенции	
	Kypc	Лек.	Лек. лаб. практ. зан. зан.	Самос работа	работы	промежуточной аттестации	,	
1. Раздел 1. Конструкци тепловая ра промышленных печей	и и бота							
1.1 Введение в дисциплину		0,5			3	Наличие конспектов лекций. Приложение 1.	Текущий контроль успеваемости	
1.2 Введение в высокотемпературную теплотехнологию. Вводные понятия и определения. Тепловые, теплотехнические и структурные схемы высокотемпературных теплотехнологических установок	5	1		2	20	Самостоятельное изучение учебной и научной литературы. Приложение 1.	Текущий контроль успеваемости	
1.3 Классификация высокотемпературных теплотехнологических процессов и установок. Энергетические проблемы высокотемпературной теплотехнологии. Предмет дисциплины. Материальные балансы теплотехнологических процессов		1,5		0,6	20	Самостоятельное изучение учебной и научной литературы. Приложение 1.	Текущий контроль успеваемости	

1.4 Тепловые балансы							
теплотехнологического							
реактора, других							
элементов тепловой схемы							
и высокотемпературной					Самостоятельное		
теплотехнологической					изучение учебной	Текущий	
установки в целом.		0,6	0,3	25	и научной	•	
Видимый, суммарный и		0,0	0,5	23	и научной литературы.	контроль успеваемости	
при-веденный удельные					Приложение 1.	успеваемости	
расходы топлива;					приложение т.		
суммарные удельные							
энергозатраты,							
приведенные к							
первичному топливу							
Итого по разделу		3,6	2,9	68			
2. Раздел 2. Осн	ювы						
теплообмена в промышлен	ных						
печах.			 				
2.1 Внешний теплообмен в							
реакторе							
высокотемпературной							
теплотехнологической							
установки. Основные					Самостоятельное		
размеры рабочего					изучение учебной	Текущий	
пространства реактора,		0,5	0,3	20	и научной	контроль	
обеспечивающие					литературы.	успеваемости	
заданную					Приложение 1.		
производительность							
высокотемпературной							
теплотехнологической							
установки							
2.2 Внешний теплообмен в							
реакторах с							
не-фильтруемым слоем							
технологических							
материалов, с					Самостоятельное		
фильтруемым плотным	_				изучение учебной		
слоем кусковых	5				и научной	Томиний	
материалов и изделий, с		0.4	0,3	20	литературы.	Текущий	
кипящим слоем зернистых		0,4	0,3	20	Выполнение	контроль	
материалов, с					курсовой работы	успеваемости	
псевдогазовым слоем					п. 6. Приложение		
пылевидных материалов, с					1.		
барботируемой ванной							
расплава. Пути							
интенсификации внешнего							
теплообмена							
			_		Сомоото ста		
2.2 Harman					Самостоятельное		
2.3 Нагрев и плавление					изучение учебной		
термически тонких и					и научной	Текущий	
термически массивных		0,4	0,5	18,1	литературы. Выполнение	контроль	
тел. Температурные					выполнение курсовой работы	успеваемости	
режимы нагрева термически массивных тел					п. 6. Приложение		
термически массивных тел					п. о. приложение 1.		
					1.		

2.4 Организации процесса генерации теплоты в теплотехнологических реакторах и способы их обеспечения в технологических реакторах раз-личных типов. Способы преобразования электрической энергии в теплоту и область их применения в высокотемпературных теплотехнологических установках	0,5	2	15	Самостоятельное изучение учебной и научной литера- туры. Выполнение курсовой работы п. 6. Приложение	Текущий контроль успеваемости	
2.5 Снижение энергозатрат путем внешнего использования тепловых и горючих отходов. Основные направления технического прогресса энергетики высокотемпературной теплотехнологии	0,6	2	13	Самостоятельное изучение учебной и научной литературы. Приложение 1.	Текущий контроль успеваемости	
Итого по разделу	2,4	5,1	86,1			
Итого за семестр	6	8	154,1		экзамен	
Итого по дисциплине	6	8	154,1		экзамен	

5 Образовательные технологии

Для решения предусмотренных видов учебной работы при изучении дисциплины «Высокотемпературные процессы и установки» в качестве образовательных технологий используются как традиционные, так и модульно-компетентностные технологии. Передача необходимых теоретических знаний и формирование представлений по курсу происходит с применением мультимедийного оборудования. Лекционный материал закрепляется на лабораторных работах, где применяется совместная деятельность студентов в группе, направленная на решение общей задачи путем сложения результатов индивидуальной работы членов группы. Для развития и совершенствования коммуникативных способностей студентов организуются практические занятия в виде дискуссий, анализа реальных проблемных ситуаций и междисциплинарных связей из различных областей в контексте решаемой задачи. Самостоятельная работа стимулирует студентов к самостоятельной проработке тем в процессе написания рефератов, подготовке к дискуссиям, к контрольным работам и тестированию. При организации самостоятельной работы студентов используются электронные версии курса лекций, лабораторного практикума, расчетно-графической работы.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

- 1. Сенин, А. В. Термодинамическое моделирование высокотемпературных процессов: учебное пособие / А. В. Сенин. Челябинск: ЮУрГУ, 2017. 94 с. Текст: электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/146042 (дата обращения: 18.06.2021). Режим доступа: для авториз. пользователей.
- 2. Дзюзер, В. Я. Теплотехника и тепловая работа печей: учебное пособие для вузов / В. Я. Дзюзер. 4-е изд., стер. Санкт-Петербург: Лань, 2021. 384 с. ISBN 978-5-8114-6789-1. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/152446 (дата обращения: 18.06.2021). Режим доступа: для авториз. пользователей.

б) Дополнительная литература:

- 1. Круглов, Г. А. Теплотехника: учебное пособие / Г. А. Круглов, Р. И. Булгакова, Е. С. Круглова. 2-е изд., стер. Санкт-Петербург: Лань, 2012. 208 с. ISBN 978-5-8114-1017-0. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/3900
- 2. Осколков, С. В. Тепломассообменное оборудование предприятий: методические указания по выполнению курсового проекта для студентов направления подготовки 140100 "Теплоэнергетика" / С. В. Осколков, Л. В. Николаев; МГТУ, Каф. теплотехниче-ских и энергетических систем. Магнитогорск: МГТУ, 2012. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=1547.pdf&show=dcatalogues/1/1124 725/1547.pdf&view=true
- 3. Матвеева, Г. Н. Экспериментальное исследование процессов теплообмена: учеб-ное пособие / Г. Н. Матвеева, Ю. И. Тартаковский, Б. К. Сеничкин. 2-е изд., подгот. по печ. изд. 2008 г. Магнитогорск: МГТУ, 2011. 1 электрон. опт. диск

- (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=989.pdf&show=dcatalogues/1/11191 53/989.pdf&view=true
- 4. Общая энергетика : учебное пособие / Е. Б. Агапитов, Ю. И. Тартаковский, Г. Н. Матвеева, Т. П. Семенова; Ин-т энергетики и автоматики МГТУ. Магнитогорск, 2013. 113 с. : ил., схемы, табл. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=629.pdf&show=dcatalogues/1/11093 98/629.pdf&view=true

в) Методические указания:

1. Пинтя, Т. Н. Термодинамика. Теплопередача: практикум / Т. Н. Пинтя, Ю. И. Тартаковский, Г. Н. Матвеева; МГТУ. - [2-е изд., подгот. по печ. изд. 2012 г.]. - Магнитогорск: МГТУ, 2013. - 1 электрон. опт. диск (CD-ROM). - Загл. с титул. экрана. - URL:

https://magtu.informsystema.ru/uploader/fileUpload?name=48.pdf&show=dcatalogues/1/112431 1/48.pdf&view=true - Макрообъект. - Текст : электронный. - Сведения доступны также на CD-ROM.

- 2. Матвеева, Г. Н. Экспериментальное исследование процессов теплообмена : учебное пособие / Г. Н. Матвеева, Ю. И. Тартаковский, Б. К. Сеничкин. 2-е изд., подгот. по печ. изд. 2008 г. Магнитогорск : МГТУ, 2011. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=989.pdf&show=dcatalogues/1/11191 53/989.pdf&view=true Макрообъект. Текст : электронный. Сведения доступны также на CD-ROM.
- 3. Злоказова, Н.Г., Иванов, Д.А. Лабораторный практикум по дисциплинам «Топливо и ТСУ», «Теория и практика теплогенерации». Магнитогорск: Изд-во Магниторск. гос. техн. ун-та им. Г.И.Носова, 2013, 53 с
- 4. Свечникова, Н. Ю. Практикум по технической термодинамике и теплотехнике: практикум / Н. Ю. Свечникова, С. В. Юдина, А. В. Горохов; МГТУ. Магнитогорск: МГТУ, 2018. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=3545.pdf&show=dcatalogues/1/1515

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии	
7Zip	свободно	бессрочно	
FAR Manager	свободно	бессрочно	
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно	
Linux Calculate	свободно	бессрочно	

Профессиональные базы данных и информационные справочные системы

r · r		F 1	TT
	Название к	урса	Ссылка
Архив	научных	журналов	
«Национал	ьный		https://archive.neicon.ru/xmlui/
электронно	о-информацис	нный	
Междунар	одная база	полнотекстовых	http://link.springer.com/
журналов \$	Springer Journa	als	mup.//mik.springer.com/
Электронн	ые ресурсы б	иблиотеки МГТУ	https://magtu.informsystema.ru/Marc.html?loca
им. Г.И. Но	сова		le=ru

Российская Государственная библиотека. Каталоги	https://www.rsl.ru/ru/4readers/catalogues/
Электронная база периодических изданий East View Information Services, OOO «ИВИС»	https://dlib.eastview.com/
Информационная система - Единое окно доступа к информационным ресурсам	URL: http://window.edu.ru/
Поисковая система Академия Google (Google Scholar)	URL: https://scholar.google.ru/
Национальная информационно-аналитическая система — Российский индекс научного цитирования (РИНЦ)	URL: https://elibrary.ru/project_risc.asp
Федеральное государственное бюджетное учреждение «Федеральный институт промышленной собственности»	URL: http://www1.fips.ru/

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа:

-мультимедийные средства хранения, передачи и представления информации.

Учебные аудитории для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации:

-доска, мультимедийный проектор, экран

Учебные аудитории для выполнения курсового проектирования, помещения для самостоятельной работы обучающихся:

-персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета

Помещение для хранения и профилактического обслуживания учебного оборудования:

-стеллажи, сейфы для хранения учебного оборудования, инструменты для ремонта лабораторного оборудования

6 Учебно-методическое обеспечение самостоятельной работы студентов

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

Примерные вопросы аудиторных контрольных работ (АКР)

AKP№1

- 1. В каких единицах измеряется количество теплоты?
 - 1. °C;
 - κΓ/м;
 - 3. Дж;
 - 4. H/M
- 2. Теплопроводность каких материалов наибольшая?
 - 1. Металлов;
 - 2. Газов;
 - 3. Твердых тел диэлектриков;
 - 4. Жидкостей.
- 3. От каких параметров зависит коэффициент теплопроводности?
 - 1. От вида движения жидкости;
 - 2. От температуры и физических свойств веществ;
 - 3. От массы и площади поверхности тела;
 - 4. От количества подведенной теплоты.
- 4. Какое из уравнение плотности теплового потока соответствует переносу теплоты теплопроводностью через однослойную плоскую стенку:

1.
$$q = \frac{\delta}{\lambda} \left(-t_1 \right)$$
;

2.
$$q = -\lambda g r a dt$$
;

3.
$$q = \alpha \left(-t_1 \right)$$
;

$$4. \quad q = \frac{\lambda}{\delta} \mathbf{Q}_2 - t_1.$$

5. По какому из уравнений рассчитывается теплопередача через стенку?

1.
$$q = \frac{\lambda(t_{c1} - t_{c2})}{\delta}$$

2.
$$q = \frac{t_{c1} - t_{c(n+1)}}{\sum_{i=1}^{n} \frac{\delta_{i}}{\lambda_{i}}}$$

$$q = \frac{t_{sk1} - t_{sk2}}{\frac{1}{\alpha_1} + \frac{\delta}{\lambda} + \frac{1}{\alpha_2}}$$

AKP№2

1. Указать	, какому инте	ервалу значені	ий коэффициен	нта λ соответствуе	т теплопроводность
сталей.					

```
1.20 - 50 \, \text{BT/(м гр)}
```

2.
$$0.07 - 4 \text{ BT/(M }\Gamma\text{p})$$

3.
$$0.007 - 0.07$$
 BT/(M Γ p)

2. В каких единицах измеряется коэффициент теплопроводности?

```
1. \frac{Bm}{M^2};
```

2.
$$\frac{Bm}{M^2 \epsilon pao}$$
;

3.
$$\frac{Bm}{M \cdot \epsilon pa \partial}$$
;

- 4. Bm.
- 3. Коэффициент теплопередачи характеризует интенсивность передачи теплоты:
 - 1. От одной среды к другой;
 - 2. Внутри твердых стенок;
 - 3. От одной среды к другой через разделительную стенку;
 - 4. От жидкостей к твердым стенкам.
- 4. Число Фурье определяет:
 - 1. Режим движения жидкости;
 - 2. Термическую массивность тел;
 - 3. Безразмерное время нагрева;
 - 4. Физические параметры вещества.

AKP№3

1. При каких значениях числа Био тело является термически тонким:

```
1. Bi \rightarrow 0;
```

2.
$$Bi \rightarrow \infty$$
:

3.
$$Bi < 0$$
;

4.
$$Bi = 25$$
.

2. Какое число подобия является определяемым при расчетах конвективного теплообмена?

- 1. Pr;
- 2. Nu;
- 3. Re:
- 4. *Gr* .

3. Каким уравнением подобия характеризуется вынужденная конвекция?

2.
$$Nu = f \Re e, \Pr$$

3.
$$Nu = f (\mathbf{F}o, \mathbf{Pr});$$

4.
$$Nu = f \Re i$$
, Pr

4. Какие значения Re cooтветствуют турбулентному режиму движения жидкости в трубах (каналах)

1.
$$Re > 1300$$
;

3.
$$Re > 10300$$
;

4.
$$Re > 2300$$
.

AKP№4

1. Число Рейнольдса определяется по формуле

1. Re =
$$\frac{Wd}{u}$$
 2. Re = $\frac{Wd}{v}$ 3. Re = $\frac{vd}{W}$ 4. Re = $\frac{vd}{W}$

2. Re =
$$\frac{Wd}{V}$$

3. Re =
$$\frac{vd}{W}$$

4. Re =
$$\frac{\mathcal{U}}{W}$$

2. Какое значение поглощательной способности имеет абсолютно черное тело:

2.
$$\hat{A} = 0$$
;

3.
$$\hat{A} = 1$$
;

4.
$$\lambda > 1$$

3. Какой из приведенных законов применяется для расчетов теплообмена излучением?

1.
$$q = -\lambda \frac{\partial t}{\partial n}$$

2.
$$q = \alpha (t_c - t_{_{\mathcal{H}C}})$$

3.
$$q = \varepsilon * c_o \left(\frac{T}{100}\right)^4$$

AKP№5

1. Какие газы обладают излучательной и поглощательной способностью?

2.
$$N_2$$
, O_2 , H_2

- 2. Важнейшие химические элементы топлива органического происхождения:
- 1. кислород и углерод
- 2. кислород и водород

3. угл	ерод и водород
	ая теплота сгорания топлива соответствует действительному количеству теплоты, яемой при сгорании в печах и топках?
1. выс	шая теплота сгорания
2. низ	шая теплота сгорания
AKPN:	26
	ому газообразному топливу с теплотой сгорания 3,5-4,0 МДж/м 3 соответствует рный состав: 9-14% CO $_2$; 25-30% CO; 57-58% N $_2$; остальное- метан и водород .
1. кок	совый газ
2. дом	енный газ
3. при	родный газ
4. кок	содоменная смесь
2. Теп	лота сгорания условного топлива:
1. 700	0 кДж/кг
2. 29,3	МДж/кг
	ервал значений «пирометрического коэффициента» для ориентировочного еления действительной температуры в печах и топках?
1. 0,5	- 0,6
2. 0,7	- 0,8
3. 0,9	- 1,0
	большее количество теплоты, которое печь может нормально (без недожога топливачем пространстве) усвоить, называется:
1. теп.	повой нагрузкой
2. теп.	повой мощностью

- 3. коэффициентом полезного действия
- 4. тепловым режимом печи
- 5. К огнеупорным относят материалы, огнеупорность которых не ниже (по стандартам и терминологии России):
- 1. 1580 °C;
- 2. 1680 °C;
- 3. 1780 °C;
- 6. Укажите правильную последовательность убывания концентрации компонентов продуктов горения топлива в печах и топках при сжигании в воздухе
- 1. CO $_2$, H $_2$ O, N $_2$
- $2. N_2$, H_2O , CO_2
- 3. N_2 , CO_2 , H_2O

7. Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

ПК – 3 - С	пособен к сбору, обрабо	тке, анализу и обобщению результатов экспериментов и исследований в соответствующей области знаний
ПК-3.1	Осуществляет сбор, обработку, анализ и обобщение результатов экспериментов и исследований	Практические задания: 1. Оценить, можно ли прибором из хромель — алюмелевой термопары с чувствительностью S_1 =0/023 мB/ 0 C и милливольтметра чувствительностью S_2 =0.1 делений шкалы/мВ измерить разность температур в $100~^0$ C в высокотемпературном агрегате. 2. Определить величину неисключенной систематической погрешности измерения массового расхода воздуха при использовании в экспериментальной установке следующих приборов. По каналу круглого сечения, длина окружности которого по внешнему обмеру составляет 1633 +/- 10 мм, а толщина стенки 10 +/- 1.0 мм, к установке должен подводиться нагретый воздух, температура которого в процессе эксперимента должна изменяться от $200~0300^{\circ}$ С. Для измерения этой температуры планируется использовать прибор с классом точности 2.5 / $1.5~$ и диапазоном от $0~0400^{\circ}$ С. Расход воздуха в экспериментедолжен варьироваться от $8000~$ до 12000 м 3 /ч., что соответствует диапазону изменения средних скоростей потока от $11.3~$ до 17 м/с и динамических давлений от $40~$ до 108 Па. Измерение среднихскоростей планируется осуществить косвенным путем по методу равновеликих колец, используя пневмометрическую трубку и встроенный дифференциальный манометр ЛТА – 4 , заданы его метрологические характеристики.
ПК-3.2	Подготавливает предложения для составления планов и методических программ экспериментальных исследований и	Пример 1: Определить температуру в центре сляба из малоуглеродистой стали толщиной б=0,3 м, нагреваемого в методической зоне печи с шагающим подом с $t_{\text{пов}} = 0^{0}\text{C}$ до $t_{\text{пов}} = 600^{0}\text{C}$, если температура продуктов сгорания в зоне печи меняется от 800 ^{0}C до 1300 ^{0}C в конце зоны. Средний коэффициент теплоотдачи принять 100 Вт/м 2 ·К Пример 2: Рассчитать рекуператор для подогрева воздуха для следующих условий: температура воздуха на

	входе — выходе рекуператора: $0-450~^{0}$ С, температура дыма на входе в рекуператор — $1050~^{0}$ С, расход газа на
практических	отопление печи $B=5,46 \text{ м}^3/\text{с}$, количество дыма на входе в рекуператор $V=34,9 \text{ м}^3/\text{c}$. Состав дымовых газов: $N_2=72\%$,
рекомендаций по	$CO_2=11\%$, $H_2 O =17\%$.
исполнению их результатов	Пример 3: Выбрать горелку для расхода газа 5 м 3 /с при давлении воздуха перед горелкой 3,4 кПа и температуре подогрева воздуха 300 0 C.
	Пример 4: Подобрать горелку типа «труба в трубе» для сжигания $0,223 \text{ м}^3$ /с смешанного газа с теплотой сгорания Q=6.7 МДж/м 3 .Давление газа перед горелкой $3,4 \text{ к}$ Па, воздуха, подогретого до $400 ^0$ С - 1 к Па. Коэффициент расхода воздуха 1.1 .

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

При оценивании сформированности компетенций выполняемой курсовой работы по дисциплине «Высокотемпературные процессы и установки» используется 5-балльная шкала.

Промежуточная аттестация по дисциплине «Высокотемпературные процессы и установки» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, при условии выполнения текущих практических заданий, выявляющих степень сформированности умений и владений, проводится в форме экзамена.

Экзамен по данной дисциплине проводится в устной форме.

Показатели и критерии оценивания экзамена:

При оценивании сформированности компетенций выполняемой курсовой работы по дисциплине «Высокотемпературные теплотехнологические процессы и установки» используется 5-балльная шкала.

- на оценку **«отлично»** обучающийся показывает высокий уровень сформированности компетенций, т.е. не менее 90% от общей трудоемкости дисциплины;
- на оценку **«хорошо»** обучающийся показывает средний уровень сформированности компетенций, т.е. находится в пределах от 75% до 90% от общей трудоемкости дисциплины;
- на оценку **«удовлетворительно»** обучающийся показывает пороговый уровень сформированности компетенций, т.е. находится в пределах от 60% до 75% от общей трудоемкости дисциплины;
- на оценку **«неудовлетворительно»** результат обучения не достигнут, обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.