МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИЭиАС В.Р. Храмшин

03.03.2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ТЕОРИЯ ГОРЕНИЯ И ТЕХНОЛОГИИ СЖИГАНИЯ

Направление подготовки (специальность) 13.03.01 Теплоэнергетика и теплотехника

Направленность (профиль/специализация) программы Энергообеспечение предприятий

Уровень высшего образования - бакалавриат

Форма обучения очная

Институт/ факультет Институт энергетики и автоматизированных систем

Кафедра Теплотехнических и энергетических систем

 Курс
 3

 Семестр
 5

Магнитогорск 2021 год Рабочая программа составлена на основе ФГОС ВО - бакалавриат по направлению подготовки 13.03.01 Теплоэнергетика и теплотехника (приказ Минобрнауки России от $28.02.2018 \, \text{r.} \, \text{N} \, \text{243}$)

Рабочая программа рассмотрена и одобрена на заседании кафедры Теплотехнических и энергетических систем 11.02.2021, протокол № 6 Е.Г. Нешпоренко Зав. кафедрой Рабочая программа одобрена методической комиссией ЙЭиАС 03.03.2021 г. протокол № 5 Председатель В.Р. Храмшин Рабочая программа составлена: С.В. Осколков ст. преподаватель кафедры ТиЭС Рецензент: зам.начальника ЦЭСТ ПАО "ММК", канд. техн. наук В.Н. Михайловский

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ
Директор ИЭиАС
В.Р. Храмшин

Γ.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ТЕОРИЯ ГОРЕНИЯ И ТЕХНОЛОГИИ СЖИГАНИЯ

Направление подготовки (специальность) 13.03.01 Теплоэнергетика и теплотехника

Направленность (профиль/специализация) программы Энергообеспечение предприятий

Уровень высшего образования - бакалавриат

Форма обучения очная

Институт/ факультет Институт энергетики и автоматизированных систем

Кафедра Теплотехнических и энергетических систем

Kypc 3

Семестр 5

Магнитогорск 2021 год

Рабочая программа составлена на основе ФГОС ВО - бакалавриат по направлению подготовки 13.03.01 Теплоэнергетика и теплотехника (приказ Минобрнауки России от 28.02.2018 г. № 143)

					И	одобрена	на	заседании	кафедры
Тепло	техническі	их и энерго	етических	к систем					
	, протоко	л №							
				Зав. ка	федр	ой		Е.Г. Н	Іешпоренко
	Рабочая г г. протоко		одобрена	а методиче	еской	і комиссие	й ИЭи	AC	
				Пре	дсед	атель		B.l	Р. Храмшин
		ірограмма даватель к						_С.В. Оскол	КОВ
	Рецензен	г:							
	зам.начал	ьника	ЦЭСТ	ПАО	"N	ИМК''	, F	санд. тех	кн. наук
			B.H. M	[ихайловс	кий				

Лист актуализации рабочей программы

	трена, обсуждена и одобрена для реализации в 2022 кафедры Теплотехнических и энергетических систе	
	Протокол от	енко
	трена, обсуждена и одобрена для реализации в 2023 кафедры Теплотехнических и энергетических систе	
	Протокол от	енко
	трена, обсуждена и одобрена для реализации в 2024 кафедры Теплотехнических и энергетических систе	
		^e M
учебном году на заседании программа пересмо	кафедры Теплотехнических и энергетических систе	енко - 2026

1 Цели освоения дисциплины (модуля)

Целями освоения дисциплины «Теория горения и технологии сжигания» являются: развитие у студентов личностных качеств, а также формирование общекультурных и профессиональных компетенций в соответствии с требованиями ФГОС ВО по направлению подготовки бакалавров 13.03.01 «Теплоэнергетика и теплотехника», готовность принимать участие в технологических процессах производства и использования высокотемпературного теплоносителя.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Теория горения и технологии сжигания входит в часть учебного плана формируемую участниками образовательных отношений образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения) сформированные в результате изучения дисциплин/ практик:

Гидрогазодинамика

Техническая термодинамика

Введение в направление

Математика

Физика

Энергобалансы предприятий

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Производственная-технологическая практика

Теплоэнергетические системы промышленных предприятий

Высокотемпературные процессы и установки

Энергосбережение и вторичные энергоресурсы

Тепловые электрические станции

Теплообмен и тепловые режимы промышленных печей

Технологические энергоносители предприятий

Системы промышленного теплоснабжения

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Теория горения и технологии сжигания» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции
	участвовать в оценке технического состояния, поддержания и оботоспособности тепломеханического оборудования промышленных
ПК-1.1	Оценивает уровень технических решений направленных на повышение эффективности работы тепломеханического оборудования
ПК-1.2	Проводит учет и анализ технико-экономических показателей работы тепломеханического оборудования

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц 108 акад. часов, в том числе:

- контактная работа 73,9 акад. часов:
- аудиторная 72 акад. часов;
- внеаудиторная 1,9 акад. часов;
- самостоятельная работа 34,1 акад. часов;
- в форме практической подготовки 0 акад. час;

Форма аттестации - зачет

Раздел/ тема		кон	Аудиторная онтактная работа (в акад. часах)		Самостоятельная работа студента	Вид самостоятельной	Форма текущего контроля успеваемости и	Код
дисциплины	Семестр	Лек.	лаб. зан.	практ. зан.	Самостс работа	работы	промежуточной аттестации	компетенции
1. Раздел 1. Топл Классификация и основ характеристики.								
1.1 Введение. Общие положения.		2	2		4	Подготовка к семинарскому, практическому, лабораторнопрактическому занятию. Приложение 1.	- семинарские занятия; - лабораторные работы;	
1.2 Характеристика промышленного топлива.	5	8	4/2И	6/2И	6	Поиск дополнительной информации по заданной теме (работа с библиографичес ким материалами, справочниками, каталогами, словарями, энциклопедиями). (Приложение 1. Раздел 6 п.6.1 № 1-7). (Задачи раздел 6 №6-8).	— семинарские занятия; — лабораторные работы; Наличие конспектов лекций	
Итого по разделу	10	6/2И	6/2И	10				
2. Раздел 2. Горение топлива, его особенности и основы расчета.								

2.1 Физические и химические основы теории горения топлива		6	4/2И	4/2И	5	Подготовка к семинарскому, практическому, лабораторнопрактическому занятию. Поиск дополнительной информации по заданной теме (Приложение 1.	устный опрос(собеседование);лабораторные работы;Наличиеконспектов лекций	
2.2 Основные закономерности и особенности горения газообразного, жидкого и твердого топлива	5	6	4/2И	4/2И	6	Раздел 6 п.6.1 № 8-15) Подготовка к семинарскому, практическому, лабораторнопрактическому занятию. Поиск дополнительной информации по заданной теме (Приложение 1. Раздел 6 п.6.1 № 16-19)	 лабораторные работы; устный опрос (собеседование); Наличие конспектов лекций 	
2.3 Основы методики расчета горения топлива		4	2/0,4И	4/2И	6,1	Подготовка к семинарскому, практическому, лабораторнопрактическому занятию. Поиск дополнительной информации по заданной теме (Приложение 1. Раздел 6 п.6.1 № 20-22). (Задачи раздел 6 №1-5)	– лабораторные работы; – семинарские занятия; Наличие конспектов лекций	
Итого по разделу		16	10/4,4И	12/6И	17,1			
3. Раздел 3. Виды спосо теплогенерации. Топливосжигающие устройства, классификация. Экологические аспе	обов их екты							
3.1 Топливосжигающие устройства	5	6	2		3	Подготовка к семинарскому, практическому, лабораторнопрактическому занятию. Приложение 1.	– устный опрос (собеседование); Наличие конспектов лекций	

3.2 Теплогенерация при сжигании различных видов топлива. Виды способов теплогенерации. Экологические аспекты сжигания различных видов топлива.	4			4	Поиск дополнительной информации по заданной теме (работа с библиографичес ким материалами, справочниками, каталогами, словарями, энциклопедиями (Приложение 1. Раздел 6 п.6.1 № 23-25).	– устный опрос (собеседование); Наличие конспектов лекций	
Итого по разделу	10	2		7			
Итого за семестр	36	18/6,4И	18/8И	34,1		зачёт	
Итого по дисциплине	36	18/6,4 И	18/8И	34,1		зачет	

5 Образовательные технологии

В процессе изучения курса «Теория горения и технологии сжигания» применяются следующие образовательные технологии:

Для решения предусмотренных видов учебной работы при изучении дисциплины «Теория горения и технологии сжигания» в качестве образовательных технологий используются как традиционные, так и модульно - компетентностные технологии. Передача необходимых теоретических знаний и формирование представлений по курсу происходит с применением мультимедийного оборудования. Лекционный материал закрепляется на лабораторных работах, где применяется совместная деятельность студентов в группе, направленная на решение общей задачи путем сложения результатов индивидуальной работы членов группы. Для развития и совершенствования коммуникативных способностей студентов организуются практические занятия в виде дискуссий, анализа реальных проблемных ситуаций и междисциплинарных связей из различных областей в контексте решаемой задачи. Самостоятельная работа стимулирует студентов к самостоятельной проработке тем в процессе написания рефератов. подготовки к дискуссиям, к контрольным работам и тестированию. При организации самостоятельной работы студентов используются электронные версии курса лекций, лабораторного практикума, расчетно-графической работы.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

- 1. Бакулин В.Н., Газовые топлива и их компоненты. Свойства, получение, применение, экология [Электронный ресурс] / Бакулин В.Н., Брещенко Е.М., Дубовкин Н.Ф. М. : Издательский дом МЭИ, 2017. ISBN 978-5-383-01160-7 Режим доступа: http://www.studentlibrary.ru/book/ISBN9785383011607.html
- 2. Девисилов, В. А. Теория горения и взрыва: учебник / В. А. Девисилов, Т. И. Дроздова, А. И. Скушникова. Москва: ИНФРА-М, 2019. 262 с. (Высшее образование: Бакалавриат). ISBN 978-5-16-010477-5. Текст: электронный. URL: https://znanium.com/catalog/product/1008365 Режим доступа: по подписке

б) Дополнительная литература:

- 1. Девисилов, В. А. Теория горения и взрыва: практикум: Учебное пособие / Девисилов В.А., Дроздова Т.И., Тимофеева С.С., 2-е изд., перераб. и доп Москва :Форум, НИЦ ИНФРА-М, 2015. 384 с. (Высшее образование)ISBN 978-5-00091-006-1. Текст : электронный. URL: https://znanium.com/catalog/product/489498 Режим доступа: по подписке.
- 2. Кудинов, А. А. Горение органического топлива: Учебное пособие / Кудинов А.А. М.:НИЦ ИНФРА-М, 2019. 390 с.: (Высшее образование: Бакалавриат). ISBN 978-5-16-009439-7. Текст : электронный. URL: https://znanium.com/catalog/product/999882 Режим доступа: по подписке.
- 3. Топливо и горюче-смазочные материалы: учебное пособие / Х. Я. Гиревая, И. А. Варламова, Н. Л. Калугина, Л. А. Бодьян; МГТУ. [2-е изд., подгот. по печ. изд. 2015 г.]. Магнитогорск: МГТУ, 2016. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL

Режим доступа:

https://magtu.informsystema.ru/uploader/fileUpload?name=74.pdf&show=dcatalogues/1/113455 4/74.pdf&view=true - Макрообъект. - Текст : электронный. - Сведения доступны также на CD-ROM.

в) Методические указания:

1. Нешпоренко Е.Г., Картавцев С.В. Горение и конверсия топлив в промышленных теплоэнергетических установках: учеб. пособие / Е.Г. Нешпоренко, С.В. Картавцев. – Магнитогорск: Изд-во Магнитогорск. гос. Техн. ун-та им. Г.И. Носова, 2017. – 63 с.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Windows 7 Professional(дл я классов)	Д-1227-18 от 08.10.2018	11.10.2021
MS Windows 7 Professional (для классов)	Д-757-17 от 27.06.2017	27.07.2018
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
7Zip	свободно	бессрочно
Linux Calculate	свободно	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Информационная система - Нормативные правовые акты, организационно-распорядительн ые документы, нормативные и методические документы и	INTERSY/TSTECTII/NORMOTVORCHESKAVA/TEKNNICHESKAVA-ZASHCHITT
Информационная система - Банк данных угроз безопасности	https://bdu.fstec.ru/
Архив научных журналов «Национальный электронно-информационный	https://archive.neicon.ru/xmlui/
Международная реферативная и полнотекстовая справочная база данных научных изданий	
Международная реферативная база данных по чистой и	http://zbmath.org/
Международная база справочных изданий по всем	
Международная база научных материалов в области	
Международная коллекция научных протоколов по	http://www.springerprotocols.com/
Международная база полнотекстовых журналов	http://link.springer.com/
Моженинова нафаратирная и	http://scopus.com

Международная наукометрическая реферативная и полнотекстовая база данных научных изданий «Web of science»	
	https://uisrussia.msu.ru
Электронные ресурсы библиотеки МГТУ им. Г.И. Носова	http://magtu.ru:8085/marcweb2/Default.asp
Российская Государственная библиотека. Каталоги	https://www.rsl.ru/ru/4readers/catalogues/
Федеральное государственное бюджетное учреждение «Федеральный институт промышленной собственности»	URL: http://www1.fips.ru/
Информационная система - Единое окно доступа к информационным ресурсам	URL: http://window.edu.ru/
Национальная информационно-аналитическая система — Российский индекс научного цитирования (РИНЦ)	URL: https://elibrary.ru/project_risc.asp
Электронная база периодических изданий East View Information Services, OOO «ИВИС»	https://dlib.eastview.com/

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Аудитории для проведения лекционных и практических занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации:

- мультимедийное оборудование (проектор, экран), доска интерактивная.

Учебная лаборатория-аудитория для проведения лабораторных, практических и лекционных занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации:

- лаборатория топлива и химводоподготовки; автоматическая насосная станция OASIS; комплекс лабораторных установок по определению характеристик топлива; комплекс лабораторных установок по изучению физических и химических свойств веществ;

макет газотурбинной установки; вискозиметр, вытяжной шкаф, флотомашина; печь, центробежный вентилятор; весы электронные, микроскоп.

Учебные аудитории для самостоятельной работы обучающихся:

- персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета

Помещение для хранения и профилактического обслуживания учебного оборудования:

- стеллажи, сейфы для хранения учебного оборудования, инструменты для ремонта лабораторного оборудования.

6. Учебно-методическое обеспечение самостоятельной работы студентов

Целью текущего контроля знаний обучающихся является проверка ритмичности работы студентов, оценка усвоения теоретического, практического материала и приобретенных знаний, умений и владений. Текущий контроль обеспечивается:

- опросом студентов на лекциях и практических занятиях;
- допуском к выполнению лабораторных заданий и защитой результатов их выполнения (минимальный уровень знаний оценивается по контрольным вопросам);
- ежемесячной аттестацией студентов по результатам посещения лекционных занятий, выполнения и защиты практических заданий, опроса на занятиях, выполнения контрольных заданий по теоретическому материалу.

Входной контроль подготовки к практическим занятиям и контроль усвоения материала производится в течение всего семестра с периодичностью 1 раз в 1-2 недели. Входной контроль подготовки к лекции производится в течение всего семестра вначале каждой лекции. Промежуточный контроль усвоения лекционного материала производится 2 раза в семестре путем проведения контрольных работ. Итоговый контроль — зачет по окончании семестра.

6.1 Перечень контрольных вопросов по темам учебной программы (Темы 1,2,3)

Тема 1

- 1. Теплотехнические характеристики природного твердого топлива (торфа, бурого и каменного углей).
- 2. Марки углей.
- 3. Теплота сгорания топлива (высшая, низшая), формула Д.И.Менделеева, методика экспериментального определения $Q_{\rm B}$;
- 4. Условное топливо.
- 5. Теплотехнические характеристики природного жидкого топлива (нефти).
- 6. Теплотехнические характеристики мазута, к/у и б/у смол. Марки мазута.
- 7. Теплотехнические характеристики искусственного жидкого топлива (моторное топливо, октановое и цетановое число).
- 8. Теплотехнические характеристики природных газов; транспортировка, магистральные и распределительные газопроводы, ГРС; одоризация; хранение газов; сжиженные горючие газы.
- 9. Теплотехнические характеристики природных газов; транспортировка, магистральные и распределительные газопроводы, ГРС; одоризация; хранение газов; сжиженные горючие газы.
- 10. Физико-механические методы переработки твердого топлива (торфа, бурого и каменного углей). Классы углей по крупности.
- 11. Физико-механические методы переработки твердого топлива (торфа, бурого и каменного углей). Классы углей по крупности.
- 12. Газификация твердого топлива; теоретические генераторные газы (воздушный, водяной); состав и выход генераторных газов,
- 13. Основные месторождения газообразного топлива в России.
- 14. Геологические запасы углей России; месторождения каменного и бурого угля.
- 15. Пиролиз твердого топлива; коксование, свойства кокса, коксовый газ.

Тема 2

- 16. Методика расчета горения жидкого (твердого) топлива; определение L_0 , V_0 и состава продуктов горения.
- 17. Коэффициент расхода воздуха, методика его расчета и определения исходя из состава топлива и продуктов горения.
- 18. Температура горения топлива (жаропроизводительность, калориметрическая, теоретическая); методика расчета; зависимость от различных факторов.

- 19. Состав сухого и влажного газообразного топлива; формулы пересчета.
- 20. Органическая, горючая, сухая и рабочая масса жидкого (твердого)топлива; формулы пересчета.
- 21. Задачи расчета горения топлива.

C2H6 =.....%

C3H8 =.....%

C4H10=....%

C5H12=....%

22. Методика расчета калориметрической температуры горения топлива).

Тема 3

23. Особенности сжигания газообразного топлива. Пределы устойчивости работы газовых горелок.

 24. Особенности сжигани 25. Сжигание твердого 	ия и схемы распыливания жидкого топлива. О топлива в слое.
ЗАДАЧИ	
 N1 (Тема 2)	
СОСТАВ ПРОДУКТОІ СЛЕДУЮЩИЙ :	В ГОРЕНИЯ ОТ СЖИГАНИЯ
CO2=% H2O=% N2 =% O2 =% CO =%	
,	ЕНТ РАСХОДА ВОЗДУХА ПРИ ЭТОМ СОБЛЮДАЕТСЯ ?
N2 (Тема 2)	
СКОЛЬКО НУЖНО КИ ДЛЯ ПОЛНОГО СЖИГ СЛЕДУЮЩЕГО СОСТ	АНИЯ 1 м3
CH4 =% C2H6 =% C3H8 =% C4H10=% C5H12=% C6H6 =%	CO2=% N2=% H20=%
 N3 (Тема 2)	
СКОЛЬКО НУЖНО ВО ДЛЯ ПОЛНОГО СЖИГ СЛЕДУЮЩЕГО СОСТ	АНИЯ 1 м3
CH4 =%	CO =%

H2=....%

CO2=.....%

N2=....%

H20=....%

C6H6 =%	O2=%

N4 (Tema 2)

СКОЛЬКО НУЖНО ВОЗДУХА ДЛЯ ПОЛНОГО СЖИГАНИЯ 1 кг СЛЕДУЮЩЕГО СОСТАВА

$$C^{O} = \dots \%$$
 $S^{\Gamma} = \dots \%$ $H^{O} = \dots \%$ $A^{C} = \dots \%$ $W^{P} = \dots \%$ $N^{O} = \dots \%$

N5 (Tema 2)

СКОЛЬКО НУЖНО КИСЛОРОДА ДЛЯ ПОЛНОГО СЖИГАНИЯ 1 кг СЛЕДУЮЩЕГО СОСТАВА

$$C^{O} = \dots \%$$
 $S^{\Gamma} = \dots \%$ $A^{C} = \dots \%$ $O^{O} = \dots \%$ $W^{P} = \dots \%$ $N^{O} = \dots \%$

N6 (**Teмa1**)

КАКОВА Q^{p}_{H} ТОПЛИВА СЛЕДУЮЩЕГО СОСТАВА

$$C^{O} = \dots \%$$
 $S^{\Gamma} = \dots \%$ $A^{C} = \dots \%$ $O^{O} = \dots \%$ $W^{P} = \dots \%$ $N^{O} = \dots \%$

N7 (Tema 1)

КАКОВА Q^{p}_{B} ТОПЛИВА СЛЕДУЮЩЕГО СОСТАВА

$$C^{O} = \dots \%$$
 $S^{\Gamma} = \dots \%$ $A^{C} = \dots \%$ $O^{O} = \dots \%$ $W^{P} = \dots \%$

N8 (Tema 1)

ПЕРЕСЧИТАЙТЕ НА РАБОЧУЮ МАССУ УКАЗАННЫЙ

ЭЛЕМЕНТНЫЙ СОСТАВ ТОПЛИВА

$C^{O} =$ %	$S^{\Gamma} = \dots \%$
$H^{O} =$ %	$A^{C} =$ %
$O^{O} =$ %	$\mathbf{W}^{\mathrm{P}} = \dots \%$

$$N^{O} =$$
%

7 Оценочные средства проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Код	Индикатор									
индика	достижения	Оценочные средства								
тора	компетенции	Оценочные сребеный								
ПК-1 – Сі	пособен участв	овать в оценке технического состояния, поддержания и восстановления								
работоспо	работоспособности тепломеханического оборудования промышленных ТЭС									
ПК-1.1	Оценивает	1. Определить теоретические массу и объем воздуха,								
	уровень	необходимого для горения 1 м ³ метана при нормальных условиях.								
	технических									
	решений	горения 1 кг органической массы состава: $C - 60 \%$, $H - 5 \%$, $O - 25 \%$,								
	направленн	$N-5\%$, $W-5\%$ (влажность), если коэффициент избытка воздуха $\alpha=$								
	ых на	2,5; температура воздуха 305 К, давление 99500 Па.								
	повышение	3. Определить объем воздуха, необходимого для горения 5 м ³								
	эффективно	смеси газов, состоящих из 20 % CH ₄ ; 40 % C ₂ H ₂ ; 10 % CO; 5 % N2 и 25								
	сти работы	$\% O_2$, если коэффициент избытка воздуха равен 1,8.								
	тепломехан	4. Определить коэффициент избытка воздуха при горении								
	ического	уксусной кислоты, если на горение 1 кг поступило 3 м ³ воздуха.								
	оборудован	5. Определить объем воздуха, пошедшего на окисление 1 м ³								
	ия	аммиака, если в продуктах горения содержание кислорода								
		составило18%.								
ПК-1.2	Проводит	Лабораторная работа.								
	учет и	Определение температуры вспышки мазута								
	анализ	Цель работы: определить температуру вспышки мазута заданной								
	технико-эко	марки.								
	номических	Заданную марку (номер) нефтепродукта хорошо перемешать								
	показателей									
	работы	3 до риски налить нефтепродукт. Крышку закрыть. Включить								
	тепломехан	электроплитку и вести подогрев со скоростью не более 10 °C в минуту.								
	ического	Нефтепродукт все время перемешивать вращением мешалки 7. Только								
	оборудован	в момент зажигания перемешивание прекратить. При достижении								
	ия	температуры 50 °C начать проводить испытание через каждые 5 °C,								
		поворачивая головку пружинного рычага 6 для обеспечения доступа								
		воздуха к парам нефтепродукта в момент зажигания. Отверстие в								
		крышке открывается на 1 с. Если вспышка не произошла,								
		нефтепродукт вновь перемешивают, повторяя операцию зажигания								
		через каждые 5 °C. Вспышкой считается момент появления синего								
		пламени над поверхностью нефтепродукта. После получения первой								
		вспышки испытание продолжить, повторяя в тех же условиях								
		повторное зажигание через 5 °C, определяя после первой еще две								
		температуры вспышки. За температуру вспышки принимается								
		показание термометра в момент первой вспышки. Результаты заносят								
L	<u> </u>									

Код индика тора	Индикатор достижения компетенции	Оценочные средства				
тори	Компетенции	в таблицу.	Прибор Мартенс-Г омедненный резерву 7	енского: 1 — чугунный сосуд; 2 — рубад ар; 4 — крышка; 5 — фитильное устройс — мешалка; 8 — термометр; 9 — электро	ка; 3— ципиндрический гво; 6— пружинный рычаг; плитка	
		р Зажигание, °C			Температ	
		епродукта	1-e	2-e	3-е	вспышки

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания (зачет).

Критерии оценки (в соответствии с формируемыми компетенциями и планируемыми результатами обучения):

- на оценку **«зачтено»** обучающийся демонстрирует от высокого до порогового уровня сформированности компетенций:
 - -Обучающийся должен показать уровень знаний не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам, оценки и вынесения критических суждений
 - -Выполнена контрольная работа, в которой были решены задачи по расчету состава различных анализируемых масс органического топлива, определения его теплотворной способности и определения состава и объема продуктов сгорания.
 - на оценку **«незачтено»** Обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.