МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

МАТЕМАТИКА ДЛЯ ТЕХНИЧЕСКИХ СПЕЦИАЛЬНОСТЕЙ

Направление подготовки (специальность) 15.03.01 МАШИНОСТРОЕНИЕ

Направленность (профиль/специализация) программы Системная инженерия в машиностроении

Уровень высшего образования - бакалавриат Программа подготовки - академический бакалавриат

Форма обучения очная

Институт/ факультет Институт естествознания и стандартизации

Кафедра Прикладной математики и информатики

 Курс
 1,2

 Семестр
 1,2,3

Магнитогорск 2021 год Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 15.03.01 МАШИНОСТРОЕНИЕ (уровень бакалавриата) (приказ Минобрнауки России от 03.09.2015 г. № 957)

	Рабочая программа рассмотрена и одобрена на заседании кафедры Прикладной атики и информатики
матем	09.02.2021, протокол № 8 Зав. кафедрой Ю.А. Извекон
	Рабочая программа одобрена методической комиссией ИЕиС 04.03.2021 г. протокол № 7 Председатель И.Ю. Мези
	Согласовано: Зав. кафедрой Машины и технологии обработки давлением и машиностроения С.И. Плато
	Рабочая программа составлена: доцент кафедры ПМиИ, канд. пед. наук
	Рецензент: зав. кафедрой Физики, канд. пед. наук

Лист актуализации рабочей программы

 грена, обсуждена и одобрена д гафедры Прикладной математ	<u> </u>
Протокол от	_ 20 г. № Ю.А. Извеков
 грена, обсуждена и одобрена д гафедры Прикладной математ	=
Протокол от	_20 г. № Ю.А. Извеков
грена, обсуждена и одобрена д гафедры Прикладной математ	
Протокол от	_ 20 г. № Ю.А. Извеков
грена, обсуждена и одобрена д гафедры Прикладной математ	
Протокол от	_20 Γ. №

1 Цели освоения дисциплины (модуля)

Целями освоения дисциплины (модуля) «Математика для технических специальностей» являются: ознакомить обучаемых с основными понятиями и методами высшей математики, создать теоретическую и практическую базу подготовки специалистов к деятельности, связанной с исследованием, разработкой и технологиями процессов получения металлов и сплавов, металлических изделий требуемого качества, и основанных на применении математического анализа и моделирования.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Математика для технических специальностей входит в базовую часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Математика в объеме общей образовательной школы.

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Учебная - практика по получению первичных профессиональных умений и навыков, в том числе первичных умений и навыков научно-исследовательской деятельности

Информатика

Защита выпускной квалификационной работы, включая подготовку к процедуре защиты и процедуру защиты

Технологические процессы обработки металлов давлением

Технологии и оборудование для обработки материалов давлением

Прикладная механика

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Математика для технических специальностей» обучающийся должен обладать следующими компетенциями:

Структурный	Планируемые результаты обучения
элемент	
компетенции	
ОПК-1 умением ис	пользовать основные законы естественнонаучных дисциплин в
профессиональной	деятельности, применять методы математического анализа и
моделирования, тес	оретического и экспериментального исследования
Знать	 основные положения линейной и векторной алгебры, аналитической геометрии основные положения теории пределов и непрерывных функций, основные теоремы дифференциального и интегрального исчисления функций одной и нескольких переменных, методы дифференциального исчисления исследования функций, основные типы обыкновенных дифференциальных уравнений и методы их решения, основные понятия теории вероятностей и математической статистики

Уметь	 - самостоятельно и обосновано выбирать методы и способы решения задач, связанных с линейной и векторной алгеброй, аналитической геометрией - самостоятельно и обосновано применять методы дифференциального исчисления для исследования функций одной и двух переменных (в том числе на экстремум, поведение на границе области задания и т.п.); - выявлять, строить и решать математические модели прикладных задач; - бсуждать способы эффективного решения задач, распознавать эффективные результаты от неэффективных
Владеть	 навыками построения и решения математических моделей прикладных задач; способами оценивания значимости и практической пригодности полученных результатов

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 14 зачетных единиц 504 акад. часов, в том числе:

- контактная работа 240 акад. часов:
- аудиторная 230 акад. часов;
- внеаудиторная 10 акад. часов;
- самостоятельная работа 192,6 акад. часов;
- в форме практической подготовки 0 акад. час;
- подготовка к экзамену 71,4 акад. час

Форма аттестации - экзамен, зачет

Раздел/ тема дисциплины	Семестр	кон	Аудиторная контактная работа (в акад. часах)		Самостоятельная работа студента	Вид самостоятельной	Форма текущего контроля успеваемости и	Код компетенции
дисциплины	Cel	Лек.	лаб. зан.	практ. зан.	Самост работа	работы	промежуточной аттестации	компетенции
1. Линейная алгебра								
1.1 Определители и матрицы.		2		5/1И	6	- подготовка к практическому занятию, - выполнение тестовых домашних заданий №1 «Матрицы. Определители»	Проверка индивидуальных заданий, консультации по решению ДЗ и ИДЗ№1.	ОПК-1
1.2 Системы линейных алгебраических уравнений	1	2		4	7,2	- подготовка к практическому занятию, - выполнение тестовых домашних заданий №2 «СЛАУ»	Проверка индивидуальных заданий, консультации по решению ДЗ и ИДЗ№1.	ОПК-1
1.3 Линейные пространства. Линейные операторы.		1		2	5	- подготовка к практическому занятию	Проверка индивидуальных заданий, консультации по решению ДЗ и ИДЗ№1, АКР 1	ОПК-1
Итого по разделу		5		11/1И	18,2			
2. Векторная алгебра аналитическая геометрия	И							
2.1 Элементы векторной алгебры	1	1		2	5	- подготовка к практическому занятию, - выполнение ИДЗ №2 «Векторная алгебра и аналитическая геометрия»	Проверка индивидуальных заданий, консультации по решению ИДЗ 2, АКР №2	ОПК-1

					- подготовка к		
2.2 Аналитическая геометрия на плоскости		2	4/1,6И	5	практическому занятию, - выполнение ИДЗ №2 «Векторная алгебра и аналитическая геометрия» - составление учебной карты по теме (краткая систематизация изученного).	Проверка индивидуальных заданий, консультации по решению ИДЗ 2, АКР №2	ОПК-1
2.3 Аналитическая геометрия в пространстве		2	4/3И	5	- подготовка к практическому занятию, - выполнение ИДЗ №2 «Векторная алгебра и аналитическая геометрия» - составление учебной карты по теме (краткая систематизация изученного).	Проверка индивидуальных заданий, консультации по решению ИДЗ 32, АКР №2 -аудиторная контрольная работа «Матрицы и СЛАУ. Элементы аналитической геометрии» АКР №2.	ОПК-1
Итого по разделу		5	10/4,6И	15			
3. Введение в математичес анализ	кий						
3.1 Предел функции одной переменной		4	8/2И	12	- подготовка к практическому занятию, - выполнение ИДЗ №3 «Предел. Непрерывность», - составление учебной карты по теме (краткая систематизация изученного).	Проверка индивидуальных заданий, консультации по решению ИДЗ 3, АКР №3	ОПК-1
3.2 Непрерывность функции одной переменной	1	1	2	5	- подготовка к практическому занятию, - выполнение ИДЗ № 3 «Предел. Непрерывность», - составление учебной карты по теме.	Проверка индивидуальных заданий, консультации по решению ИДЗ 3, АКР №3.	ОПК-1
3.3 Комплексные числа. Решение алгебраических уравнений над полем С.		1	1/2И	3	- подготовка к практическому занятию по теме « Комплексные числа»	Проверка индивидуальных заданий, консультации по решению ИДЗ 3, АКР №3.	ОПК-1
Итого по разделу 4. Дифференциаль	нос	6	11/4И	20			
4. Дифференциаль исчисление функции од переменной							

4.1 Задачи, приводящие к понятию производной. Определение производной функции в точке. Дифференциал, его геометрический и механический смысл Геометрический и таблица производных.	2	2	2	Самостоятельная работа с литературой – конспект раздела «Задачи, приводящие к понятию производной», - подготовка к практическому занятию, - выполнение ИДЗ № 4 «Производная. Вычисление», - составление учебной карты «Производная».	Проверка конспекта. консультации по решению ИДЗ 4, АКР №4.	ОПК-1
4.2 Дифференцирование неявно заданных, параметрически заданных функций. Логарифмическое дифференцирование.	2	2/2И	3	- подготовка к практическому занятию, - выполнение ИДЗ № 4 «Производная. Вычисление», - составление учебной карты «Производная», - подготовка к защите ИДЗ №5.	консультации по решению ИДЗ 4, АКР №4.«Производная. Вычисление», учебная карта (проект) по теме — защита.	ОПК-1
4.3 Производные и дифференциалы высших порядков. Основные теоремы дифференциального исчисления: теоремы Ферма, Ролля, Лагранжа, Коши. Формула Тейлора. Формула Тейлора. Применение производных при вычислении пределов. Правило Лопиталя.	2	2/2И	3	- подготовка к практическому занятию, - выполнение ИДЗ № 4 «Производная высших порядков. Приложения производной», - составление учебной карты «Производная», -подготовка к контрольной работе.	Консультации по решению ИДЗ №4. учебная карта (проект) по теме — защита АКР №4 «Производная», Защита ИДЗ №4.	ОПК-1
4.4 Исследование функций с помощью дифференциального исчисления. Признаки знакопостоянства, возрастания и убывания, выпуклости и вогнутости функции на промежутке. Экстремумы функций. Нахождение наименьшего и наибольшего значений функции на замкнутом промежутке.	2	2/2И	3	- подготовка к практическому занятию, - выполнение ИДЗ №4 «Применение производной для исследования функций и построения графиков», - составление учебной карты «Производная при построении графика функции»	Проверка ИДЗ №4 «Применение производной для исследования функций и построения графиков», Проверка учебной карты. АКР№4.	ОПК-1

Итого по разделу		8	8/6И	11			
5. Интегральное исчисле							
функции одной переменно 5.1 Первообразная функция. Неопределенный интеграл и его основные свойства. Таблица неопределенных интегралов от основных элементарных функций.	и	1	2	4	- подготовка к практическому занятию, - выполнение ИДЗ №5 «Неопределенны й интеграл», - составление учебной карты «Методы интегрирования»	- консультации по решению ИДЗ №5, - проверка ИДЗ №5	ОПК-1
5.2 Основные методы интегрирования. Методы непосредственного интегрирования. Интегрирование заменой переменной и по частям.		2	2	3	- подготовка к практическому занятию, - выполнение ИДЗ №5 «Неопределенны й интеграл», - составление учебной карты «Методы интегрирования»	- консультации по решению ИДЗ №5, - проверка ИДЗ №5	ОПК-1
5.3 Основные методы интегрирования. Интегрирование дробей.	1	2	2/2И	4	- подготовка к практическому занятию, - выполнение ИДЗ №5 «Неопределенны й интеграл», - составление учебной карты «Методы интегрирования»	- консультации по решению ИДЗ №5, - проверка ИДЗ №5	ОПК-1
5.4 Основные методы интегрирования. Интегрирование тригонометрических выражений. Интегрирование иррациональных выражений.		2	2	4	- подготовка к практическому занятию, - выполнение ИДЗ №5 «Неопределенны й интеграл», - составление учебной карты «Методы интегрирования»	- консультации по решению ИДЗ №5, - проверка ИДЗ №5, - проверка учебной карты	ОПК-1
5.5 Определенный интеграл. Задача вычисления площади криволинейной трапеции и другие задачи, приводящие к понятию определенного интеграла. Формула Ньютона-Лейбница. Свойства определенного интеграла. Существование первообразной функции. Замена переменной и		3	4/2И	4	- подготовка к практическому занятию, - выполнение ИДЗ №5 «Определенный интеграл и его приложения», - составление учебной карты «Приложения определенного интеграла»	- консультации по решению ИДЗ №5, - проверка ИДЗ №5	ОПК-1

5.6 Обобщенная первообразная. Интегралы от разрывных функций. Несобственные интегралы. Абсолютная сходимость. Признаки сходимости.		2	2/2И	3	- подготовка к практическому занятию, - выполнение ИДЗ №5 «Определенный интеграл и его приложения», - самостоятельное изучение литературы: конспект «Свойства несобственных интегралов. Признаки сходимости»	- консультации по решению ИДЗ 5, АКР №5, - проверка ИДЗ 5, АКР №5, - проверка конспекта «Свойства несобственных интегралов. Признаки сходимости»	ОПК-1
Итого по разделу		12	14/6И	22			
Итого за семестр	3	36	54/21,6И	86,2		экзамен	
б. Дифференциально исчисление функци нескольких переменны	й						
6.1 Определение основных понятий. Предел и непрерывность ФНП. Основные свойства функций, непрерывных в замкнутой области.		3	3	6	самостоятельное изучение литературы по теме: написание конспекта «Основные свойства функций, непрерывных в замкнутой области».	- проверка конспекта,	ОПК-1
6.2 Частные производные и производная по направлению. Дифференцируемые функции. Касательная плоскость и нормаль к поверхности. Геометрический смысл дифференциала. Признак дифференцируемости.		3	4/1,6И	6	- подготовка к практическому занятию, - выполнение ИДЗ №6 «Частные производные», - составление учебной карты «ФНП»	- консультирование по решению ИДЗ №6, - проверка выполнения ИДЗ №6.	ОПК-1
6.3 Производная сложной функции. Частные производные и дифференциалы высших порядков. Условие независимости от порядка дифференцирования. Дифференцирование неявно заданных		2	3	6	- подготовка к практическому занятию, - выполнение ИДЗ №6 «Частные производные», - составление учебной карты «ФНП»	- консультирование по решению ИДЗ №6, - проверка выполнения ИДЗ 6, АКР №6 проверка учебной карты «ФНП»	ОПК-1

					-		
6.4 Понятие об экстремумах функций многих переменных.		3	2	6	- подготовка к практическому занятию, - выполнение ИДЗ №6 «Экстремум ФНП», - составление учебной карты «ФНП»	- консультирование по решению ИДЗ 6, АКР №6, - проверка выполнения ИДЗ 6, АКР №6, - проверка учебной карты «ФНП». АКР№6.	ОПК-1
Итого по разделу		11	12/1,6И	24			
7. Интегральное исчисле функций несколь переменных (ФНП)							
7.1 Двойной интеграл и его основные свойства. Сведение двойного интеграла к повторному интегралу. Теорема о среднем значении. Замена переменных, переход в двойном интеграле к полярным координатам.		4	4/2И	8	- подготовка к практическому занятию, - выполнение ДЗ «Кратные интегралы», - самостоятельное изучение литературы: конспект «Свойства двойных и тройных интегралов»	- консультации по решению ИДЗ №7, - проверка ИДЗ №7, -проверка конспекта «Свойства двойных и тройных интегралов».	ОПК-1
7.2 Тройной интеграл и его свойства. Сведение тройного интеграла к повторному интегралу. Замена переменных, переход в тройном интеграле к цилиндрическим и сферическим координатам. Понятие о многократных	2	4	4/2И	8	- подготовка к практическому занятию, - выполнение ДЗ «Кратные интегралы»	- консультации по решению ИДЗ №7, - проверка ИДЗ №7.	ОПК-1
7.3 Геометрические и механические приложения кратных интегралов.		2	2/2И	6	- выполнение ДЗ	- проверка ИДЗ №7, - проверка учебной карты «Приложения кратных интегралов»	ОПК-1
Итого по разделу		10	10/6И	22			_
8. Обыкновен дифференциальные уравне (ОДУ)							

8.1 Обыкновенные дифференциальные уравнения первого порядка. Основные определения. Частное и общее решение. Интегральные кривые. Геометрический смысл дифференциального уравнения первого порядка. Методы решения дифференциальных уравнений первого порядка.		5	4/2И	7	- подготовка к практическому занятию, - выполнение ИДЗ №8 «Обыкновенные ДУ первого порядка», - составление учебной карты «ДУ первого порядка: типы и методы решения	- консультирование по решению ИДЗ №8, - проверка выполнения ИДЗ №8.	ОПК-1
8.2 ДУ высших порядков, сводящиеся к первомую.	2	2	2	6	- подготовка к практическому занятию, - выполнение ИДЗ №8 «Обыкновенные ДУ первого порядка», - составление учебной карты «ДУ первого порядка: типы и методы решения»	- консультирование по решению ИДЗ №8, - проверка выполнения ИДЗ №8, - защита ИДЗ №8, - проверка учебной карты «ДУ первого порядка: типы и методы решения»	ОПК-1
8.3 Линейные дифференциальные уравнения п-го порядка. Линейное однородное уравнение. Фундаментальная система решений. Определитель Вронского. Неоднородное линейное уравнение (ЛНДУ), вид общего решения. Метод вариации произвольных постоянных. Линейное уравнение с постоянными коэффициентами. Характеристическое уравнение. Общее решение.		4	4/2И	8	- подготовка к практическому занятию, - выполнение ИДЗ №8 «ЛНДУ высших порядков с постоянными коэффициентами . Системы ДУ», - составление учебной карты «ЛНДУ высших порядков с постоянными коэффициентами : методы решения»	- консультирование по решению ИДЗ №8, - проверка выполнения ИДЗ №8, - проверка учебной карты «ЛНДУ высших порядков с постоянными коэффициентами: методы решения»	ОПК-1

	2		2/2И	7,2	- подготовка к практическому занятию, - выполнениеИДЗ №8 «ЛНДУ высших порядков с постоянными коэффициентами . Системы ДУ» - составление учебной карты «ЛНДУ высших порядков с постоянными коэффициентами : методы решения. Структура общего решения»	- консультирование по решению ИДЗ 8, АКР №7, - проверка выполнения ИДЗ 8, АКР №7,	ОПК-1
	13		12/6И	28,2			
	34		34/13,6И	74,2		зачёт	
3	4		5,5/2И	0,5	- подготовка к практическому занятию, - выполнение домашнего задания	- консультирование по решению ДЗ,	ОПК-1
	4		6/2И	4,4	- подготовка к практическому занятию, - выполнение ДЗ«Ряды»	- консультирование по решению ДЗ, - проверка выполнения ДЗ	ОПК-1
	8		11,5/4И	4,9			
		•					
3	2		0,5	0,5	- подготовка к практическому занятию, - выполнение Л.Р. «Методы хорд и касательных решения уравнений»	- консультации по решению Л.Р, - проверка Л.Р.	ОПК-1
	2		0,5	0,5	- подготовка к практическому занятию, - выполнение Л.Р. «Численное интегрирование»	- консультации по решению Л.Р., - проверка Л.Р	ОПК-1
		13 34 4 3 4 8 2 3	13 34 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	13 12/6И 34 34/13,6И 4 5,5/2И 3 4 6/2И 8 11,5/4И 2 0,5	13 12/6И 28,2 34 34/13,6И 74,2 4 5,5/2И 0,5 4 6/2И 4,4 8 11,5/4И 4,9 2 0,5 0,5	2 2/2И 7,2 1,2	2

10.3 Метод наименьших квадратов		2	0,5/0,4И	0,5	- подготовка к практическому занятию, - выполнение Л.Р. «Метод наименьших	- консультации по решению Л.Р., - проверка Л.Р.	ОПК-1
10.4 Численное решение дифференциальных уравнений		2	2/2И	0,5	квадратов» - подготовка к практическому занятию, - выполнение Л.Р. «Численное решение дифференциальных уравнений»	- консультации по решению Л.Р., - проверка Л.Р	ОПК-1
Итого по разделу		8	3,5/2,4И	2			
11. Элементы тео вероятностей	рии						
11.1 Элементы комбинаторики		2	2	2	- подготовка к практическому занятию, - выполнение домашнего задания	- консультирование по решению ДЗ	ОПК-1
11.2 Случайные события. Основные понятия. Алгебра событий. Классическое, геометрическое истатистическое определения вероятности. Аксиоматика теории		2	4/2И	4	- подготовка к практическому занятию, - выполнение ИДЗ №9 «Теория вероятностей»	- консультирование по решению ИДЗ №9, - проверка выполнения ИДЗ №9	ОПК-1
11.3 Теоремы сложения и умножения. Условная вероятность. Формула полной вероятности и формула Байеса. Схема Бернулли, приближения Лапласа и Пуассона.	3	2	2	4	- подготовка к практическому занятию, - выполнение ИДЗ №9 «Теория вероятностей», -подготовка к АКР №9 «Случайные события»	- консультирование по решению ИДЗ №9, - проверка выполнения ИДЗ №9, - проверка АКР №9	ОПК-1
11.4 Случайные величины. Дискретные и непрерывные случайные величины. Ряд распределения, функция распределения и плотность. Математическое ожидание и дисперсия, начальные и центральные		2	4/2И	4	- подготовка к практическому занятию, - выполнение Идз №9 «Теория вероятностей»	- консультирование по решению ИДЗ №9, - проверка выполнения ИДЗ №9	ОПК-1
11.5 Известные распределения и их числовые характеристики. Нормальное распределение.		2	2	3	- подготовка к практическому занятию, - выполнение ИДЗ №9 «Теория вероятностей»	- консультирование по решению ИДЗ №9, - проверка выполнения ИДЗ №9	ОПК-1

11.6 Законы больших чисел. Неравенство и теорема Чебышёва. Центральная предельная теорема.	2	4/2И	4,3	- подготовка к практическому занятию, - выполнение ИДЗ №9 «Теория вероятностей»	- консультирование по решению ИДЗ №9, - проверка выполнения ИДЗ №9	ОПК-1
11.7 Многомерные случайные величины. Функции распределения, свойства. Числовые характеристики. Элементы теории корреляции.	2	2/2И	3	- подготовка к практическому занятию, - выполнение ИДЗ №9, АКР 8 «Теория вероятностей»	- консультирование по решению ИДЗ №9, - проверка выполнения ИДЗ №9, АКР 8 Защита ИДЗ №9.	ОПК-1
Итого по разделу	14	20/8И	24,3			
12. Элементы математической статистики						
12.1 Основные понятия, генеральная совокупность и выборка. Статистические оценки параметров распределения. Точечные и интервальные оценки.	4	0,5	0,5	 подготовка к практическому занятию, выполнение ИДЗ №10 «Первичная обработка результатов эксперимента». 	- консультации по решению ИДЗ №10, - проверка ИДЗ №10 «Первичная обработка результатов эксперимента».	ОПК-1
12.2 Критическая область, уровень значимости, мощность критерия. Критерий согласия Пирсона для гипотезы о нормальном распределении.	2	0,5	0,5	- подготовка к практическому занятию, - выполнение ИДЗ №11 «Проверка статистических гипотез».	ИДЗ №10, - выполнение ИДЗ №11 «Проверка статистических гипотез».	ОПК-1
Итого по разделу	6	1	1			
Итого за семестр	36	36/14,4И	32,2		экзамен	
Итого по дисциплине	106	124/49, 6И	192,6		экзамен, зачет	ОПК-1

5 Образовательные технологии

1. Традиционные образовательные технологии. Организация образовательного процесса, предполагает прямую трансляцию знаний от преподавателя к студенту (преимущественно на основе объяснительно-иллюстративных методов обучения). Учебная деятельность студента но-сит в таких условиях, как правило, репродуктивный характер.

Формы учебных занятий:

- информационная лекция последовательное изложение материала в дисциплинарной логике, осуществляемое преимущественно вербальными средствами.
- практическое занятие, посвященное освоению конкретных умений и навыков по предложенному алгоритму.
- 2. Технологии проектного обучения. Образовательный процесс построен в соответствии с алгоритмом поэтапного решения проблемной задачи или выполнения учебного задания. Проект предполагает совместную учебно-познавательную деятельность группы студентов, направленную на выработку концепции, установление целей и задач, формулировку ожидаемых результатов, определение принципов и методик решения поставленных задач, планирование хо-да работы, поиск доступных и оптимальных ресурсов, поэтапную реализацию плана работы, презентацию результатов работы, их осмысление и рефлексию. Применяется в основном для перехода компетенции на уровень владения.

Основные типы применяемых нами в образовательной деятельности проектов:

Исследовательский проект — структура приближена к формату научного исследования (доказательство актуальности темы, определение научной проблемы, предмета и объекта исследования, целей и задач, методов, источников, выдвижение гипотезы, обобщение результатов, выводы, обозначение новых проблем). Результатом является учебная карта по модулю нашей образовательной программы.

Творческий проект, предполагающий в отличие от предыдущего, конечный продукт в следующих вариантах – газета к исторически значимому «математическому» событию (праздник числа «Пи» и т.п.); «математическая» открытка (своего рода учебная карта, только неформально, красочно оформленная; видеоролик «Я научу вас решать ...» и т.п.

Информационный проект — учебно-познавательная деятельность с ярко выраженной эвристической направленностью (поиск, отбор и систематизация информации о каком-то объекте, ознакомление участников проекта с этой информацией, ее анализ и обобщение и, наконец, презентация по практическому приложению).

- 4. Информационно-коммуникационные образовательные технологии. Организация образовательного процесса с применением специализированных программных сред и технических средств работы с информацией (информационную среду университета МООДУС MOODLE).
 - **6 Учебно-методическое обеспечение самостоятельной работы обучающихся** Представлено в приложении 1.
 - **7** Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.
 - 8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:
- 1. Шипачев В. С. Высшая математика: учебник / В.С. Шипачев. Москва: ИНФРА-М, 2019. 479 с. (Высшее образование). www.dx.doi.org/10.12737/5394.- ISBN 978-5-16-101787-6. Текст: электронный. URL:

<u>https://new.znanium.com/catalog/product/990716</u> — Режим доступа: для авториз. пользователей.

2. Математика: учеб. пособие / Ю.М. Данилов, Л.Н. Журбенко, Г.А. Никонова, Н.В. Никонова, С.Н. Нуриева ; под ред. Л.Н. Журбенко, Г.А. Никоновой. — Москва: ИНФРА-М, 2019. — 496 с. — (Высшее образование: Бакалавриат). - ISBN 978-5-16-102130-9. - Текст: электронный. - URL: https://new.znanium.com/catalog/product/989799. — Режим доступа: для авториз. пользователей.

б) Дополнительная литература:

- 1. Теория вероятностей и математическая статистика: Учебное пособие / Бирюкова Л.Г., Бобрик Г.И., Матвеев В.И., 2-е изд. Москва: НИЦ ИНФРА-М, 2017. 289 с. (Высшее образование: Бакалавриат) ISBN 978-5-16-011793-5. Текст: электронный. URL: https://new.znanium.com/catalog/product/370899 .— Режим доступа: для авториз. пользователей.
- 2. Математика в примерах и задачах: учеб. пособие / О.М. Дегтярева, Л.Н. Журбенко, Г.А. Никонова, Н.В. Никонова, С.Н. Нуриева. Москва: ИНФРА-М, 2019. 372 с. (Высшее образование: Бакалавриат). ISBN 978-5-16-102288-7. Текст: электронный. URL: https://new.znanium.com/catalog/product/989802. Режим доступа: для авториз. пользователей.
- 3. Данко, П.Е. Высшая математика в упражнениях и задачах. (В 2-х частях) [Текст] / П. Е. Данко, А. Г. Попов, Т. Я. Кожевникова. М.: Высшая школа, 1986-2009. ISBN: 978-5-488-02201-0. более 1000 шт.

Фихтенгольц, Г.М. Основы математического анализа: учебник: в 2 частях / Г.М. Фихтенгольц. — 11-е изд., стер. — Санкт-Петербург: Лань, [б. г.]. — Часть 1 — 2019. — 444 с. — ISBN 978-5-8114-0190-1. — Текст : электронный // Электронно-библиотечная система «Лань» : [сайт]. — URL: https://e.lanbook.com/book/112051 . — Режим доступа: для авториз. пользователей.

- 4. Фихтенгольц, Г.М. Основы математического анализа: учебник: в 2 частях / Г.М. Фихтенгольц. 10-е изд., стер. Санкт-Петербург: Лань, [б. г.]. Часть 2 2019. 464 с. ISBN 978-5-8114-0191-8. Текст: электронный // Электронно-библиотечная система «Лань» : [сайт]. URL: https://e.lanbook.com/book/115730 (дата обращения: 06.10.2019). Режим доступа: для авториз. пользователей.
- 5. Шипачев В. С. Задачник по высшей математике: учеб. пособие / В.С. Шипачев. 10-е изд., стереотип. Москва: ИНФРА-М, 2020. 304 с. (Высшее образование). ISBN 978-5-16-101831-6. Текст: электронный. URL: https://new.znanium.com/catalog/product/1042456

в) Методические указания:

- 1. Вахрушева, И.А. Кривые и поверхности 2 порядка. Полярная система координат. Практикум Магнитогорск: ГОУ ВПО «МГТУ им. Г.И. Носова», 2009. 19 с.
- 2. Грачева, Л.А. Определенный интеграл: методические указания для студентов Магнитогорск: ГОУ ВПО «МГТУ им. Г.И. Носова», 2010 12 с.
- 3. Грачева, Л.А. Элементы линейной алгебры, векторной алгебры и аналитической геометрии: Учебное пособие. Магнитогорск: ГОУ ВПО «МГТУ им. Г.И. Носова», 2010-63 с.
- 4. Максименко, И.А. События и вероятность. Часть 2: Метод. указ. Магнитогорск: ГОУ ВПО «МГТУ им. Г.И. Носова», 2010. 25 с.
- 5. Маяченко, Е.П. Производная и дифференциал функции. Практикум.-Магнитогорск: ГОУ ВПО «МГТУ им. Г.И. Носова», 2010. – 38 с.
 - 6. Маяченко Е.П. Исследование функций и построение графиков.

Практикум. – Магнитогорск: ГОУ ВПО «МГТУ им. Г.И. Носова», 2011. – 20 с.

7. Савушкина Н.Ф. Комбинаторика. Событие и вероятность. Часть І: Комбинаторика. Алгебра событий: Метод. указания по дисциплине «Математика» для студентов І курса всех специальностей. – МГТУ, 2007. – 17 с.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
7Zip	свободно распространяемое ПО	бессрочно
FAR Manager	свободно распространяемое ПО	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Национальная информационно-аналитическая	URL:
система – Российский индекс научного цитирования	https://elibrary.ru/project_risc.asp
(РИНЦ)	
Информационная система - Единое окно доступа к	URL: http://window.edu.ru/
информационным ресурсам	
Поисковая система Академия Google (Google Scholar)	URL: https://scholar.google.ru
Электронная база периодических изданий East View	https://dlib.eastview.com/
Information Services, ООО «ИВИС»	

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Тип и название аудитории | Оснащение аудитории|

Учебные аудитории для проведения занятий лекционного типа Доска, мультимедийные средства хранения, передачи и представления информации

Учебные аудитории для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации Доска, мультимедийный проектор, экран, Комплекс методических разработок (раздаточного материала и методических указаний) и\или комплекс тестовых заданий для подготовки и проведения промежуточных и рубежных контролей

Помещения для самостоятельной работы учащихся Персональные компьютеры с пакетом MSOffice, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета

Помещение для хранения и профилактического обслуживания учебного оборудования | Шкафы для хранения учебно-методической документации, учебного оборудования и учебно-наглядных пособий ||

6 Учебно-методическое обеспечение самостоятельной работы обучающихся

Оценочные средства для текущего контроля успеваемости по итогам освоения дисциплины: типовой расчет (работа предполагает защиту), контрольная работа (аудиторная или внеаудиторная, возможно применение Интернет-тренажеров), индивидуальное домашнее задание. Промежуточная аттестация проводится в форме семестрового экзамена.

Оценочные средства текущего контроля успеваемости по разделам, порядок выполнения, трудоемкость самостоятельной работы по подготовке к контролю приводятся ниже.

Примерные аудиторные контрольные работы (АКР):

АКР №1 «Матрицы, определители, СЛУ»

Задача 1. Найдите произведение матриц

$$\begin{pmatrix}
2 & 4 & -1 \\
0 & 3 & 7 \\
0 & 0 & -2
\end{pmatrix}
\cdot
\begin{pmatrix}
1 & 1 & -1 \\
2 & -2 & 0 \\
1 & 1 & -2
\end{pmatrix}, \qquad 2)
\begin{pmatrix}
2 & -1 & 1 \\
5 & 0 & -6
\end{pmatrix}
\cdot
\begin{pmatrix}
3 \\
-2 \\
5
\end{pmatrix},$$

$$\begin{pmatrix}
5 \\
3 \\
-1
\end{pmatrix}
\cdot
(4 & 2 & 0)$$
.

Задача 2. Вычислите определитель

$$\begin{vmatrix} 2 & -4 & 3 \\ 5 & 10 & -1 \\ 0 & 4 & 7 \end{vmatrix}$$

Задача 3. Найдите обратные для матриц

$$\begin{pmatrix}
1 & -4 \\
3 & 2
\end{pmatrix} \quad \begin{pmatrix}
1 & 0 & 0 \\
2 & 5 & -1 \\
4 & 7 & 1
\end{pmatrix}.$$

Задача 4. Решите систему а) матричным способом и

б) по формулам Крамера; в) методом Гаусса:

$$\begin{cases} x + 3y + 2z = -7 \\ 3x + 2y + 5z = 6, \\ 4x + 3y + z = 1. \end{cases}$$

АКР №2 «Векторы»

- 1. Постройте на плоскости векторы $\bar{a}=(4;-1)$, $\bar{b}=(-2;5)$, $\bar{c}=(1;2)$. Найдите их линейную комбинацию $2\bar{a}+\bar{b}+3\bar{c}$ а) геометрически, б) аналитически.
- 2. $\bar{a} = (2;1;-3)$, $\bar{b} = (-4;0;2)$, $\bar{c} = (1;1;-2)$. Найдите:

 а) длину вектора \bar{a} , его направляющие косинусы, орт вектора \bar{a} ;

$$(\overline{a})$$
 $\overline{a} \times \overline{b}$, $\overline{a} \times \overline{c}$, $\overline{b} \times \overline{c}$, $(\overline{a} + 2\overline{c}) \times (3\overline{a} - 5\overline{b})$

$$(\overline{a} + \overline{2c})(3\overline{a} - 5\overline{b})(\overline{c} - 2\overline{b})$$

3.
$$\overline{a} = (1;4;-3)$$
 , $\overline{b} = (3;-2;5)$, $\overline{c} = (3;-4;2)$. Найдите площадь параллелограмма, построенного на векторах $\overline{a} + 2\overline{b}$ и $\overline{c} - 3\overline{b}$, и длины его сторон.

4. Проверьте, являются ли векторы $\overline{a} = (1;1;3)$, $\overline{b} = (3;0;-2)$, $\overline{c} = (-1;1;3)$

4. Проверьте, являются ли векторы
$$\overline{a} = (1;1;3)$$
, $\overline{b} = (3;0;-2)$, $\overline{c} = (-1;1;3)$ компланарными.

5. Найдите
$$(3\bar{a} + \bar{b})(\bar{c} - 2\bar{a})(\bar{b} - 5\bar{c})$$
, если $\bar{a}\bar{b}\bar{c} = 5$.

АКР №2 «Аналитическая геометрия»

- 1. Даны координаты вершин A(3;0); B(-5;6); C(-4;1) треугольника. Найдите:
- 1) длину стороны АВ;
- 2) уравнение высоты, проведенной через вершину С.
- 2. Даны координаты вершин пирамиды $A_1 A_2 A_3 A_4$. Найти:
 - 1) уравнение прямой A_1A_2 ;
 - 2) уравнение плоскости $A_1 A_2 A_3$;
 - 3) длину высоты, опущенной из вершины A_4 на грань $A_1 A_2 A_3$.
- 3. Привести уравнение кривой $x^2 2x + 3y^2 + 12y 5 = 0$ к каноническому виду и построить ее.

АКР №3 «Пределы»

Вычислить пределы:

1.
$$\lim_{x \to -2} \frac{x^3 + 3x^2 + 2x}{x^2 - x - 6}$$

1.
$$\lim_{x \to -2} \frac{x^3 + 3x^2 + 2x}{x^2 - x - 6}$$
 2.
$$\lim_{n \to \infty} \frac{(x - 7)(x - 3)(x - 4)}{5x^4 - x^2 + 11}$$

3.
$$\lim_{x \to \infty} \left(\frac{x^3}{2x^2 - 1} - \frac{x^2}{2x + 1} \right)$$
 4. $\lim_{x \to -2} \frac{tg \pi x}{(x + 2)}$

$$4. \quad \lim_{x \to -2} \frac{tg \, \pi x}{(x+2)}$$

5.
$$\lim_{x \to 0} (1-4x)^{\frac{1}{3x}+7}$$

6.
$$\lim_{x\to 0} xctg\,5x$$

7.
$$\lim_{x\to 1-0} 3^{\frac{1}{x-1}}$$

8. Исследовать на непрерывность
$$f(x) = \begin{cases} x - 3 \ ecnu \ x < 0 \\ 5^x \ ecnu \ x \ge 0 \end{cases}$$

АКР №4 «Производная»

1. Найдите первую производную от функций:

a)
$$\begin{cases} x = \sqrt{1 - 25t^2}, \\ y = \arccos 5t + \pi, \end{cases}$$
 6) $y = x \cdot \cos 3x,$ B) $y = \frac{x^2 - 3x + 2}{x^2 + 2x + 1} - 5 \cdot \log_2 x + 3$

$$y = 5^{x^3 + \sqrt{x}} - 2arctg(4x^2 + 3x).$$

- 2. Составьте уравнения касательной к кривой xy = 4 в точке $x_0 = 1$.
- Вычислите приближенно $y = \sqrt{x^2 + 8}$ при x = 1,09.

4. Вычислите предел по правилу Лопиталя $\lim_{x\to 0} \frac{\cos 4x - 1}{(e^{4x} - 1)^2}$.

АКР №5 «Неопределенный интеграл»

. Найти неопределённые интегралы:

a)
$$\int \frac{x^2 + 5x - \sqrt{x} + 2}{x^2} dx$$
, 6) $\int \sin(3x + 1) dx$, B) $\int \sin x e^{\cos x} dx$, Γ) $\int \frac{5x - 2}{x^2 + 4x + 5} dx$,

д)
$$\int \frac{3x-4}{\sqrt{x^2-6x+13}} dx$$
, e) $\int x \sin(2x) dx$, ж) $\int x \arcsin x dx$, з) $\int \frac{x-1}{x^3+1} dx$, и) $\int \frac{x-3}{(x^2-4)^2} dx$.

АКР №6 «ФНП: дифференцирование»

- 1. Найти и построить область определения функции $z = \frac{\ln(x^2 y)}{\sqrt{y-x}}$.
- 2. Найти частные производные функции $z = x \cdot arctg \frac{y}{1+x^2}$.
- 3. Найти производную сложной функции $z = x^2 y y^2 x$, где $x = u \cos v$; $y = u \sin v$.
- 4. Найти производные $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$ неявной функции $e^z x^2 y \sin xyz = 0$.
- 5. Найти экстремум функции двух переменных $z = 4(x y) x^2 y^2$.

АКР №7 «Обыкновенные дифференциальные уравнения»

1. Найти общий интеграл или общее решение дифференциального уравнения первого порядка (в примере б) решить задачу Коши):

a)
$$20xdx - 3ydy = 3x^2ydy - 5xy^2dx$$
,

$$6) \begin{cases} y' - y \cos x = \sin 2x \\ y(0) = -1 \end{cases}.$$

2. Найти общее решение дифференциального уравнения:

a)
$$y''' + 2y'' - 3y' = (8x + 6)e^x$$
,

6)
$$y'' - 4y' + 4y = e^{2x}(\cos x + 3\sin x)$$
.

АКР №8«Случайные события»

1. По мишени производится три выстрела. Рассматриваются события A, B, C – попадание

- 2. В урне 12 шаров. Среди этих шаров 3 белых и 9 черных. Какова вероятность того, что наудачу вынутый шар окажется белым?
- 3. В радиостудии три микрофона. Для каждого из первых двух микрофонов вероятность того, что он включён в данный момент, равна 0,45, а для третьего 0,9. Найти вероятность того, что в данный момент включены 2 микрофона.
- 4. В продаже имеются белые и коричневые яйца в соотношении 2:3, причем производство 60% белых и 71% коричневых яиц датируется днем, предшествующим дню продажи, а остальные яйца датируются более ранними числами. Покупатель заказывает яйца, датируемые днем, предшествующим дню продажи, независимо от их цвета. Какова вероятность того, что ему продадут решетку белых яиц?
- 5. Телефонная сеть учреждения обслуживает 200 абонентов. Вероятность того, что в течение минуты внутри этой сети кто-то кому-то позвонит, равна 0,7. Какова вероятность того, что в течение минуты будет 5 звонков? Какова вероятность того, что в течение минуты будет не более 5 звонков? Найти наивероятнейшее число звонков в течение минуты.

Примерные индивидуальные домашние задания (ИДЗ):

ИДЗ №1 «Линейная алгебра»

1. Решить матричное уравнение X+3(A-B)=4C, где

$$A = \begin{pmatrix} 1 & 3 \\ -2 & -4 \end{pmatrix}, B = \begin{pmatrix} 3 & 8 \\ -7 & 5 \end{pmatrix}, C = \begin{pmatrix} 8 & 6 \\ -3 & 9 \end{pmatrix}.$$

- 2. Выполнить действия $\begin{pmatrix} -1 & 5 & 6 & 7 \\ 3 & 4 & 2 & 1 \\ 0 & 7 & 8 & 2 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 2 \\ 3 \\ 1 \end{pmatrix} + \begin{pmatrix} 3 & -1 & 4 \\ 5 & 2 & 3 \\ 1 & -2 & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}.$
- $\begin{vmatrix} 1 & 2 & 3 \\ 2 & 0 & 4 \\ 5 & 6 & 7 \end{vmatrix}$.
- 4. Найти обратную матрицу A^{-1} , если $A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & -1 & 2 \\ 4 & 1 & 4 \end{pmatrix}$.
- 5. Решить системы линейных алгебраических уравнений по формулам Крамера, матричным методом, методом Гаусса:

A)
$$\begin{cases} 3x_1 + 4x_2 + 2x_3 = 3 \\ 2x_1 - x_2 - 3x_3 = -3 \\ x_1 + 5x_2 + x_3 = -2 \end{cases}$$
B)
$$\begin{cases} x_1 + x_2 - x_3 = 36 \\ x_1 - x_2 + x_3 = 13 \\ 2x_1 + x_2 + x_3 = 7 \end{cases}$$

6. Решить систему методом Гаусса

$$\begin{cases} x_1 + x_2 + 3x_3 - 2x_4 + 3x_5 = 1\\ 2x_1 + 2x_2 + 4x_3 - x_4 + 3x_5 = 2\\ 3x_1 + 3x_2 + 5x_3 - 2x_4 + 3x_5 = 1\\ 2x_1 + 2x_2 + 8x_3 - 3x_4 + 9x_5 = 2 \end{cases}$$

$$\begin{cases} 2x_1 + x_2 + x_3 = 0 \\ 5x_1 - x_2 - x_3 = 0 \\ x_1 - 3x_2 - 3x_3 = 0 \end{cases}$$

ИДЗ №2 «Аналитическая геометрия»

- 1. В какой точке прямая, проходящая через точки A(3,-2) и B(-1,2), пересекает ось Оу.
- 2. Найти расстояние между прямыми 4x-3y-7=0 и 4x-3y+3=0.
- 3. Написать канонические и параметрические уравнения прямой, проходящей через точки M(2,1,-1) и K(3,3,-1).
- 4. Провести прямую через точку A(2,0,-1) перпендикулярно плоскости 3x+4y-z+4=0.
- 5. Провести плоскость через точку A(2,0,-1) параллельно плоскости 3x+4y-z+4=0.
- 6. Провести плоскость через точки A(1,0,2), B(-1,2,0), C(3,3,2).
- 7. Доказать, что прямые взаимно перпендикулярны:

$$\frac{x}{1} = \frac{y-2}{-2} = \frac{z}{3} \quad \text{if } \begin{cases} 3x + y - 5z + 1 = 0, \\ 2x + 3y - 8z + 3 = 0. \end{cases}$$

8. Доказать, что прямые параллельны:

$$\frac{x+2}{3} = \frac{y-1}{-2} = \frac{z}{1} \quad \text{if} \quad \begin{cases} x+y-z=0\\ x-y-5z-8=0 \end{cases}.$$

- 9. Найти угол между прямой, проходящей через точку A(-1,0,-5) и точку B(1,2,0), и плоскостью x-3y+z+5=0.
- 10. Определить тип и построить линию:

a)
$$x^2 - 9y^2 + 2x + 18y + 73 = 0$$
;

6)
$$2x^2 + 3y^2 - 4x + 6y - 7 = 0$$
;

B)
$$y^2 - 4x - 2y - 3 = 0$$
.

ИДЗ №3 «Предел. Непрерывность»

1. Найти пределы функций:

$$\lim_{x \to \infty} \frac{2x^3 + x^2 + 5}{3x^3 - x + 1}; \lim_{x \to -1} \frac{x^3 - 3x - 2}{x^2 - x - 2}; \lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{\sqrt{x - 2} - 1}; \lim_{x \to 0} \frac{1 - \cos 4x}{2x \cdot tgx};$$

$$\lim_{x \to +\infty} x \cdot (\sqrt{x^2 + 1} - x); \lim_{x \to \infty} \left(\frac{2x - 1}{2x + 1}\right)^x; \lim_{x \to 0} (1 - 4x)^{\frac{1}{3x} + 7}; \lim_{x \to 0} \frac{\ln(1 + 2x)}{e^{3x} - 1}.$$

2. Исследовать на непрерывность, найти точки разрыва, сделать чертеж:

$$y = 4^{\frac{1}{3-x}}; \quad y = \begin{cases} x+4, & x < -1, \\ x^2 + 2, & -1 \le x < 1, \\ 2x, & x \ge 1. \end{cases}$$

ИДЗ №4 «Производная»

Нахождение производной

1. Найти производные и дифференциалы первого порядка

1)
$$y = \frac{7\cos x}{5x+1}$$
,

2)
$$y = (2+5x)^4 - 3\cos 7x$$
,

3)
$$y = \frac{7}{3} - 4x \cdot \arcsin x$$
,

4)
$$y = (\cos x)^{tgx}.$$

2. Найти производную функции, заданной неявно $e^y - 5xe^x - 2xy + 11 = 0$.

3.Найти производную функции, заданной параметрически
$$\begin{cases} x = 3\cos t - 5, \\ y = 4t^3 + 5. \end{cases}$$

4. Найти производные первого порядка функции $y = x^2 e^{2x}$.

Производная высших порядков. Приложения производной

1. Найдите
$$\frac{dy}{dx}$$
 и $\frac{d^2y}{dx^2}$ функций: a) $\begin{cases} x = 3t - t^3, \\ y = 3t^2; \end{cases}$ б) $y = 5^{\sqrt{x}}$.

- 2. а) Напишите уравнение касательной к параболе $y = x^2 4x + 2$ в точке с абсциссой $x_0 = 0$. Постройте график и касательную.
- б) Напишите уравнение касательной к кривой $x^2 + y^2 4x + 2y 164 = 0$ в ее точке с координатами (7; 11). Постройте кривую и ее касательную.
- 3. Найдите наибольшее и наименьшее значения функции на заданном отрезке

$$f(x) = 2x^3 - 6x^2 - 18x + 7$$
 $x \in [-2, 2].$

4. Вычислите пределы, используя правило Лопиталя:

a)
$$\lim_{x \to 2} \frac{2x^3 - 8x^2 + 13x - 10}{x^3 - 2x^2 + 3x - 6}$$
;

6)
$$\lim_{x\to+0} x \cdot \ln(e^x - 1)$$
.

5. Зависимость пути от времени при прямолинейном движении точки задается уравнением $s=\frac{1}{3}t^3+2t^2-3$, где s — путь в м, а t — время в с. Вычислите ее скорость и ускорение в момент времени t=4c .

Применение производной для исследования функций

- 1. Постройте график функции с помощью производной первого порядка $y = -x^3 3x^2 + 9x + 11$.
- 2. Найдите промежутки выпуклости, вогнутости и точки перегиба функции $y = 2x 3\sqrt[3]{x^2}$.
- 3. Найдите асимптоты и постройте схематично график функции $y = \frac{x^3}{(x+1)^2}$.
- 4. Проведите полное исследование функции и постройте график $y = \frac{x^2 3x + 3}{x 1}$.
- 5. Проведите полное исследование функции и постройте график $y = \frac{\ln x}{r} \, .$

ИДЗ №5 «Неопределенный интеграл. Определенный интеграл и его приложения»

1. Найти неопределенные интегралы

$$1. \int \left(\frac{1}{3\sqrt{x}} - \frac{x\sqrt[3]{x}}{5} + 1 \right) dx$$

$$2.\int \left(\frac{2}{3+x^2} - \frac{1}{2\sqrt{x^2-3}}\right) dx$$

$$3. \int \left(\frac{3}{\sqrt{2-7x}} - \frac{4}{\sin\left(\frac{2x}{5} - 1\right)} \right) dx$$

$$4. \int \frac{ctg^3 x - 6}{\sin^2 x} dx$$

$$5. \int x \left(3x^2 + 1\right)^4 dx$$

$$6. \int \frac{2x-1}{x^2 + 2x + 10} dx$$

$$7. \qquad \int \sqrt{1 - e^x} e^x dx$$

$$8. \qquad \int \frac{4x+3}{(x-2)^3} \, dx,$$

9.
$$\int xe^{-3}dx,$$

$$10. \qquad \int \frac{dx}{x(x^2+1)},$$

$$11. \qquad \int \frac{dx}{\sqrt{x} + \sqrt[3]{x} + 2\sqrt[4]{x}},$$

12.
$$\int \frac{dx}{\cos x \sin^3 x},$$

$$13 \qquad \int \frac{dx}{(x+1)\sqrt{x^2+2x-1}}.$$

2. Вычислить определенные интегралы

1.
$$\int_{1}^{2} (x^2 + \frac{1}{x^4}) dx$$
. 2. $\int_{2}^{\pi} \ln \sin x dx$

3. Вычислить площадь фигуры, ограниченной линиями

1)
$$3x - y = 4$$
, $y^2 = 6x$

2)
$$r = \cos 2\varphi$$
, $0 \le \varphi \le \frac{\pi}{6}$

3)
$$\begin{cases} x = 2\cos t, \\ y = 6\sin t; \end{cases}$$

$$y = 3(y \ge 3).$$

4. Вычислить длину дуги кривой, заданной уравнением

$$1) y = \ln x,$$

$$\sqrt{3} \le x \le \sqrt{15}$$
.

2)
$$\rho = 3e^{3\varphi/4}$$
,

$$-\pi/2 \le \varphi \le \pi/2$$

3)
$$\begin{cases} x = e^{t} (\cos t + \sin t), \\ x = e^{t} (\cos t - \sin t), \end{cases}$$

$$\pi/2 \le t \le \pi$$

5. Вычислить объем тела, образованного вращением вокруг оси Оу фигуры, ограниченной графиками функций $x=3-y^2$, $x=y^2+1$

ИДЗ №6 «ФНП: частные производные, экстремум»

- 1. Найти область определения функции $z = \frac{\ln(1 x^2 y^2)}{1 \sqrt{y}}$.
- 2. Найти значения частных производных функций в заданной точке:

A)
$$z = x^{\frac{1}{y}}$$
 (1;1)

$$\mathrm{E}) \ \ z = \ln\left(\sqrt{x} + \sqrt{y}\right) \ \ (1;1).$$

3. Найти
$$\frac{\partial^2 u}{\partial x^2}$$
, если $u = xy + \sin(x + y)$.

4. Вычислить приближенно $\sqrt{5 \cdot e^{0.02} + 2.03^2}$

- 5. Найти экстремумы функции $z = x^2 + 2y^2 4x 6y + 2$.
- 6. Найти производную функции $z = \frac{\ln x}{v} \frac{\ln y}{r}$ в направлении вектора (1;1).
- 7. Найти экстремальное значение функции $z = 2x + y y^2 x^2$ при условии x + 2y = 1.
- 8. Найти наибольшее значение функции:

A)
$$z = x - 2y + 5$$

$$\begin{cases} x \ge 0 \\ y \ge 0 \\ x + y \le 1; \end{cases}$$
 B) $z = \ln(x^2 + y^2)$

$$\begin{cases} x + 2y \le 1 \\ x \ge 0 \\ y \ge 0. \end{cases}$$

ИДЗ №7 «Кратные интегралы»

- 1. Вычислить повторный интеграл $\int_{-2}^{2} dy \int_{0}^{y^{2}} (2x+y) dx$.
- 2. Изменить порядок интегрирования в двойном интеграле: $\int_{1}^{4} dy \int_{1}^{\frac{\pi}{3}y + \frac{1}{3}} f(x; y) dx$.
- 3. Вычислить двойной интеграл $\iint_{D} \frac{x^2}{y^2} dx dy$, где D область, ограниченная линиями $y = \frac{1}{x}$, y = x, x = 4.
- 4. Вычислить площадь фигуры, ограниченной окружностями r=1, $r=2\cos\varphi$ (вне окружности

$$r=1$$
).

- 5. Вычислить площадь фигуры, ограниченной линиями $y = \frac{6}{x} u x + y 7 = 0$. 6. Вычислить тройной интеграл $\iiint_{\mathbb{R}} (x^2 + 3y^2) dx dy dz$; $R: 0 \le z \le 3x, \ x + y \le 1, \ y \ge 0$ по фигуре *R*, ограниченной поверхностями.
 - 7. Вычислить объём тела, ограниченного поверхностями z = 8 - x - y, x = 0, $y = x^2$, y = 4, z = 0.
- 8. Найти статические моменты относительно координатных осей пластинки, ограниченной параболой $y = x^2$ $(y \ge 0)$, прямой x=9, если плотность распределения массы в каждой точке равна ординате этой точки.
- 9. Найдите моменты инерции I_{x} , $I_{y_{y}}I_{0}$ однородной пластинки $\left(\delta=1\right)$, ограниченной осями координат и прямой y = 2 - 0.5x.

ИДЗ №8 «Обыкновенные дифференциальные уравнения»

1. Найти общий интеграл или общее решение дифференциального уравнения первого порядка (в примере 3)решить задачу Коши):

1)
$$\sqrt{4-x^2}y' + xy^2 + x = 0$$
, 2) $y' = \frac{x^2 + 2xy - 5y^2}{2x^2 - 6xy}$,

3)
$$\begin{cases} xy' + y = xy^2 \\ y(1) = 1 \end{cases}$$
, 4) $\frac{y}{x^2} dx - \frac{xy+1}{x} dy = 0$.

2. Найти общее решение дифференциального уравнения:

1)
$$y'''x \ln x = y''$$
, 2) $(1+x^2)y'' + 2xy' = 12x^2$.

3. Найти решение задачи Коши:
$$\begin{cases} y'' = 2\sin^3 y \cos y \\ y(1) = \frac{\pi}{2}, \ y'(1) = 1 \end{cases}$$

4. Найти общее решение дифференциального уравнения (в примере д) решить задачу Коши):

1)
$$y'' - 2y' + y = xe^{x}$$
, 2) $y'' + 4y' + 5y = x^{2}$

3)
$$y''' - 4y'' + 5y' = 6x^2 + 2x - 5$$
, 4) $y''' + 2y'' - 3y' = (8x + 6)e^x$,

3)
$$y''' - 4y'' + 5y' = 6x^2 + 2x - 5$$
, 4) $y''' + 2y'' - 3y' = (8x + 6)e^x$,
5) $y'' - 4y' + 4y = e^{2x}(\cos x + 3\sin x)$, 6) $y''' - 64y' = 128\cos 8x - 64e^{8x}$,

7)
$$\begin{cases} y'' + y = 1/\sin x \\ y(\pi/2) = 1, \ y'(\pi/2) = \pi/2 \end{cases}$$

5. Решите систему ДУ первого порядка двумя способами - подстановки и методом Эйлера

$$\begin{cases} y' = 2x - 5y + e^t \\ x' = y - 6x + e^{-2t} \end{cases}$$

ИДЗ №9 «Теория вероятностей»

- 1. Производится 5 выстрелов по резервуару с горючим, причем резервуар после первого попадания в него воспламеняется, а после второго попадания в него – взрывается. Вероятность попадания в резервуар при каждом выстреле равна 0,3. Найти вероятность того, что резервуар будет подожжен, но не взорвется.
- В семье трое детей: 2 мальчика и девочка. Дети играют на кухне. Вероятность того, что мальчики разобьют посуду соответственно равна 0,7 и 0,8, а для девочки – 0,4. Найти вероятность того, что посуда будет разбита.
- 3. Саша попадает в мишень при одном выстреле с вероятностью 0,8, Маша с вероятностью 0,7, а Паша – с вероятностью 0,75. Саша выстрелил 2 раза, Маша – 3 раза, Паша – 1 раз, после чего в мишени было обнаружено одно отверстие. Какова вероятность того, что в мишень попала Маша?
- 4. Разрыв связи происходит в одном из звеньев телефонного кабеля. Монтёр последовательно проверяет звенья, обнаруживая место разрыва. Составить ряд распределения числа обследованных звеньев, если вероятность разрыва для каждого звена постоянна и равна р.
- 5. Задан ряд распределения дискретной случайной величины X.

X	1	2	3	4	5	6
P	0,03	0,15	0,20	0,35	0,15	?

распределения и построить её график. Вычислить математическое ожидание $m_{_X}$, дисперсию D[X] , среднее квадратическое отклонение $\sigma_{_X}$ и вероятность $P(m_{_X}-\sigma_{_X}\leq X\leq m_{_X}+\sigma_{_X}).$

6. Задана функция распределения случайной величины Х

$$F(x) = \begin{cases} 0, & x < 3, \\ \frac{1}{4}(-x^3 + 12x^2 - 45x + 54), & 3 \le x \le 5, \\ 1, & x > 5. \end{cases}$$

Найти плотность распределения. Построить графики функции и плотности распределения. Вычислить математическое ожидание, дисперсию и вероятность $P(X \in (0,4))$.

7. В таблице приведён закон распределения вероятностей системы случайных величин (X, У)

X					
у	- 2	- 1	0	1	2
1	0,01	0,03	0,04	0,14	0,08
2	0,07	0,06	0,04	0,10	0,05
3	0,05	0,03	0,16	0,06	a

Найти: коэффициент «а»; математические ожидания m_x , m_y ; дисперсии σ_x^2 , σ_y^2 ; коэффициент корреляции r_{xy} .

ИДЗ №10 «Первичная обработка результатов эксперимента», «Числовые характеристики генеральных параметров»

,	Дан стат	истичесь	кий ряд (исходнь	іе значен	ния велич	чин)		
X	У	X	У	X	У	X	У	X	У
38,4	18,7	40,7	24	30,3	18	27,3	25,1	22	21
40,2	11,7	50,8	9	28,4	15,7	38	20,6	32	28,6
24,1	20,9	38,2	22,8	47,6	11,3	52,8	15,2	19,5	19,7
32,5	22,4	36	19,8	30,3	21,3	48	24,5	46	20,3
25	29,5	35,7	15,3	30,5	27,8	26	28,7	27,8	15,5
38,1	19,6	34,3	20,7	48,7	11,5	32,5	28	35,2	30,7
16,8	32,2	43,8	13	16,8	18,3	57,1	2,9	41,6	18,2
28,8	29,7	35,5	24	23,9	20,2	40	23,8	42,5	15,3
47,1	14,7	45,9	24	54,3	14,2	50,7	15,9	32,9	22,5
50,1	15,9	29,3	21,9	60,8	27,2	58,6	9,3	35,6	22,7
30,2	25	54,2	14,2	21,4	19,8	40,1	17,4	47	17,3
36,9	23,2	59,8	6,1	38,4	23	34,4	23,4	31,4	30,2
36,6	7,9	32,2	22,3	46,8	20,5	53,7	12,4	28,2	30
38	15,4	52	6,1	23,8	18,3	42,1	28,5	33,7	19,8
55	11	31,2	24,2	37,9	32,6	43	20,2	27,6	18,5
16,2	25,2	51,2	14,2	30,6	21,5	23,5	14,6	36,8	10,7
49,7	15,9	32,2	20,4	37	24,5	32,9	25,8	45,5	14,8
49,7	19,5	30,9	20,7	57,6	20,3	54	14,4	18,6	15,3
42,3	19,7	41,5	10,8	41,9	14,6	42,3	23,5	25,8	27,4
35,7	11,9	41,2	9,8	34,1	26,3	58,8	9,2	39,2	17,5

Найти выражение двумерного эмпирического распределения (X, Y), эмпирические распределения составляющих X и Y, построить графическое отображение распределений. Для этого - составить корреляционное поле, корреляционную таблицу абсолютных частот, вариационные ряды, таблицу «Статистическая совокупность измеримого признака».

По данным, полученным раннее, оцените генеральные параметры: найдите среднее, дисперсия, среднее квадратичное отклонение, асимметрия, эксцесс, мода, медиана, коэффициент вариации для признаков X и У. Оцените степень отклонения эмпирического

распределения этого измеримого признака от нормального распределения.

Для этого заполните таблицу «Расчет выборочных оценок признаков» и проведите расчеты исправленных оценок генеральных параметров. Сделайте вывод о коэффициенте вариации.

ИДЗ №11 «Проверка статистических гипотез», *«Выяснение корреляционной зависимости измеримых признаков»*

По данным, полученным в ИДЗ №10, провести статистическую проверку статистической гипотезы о нормальном распределении измеряемого признака по следующим критериям: а) среднему квадратичному отклонению, б) размаху варьирования, в) показателям исправленных асимметрии и эксцесса, г) критерию Пирсона χ^2 (уровень значимости принять равным 0.05). В случае принятия гипотезы о нормальности распределения найти доверительные интервалы для математического ожидания и среднего квадратичного отклонения при уровне надёжности 0.95.

По данным задачи, исследуемой в ИДЗ №№ 10, найти и записать в корреляционную таблицу условные средние. На корреляционном поле построить линии регрессии. Найти исправленный корреляционный момент и коэффициент корреляции. Проверить гипотезу о независимости признаков X и Y (уровень значимости принять равным 0.05). Рассчитать коэффициенты линейной регрессии (X на Y или Y на X). Проверить значимость уравнения регрессии. Найти доверительные интервалы для коэффициентов корреляции и линейной регрессии (при уровне надёжности 0.95).

7 Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

	он аттестации.	
Структурный	Планируемые	
элемент	результаты	Оценочные средства
компетенции	обучения	
ОПК-1 умени	ем использовать ос	новные законы естественнонаучных дисциплин в
профессионал	тьной деятельности	, применять методы математического анализа и
моделирован	ия, теоретического	и экспериментального исследования
Знать	- основные положения линейной и векторной алгебры, аналитической геометрии - основные положения теории пределов и непрерывных функций, - основные теоремы дифференциального и интегрального и интегрального исчисления функций переменных, методы дифференциального исчисления исследования функций, - основные типы	 Теоретические вопросы для экзамена Определители, их свойства, вычисление. Матрицы, действия над ними. Системы линейных уравнений. Матричная запись их. Правило Крамера. Решение систем линейных уравнений при помощи обратной матрицы. Метод Гаусса решения произвольных систем уравнений. Геометрический вектор. Разложение вектора по базисным векторам. Действия над векторами в координатной форме. Длина вектора и угол между векторами в координатной форме. Скалярное произведение векторов и его свойства. Условие ортогональности двух векторов. Векторное произведение векторов и его свойства.

Consulation	Пионируами	
Структурный		Owayrawyy ra anawamna
элемент	результаты	Оценочные средства
компетенции	1	
	обыкновенных	элементарные функции, их свойства, графики.
	7T T T -1	14. Предел функции в точке. Предел функции в бесконечности.
	уравнений и методы	Односторонние пределы. 15. Бесконечно малые и бесконечно большие функции, связь между
	их решения,	
	- основные понятия	16 Tagger a manager Dagger and a manager a manager a
	и математической	18. Сравнение бесконечно малых функций. Эквивалентные
	статистики	бесконечно малые функции и основные теоремы о них.
	!	Применение к вычислению пределов.
		 Непрерывность функции в точке. Точки разрыва и их классификация.
	!	20. Основные теоремы о непрерывных функциях. Свойства функций непрерывных на отрезке.
	!	21. Производная функции, ее геометрический и физический смысл.
		22. Уравнения касательной и нормали к кривой.
		Дифференцируемость функции в точке.
	!	23. Производная суммы, разности, произведения, частного
		функций. Производная сложной и обратной функций.
	!	24. Дифференцирование неявных и параметрически заданных
	!	функций. Логарифмическое дифференцирование.
		25. Производные высших порядков.
	!	 Дифференциал функции. Геометрический смысл дифференциала. Основные теоремы о дифференциалах.
	!	дифференциала. Основные теоремы о дифференциалах. 27. Применение дифференциала к приближенным вычислениям.
		28. Основные теоремы дифференциального исчисления: Ролля,
	!	Лагранжа и Коши.
	!	29. Правило Лопиталя.
		30. Условия монотонности функций. Экстремумы функций.
	!	Необходимое и достаточное условия экстремума функции. 31. Наибольшее и наименьшее значения функции на отрезке.
		31. Наиоольшее и наименьшее значения функции на отрезке. 32. Выпуклость графика функции. Точки перегиба. Необходимое и
		достаточное условия точек перегиба.
		33. Асимптоты графика функции.
	!	34. Первообразная. Неопределенный интеграл и его свойства.
	!	Таблица основных интегралов.
	!	35. Основные методы интегрирования: замена переменной и интегрирование по частям.
	!	интегрирование по частям. 36. Интегрирование рациональных функций.
		37. Интегрирование рациональных функции.
		38. Интегрирование притонометрических функций.
		39. Определенный интеграл как предел интегральной суммы, его свойства.
	!	40. Формула Ньютона – Лейбница. Основные свойства определенного интеграла.
	!	41. Вычисление определенного интеграла (замена переменной,
	!	интегрирование по частям). Интегрирование четных и нечетных функций в симметричных пределах.
	!	функции в симметричных пределах. 42. Несобственные интегралы.
		43. Геометрические и физические приложения определенного
	!	интеграла.
	!	44. Область определения ФНП. Предел, непрерывность. Свойства
	!	функций, непрерывных в ограниченной замкнутой области. 45. Частные производные первого порядка, их геометрическое
		истолкование.
		46. Частные производные высших порядков.
		47. Дифференцируемость и полный дифференциал функции.
	!	48. Применение полного дифференциала к приближенным
	!	вычислениям. Дифференциалы высших порядков.
	·	49. Производная сложной функции. Полная производная.

Структурный элемент	Планируемые результаты	Оценочные средства
компетенции	обучения	Оценочные средства
		50. Инвариантность формы полного дифференциала.
		51. Дифференцирование неявной функции.
		52. Касательная плоскость и нормаль к поверхности.
		53. Экстремум функции двух переменных. Необходимое и
		достаточное условие экстремума. 54. Условный экстремум. Метод множителей Лагранжа.
		55. Наибольшее и наименьшее значения функции в замкнутой
		области.
		56. Двойной интеграл: основные понятия и определения.
		57. Геометрический и физический смысл двойного интеграла.
		58. Основные свойства двойного интеграла. 59. Вычисление двойного интеграла в декартовых координатах.
		60. Вычисление двойного интеграла в полярных координатах.
		61. Приложения двойного интеграла.
		62. Тройной интеграл: основные понятия, свойства.
		63. Вычисление тройного интеграла в декартовых координатах.
		 Геометрический и физический смысл, приложения тройного интеграла.
		интограла. 65. Дифференциальные уравнения: основные понятия. Задачи,
		приводящие к дифференциальным уравнениям.
		66. Уравнения с разделяющимися переменными.
		67. Однородные дифференциальные уравнения 1 порядка.
		68. Линейные уравнения. Уравнения Бернулли.
		 Уравнение в полных дифференциалах. Дифференциальные уравнения высших порядков: основные
		понятия.
		71. Уравнения, допускающие понижение порядка.
		72. Линейные дифференциальные уравнения высших порядков.
		Линейные однородные дифференциальные уравнения 2, n-го
		порядков. 73. Интегрирование ЛОДУ с постоянными коэффициентами.
		74. Линейные неоднородные ДУ. Структура общего решения
		лнду.
		75. Метод вариации произвольных постоянных.
		76. Интегрирование ЛНДУ с постоянными коэффициентами и
		правой частью специального вида. 77. Системы дифференциальных уравнений. Теорема
		существования и единственности решения. Метод исключения
		для решения нормальных систем дифференциальных уравнений.
		78. Числовые ряды. Сходимость числового ряда, необходимое
		условие сходимости. Свойства сходящихся рядов.
		 Ряды с положительными членами. Признаки сравнения. Интегральный признак сходимости Коши. Признак Даламбера
		сходимости ряда. Радикальный признак Коши сходимости ряда.
		81. Знакопеременные ряды. Ряд Лейбница.
		82. Абсолютно и условно сходящиеся ряды. Свойства абсолютно
		сходящихся рядов.
		 Функциональные ряды. Область сходимости функционального ряда. Предельная функция.
		ряда. Предельная функция. 84. Равномерная сходимость функциональной последовательности
		и функционального ряда. Признак Вейерштрасса.
		 Степенные ряды. Теорема Абеля. Радиус сходимости, интервал сходимости. Свойства степенных рядов.
		 Разложение функции в степенной ряд. Ряд Тейлора. Формула Тейлора.
		87. Численные методы решения алгебраических и трансцендентных
		уравнений. 88. Численные методы решения определенного интеграла.
		89. Элементы комбинаторики: перестановки, размещения,
1		сочетания.

Структурный элемент	Планируемые результаты	Оценочные средства
компетенции	обучения	1
		 Основные понятия теории вероятностей: испытание, событие, вероятность события. Действия над событиями. Алгебра событий. Теоремы сложения и умножения вероятностей. Формула полной вероятности. Формула Бейеса. Последовательность независимых испытаний. Формула Бернулли. Случайные величины, их виды. Ряд распределения. Функция распределения, ее свойства. Плотность распределения, свойства. Числовые характеристики случайных величин: математическое ожидание, дисперсия, среднее квадратическое отклонение. Нормальный закон распределения случайной величины. Системы случайных величин. Закон распределения. Числовые характеристики системы случайных величин. Зависимость случайных величин. Пол.Предмет математической статистики. Генеральная совокупность и выборка. Вариационный ряд. Полигон. Гистограмма. Эмпирическая функция распределения. Статистические оценки параметров распределения генеральной совокупности. Статистическая проверка гипотез. Критерий согласия. Критерий Пирсона
Уметь	выбирать методы и способы решения задач, связанных с линейной и векторной алгеброй, аналитической геометрией — самостоятельно и обосновано применять методы дифференциальн ого исчисления для исследования функций одной и двух переменных (в том числе на экстремум, поведение на границе области задания и т.п.); — выявлять, строить и решать математические модели прикладных	а) $\begin{vmatrix} 3 & -2 \\ 3 & 2 \end{vmatrix}$; б) $\begin{vmatrix} -1 & 2 & 2 \\ 3 & -2 & 5 \end{vmatrix}$ 2. Решить систему уравнений методом Крамера: $\begin{cases} x_1 + 3x_2 + x_3 = 0 \\ -x_1 + 2x_2 + 2x_3 = -3 \end{cases}$ $\begin{cases} 3x_1 - 2x_2 + 5x_3 = -2 \end{cases}$ 3. Даны матрицы $A = \begin{pmatrix} -1 & 2 \\ 7 & -3 \end{pmatrix}$ и $B = \begin{pmatrix} 5 & -2 \\ 3 & 2 \end{pmatrix}$. Найдите матрицу $A \cdot B$. 4. Даны точки $A(-1;-1;0)$, $B(3;1;6)$, $C(0;1;2)$, $D(6;4;7)$. Найдите: а) координаты векторов \overrightarrow{CA} и \overrightarrow{CB} ; б) скалярное произведение $\overrightarrow{CA} \cdot \overrightarrow{CB}$ и угол между векторами \overrightarrow{CA} и \overrightarrow{CB} ; в) векторное произведение $\overrightarrow{BD} \times \overrightarrow{CD}$; г) объём пирамиды $ABCD$; е) уравнение прямой AC . 5. Вычислите пределы: $1 + 4x - x^4$ $3x \cdot \arcsin 2x$

Структурный элемент	Планируемые результаты	Оценочные средства
компетенции	обучения	1 //
	распознавать	7. Вычислить: a) $\sqrt[3]{-\sqrt{3}+i}$, б) $(1-i)^{28}$. 8. Найти неопределённый интеграл: a) $\int \sin 3x \cdot \cos 5x dx$, б)
		$\int \frac{1-\cos x}{(x-\sin x)^2} dx.^{\mathrm{B}} \int (2x+5) \cdot e^x dx.$
		5. Вычислить определенный интеграл $\int_{2}^{\sqrt{20}} \frac{x dx}{\sqrt{x^2 + 5}}.$
		6. Вычислить определенный интеграл $\int_{0}^{1} 4x \cdot \arcsin x dx$
		7. Найти площадь фигуры, ограниченной линиями: $x = 4$, $y^2 = 4x$.
		8. Изменить порядок интегрирования $\int_{-2}^{-1} dy \int_{-\sqrt{2+y}}^{0} f dx + \int_{-1}^{0} dy \int_{-\sqrt{-y}}^{0} f dx.$
		9. Вычислить $\iint_{D} \frac{dxdy}{\sqrt{x^2 + y^2}}, \ D: x \le y \le \sqrt{1 - x^2}, \ x \ge 0.$
		10. Найти и построить область определения функции $u = \sqrt{9 - x^2 - y^2} + (x - y)^3$
		11. Найти полный дифференциал функции:
		$z = x^3 \ln y - \sin 2xy.$
		12. Найти частные производные первого порядка функции:
		$z = 5x^2y^3 + \ln(x+4y).$
		13. Написать уравнение касательной плоскости и нормали к поверхности $z = \sqrt{x^2 + y^2}$ в точке (3, 4, 5).
		14. Исследовать на экстремум функцию $z = x^2 - 2xy + 4y^3$
		15. Решите задачу Коши: $y \cos^2 x dy = (y^2 + 1) dx$, $y(0) = 0$.
		16. Найдите общее решение дифференциального уравнения $y'' + y' = e^{2x}$.
		17. Решить однородную систему дифференциальных уравнений:
		$\begin{cases} x' = 6x - y, \\ y' = x + 4y. \end{cases}$
		y' = x + 4y. 18. При доставке с завода на базу 1000 радиоприемников, у 55 вышли
		из строя лампы. Найти вероятность того, что взятый наудачу
		приемник будет исправным. 19. Пятнадцать экзаменационных билетов содержат по 2 вопроса,
		которые не повторяются, экзаменующийся знает только 25 вопросов.
		Найти вероятность того, что экзамен будет сдан, если для этого достаточно ответить на два вопроса одного билета.
		20. Принимаем вероятности рождения мальчика и девочки равными.
		Найти вероятность того, что среди 10 новорожденных 6 окажутся мальчиками.
		21. Дан закон распределения дискретной случайной величины:
		x: 10 20 130 40 50
		вычислить ее математическое ожидание, дисперсию и среднее

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства									
		квадратическое отклонение. 22. Дана функция распределения непрерывной случайной величины X									
		Найти	плотно	ость	$F(x) = \begin{cases} 0.2 \\ \\ pаспреде \end{cases}$	1	при	x < 0 $0 <= x <=$ $x > 1$		график,	
		вероятность попадания в заданный интервал $[0,5;2]$, Mx, Dx, σ_x . 24. Задано распределение вероятностей дискретной двумерной случайной величины:									
			Y\X 4	0,	2 0,1),30		8 0,35	
		Найти корреляі	8 закон ции	0, ы	0,0 распредел		составля),12 іющих,	коэфф	0,03 фициент	
		корреляции $lpha=25$. По выборке при заданном уровне значимости $lpha=0.05$ проверить по критерию Пирсона гипотезу о нормальном распределении генеральной совокупности. В случае принятия гипотезы о нормальном распределении найти доверительные интервалы для математического ожидания a и среднего квадратического отклонения σ при уровне надежности $\gamma=1-lpha$									
			$\frac{x_i}{n_i}$		0	3	6	9	2	5	
Владеть	решения математических моделей прикладных задач; способами оценивания	1. Формулировки основных теорем (свойств, признаков изучаемых понятий, необходимые и достаточные условия) в изучаемых разделах курса. 2. Методы решения систем линейных уравнений. 3. Алгоритмы решений типовых геометрических задач 4. Методы раскрытия неопределенностей, выяснения непрерывности функции одной переменной. 5. Алгоритм приближенного вычисления функции с помощью дифференциала; написания уравнения касательной прямой (плоскости). 46. Алгоритм полного исследования функции. 7. Методы выяснения классов интегрируемых функций, а также методы непосредственного интегрирования и интегрирования основных классов функций. 8. Способы выяснения сходимости несобственных интегралов. 9. Общую схему построения кратных интегралов и сведения их к повторным. 10. Способы нахождения погрешности в приближенных вычислениях корня уравнения и определенных интегралов. 11. Основных интервалов для параметров распределения. 12. Методы проверки допущения ошибок первого или второго рода при проверке статистических гипотез. Примерные практические задания и задачи Задание 1. Составьте алгоритм решения задачи. Задание 2. Вычислите приближенно у = ⁵ √x² при х = 1,03.									

Структурный	Планируемые						
элемент	результаты	Оценочные средства					
компетенции	обучения	_					
		$\arcsin(2x-4)$					
		$\frac{x^2-4}{x^2-4}$.					
		Задание 4. Сформулируйте необходимое условие экстремума					
		функции одной переменной.					
		Вадача 5. Исследуйте функцию и постройте её график:					
		$y = 2 + \frac{12}{x^2 - 4}$.					
		Задача 6. Выясните геометрический смысл определенного интеграла					
		от данной функции в данном интервале в декартовой системе					
		координат. Задание 7. Укажите верное утверждение о функции двух переменных:					
		а). градиент перпендикулярен касательной плоскости;					
		б). градиент является производной по направлению; в). градиент является касательной к линии уровня;					
		в). градиент является касательной к линии уровня, г). градиент определяет направление максимальной скорости					
		изменения функции.					
		Задание 8. Укажите ЛОЖНОЕ утверждение о функции двух					
		переменных:					
		а). непрерывная функция всегда дифференцируема;					
		б). функция, имеющая предел в точке M , может быть разрывна в этой					
		точке;					
		в). у дифференцируемой функции существуют частные производные;					
		производные, Γ). из непрерывности частных производных в точке M следует					
		дифференцируемость функции в этой точке.					
		Задача 9. Двумя методами проведены измерения одной и той же					
		физической величины. Получены следующие результаты:					
		а) в первом случае 145, 133, 143, 121, 135, 132, 133, 148,					
		133, 134;					
		б) во втором случае 128, 120, 116, 115, 143, 115, 120, 138,					
		115, 120.					
		Выясните, можно ли считать, что оба метода обеспечивают одинаковую точность измерений, если принять уровень значимости					
		$\alpha = 0.05$? Предполагается, что результаты измерений распределены					
		нормально и выборки независимы.					