#### МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ



Федеральное государственное бюджетное образовательное учреждение высшего образования

«Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИММиМ А.С. Савинов

20.02.2020 г.

#### РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

### ФИЗИЧЕСКАЯ ХИМИЯ ТУГОПЛАВКИХ НЕМЕТАЛЛИЧЕСКИХ И СИЛИКАТНЫХ МАТЕРИАЛОВ

Направление подготовки (специальность) 18.03.01 Химическая технология

Направленность (профиль/специализация) программы Химическая технология тугоплавких неметаллических и силикатных материалов

> Уровень высшего образования - бакалавриат Программа подготовки - академический бакалавриат

> > Форма обучения заочная

Институт/ факультет Институт металлургии, машиностроения и материалообработки

Металлургии и химических технологий

Курс

Кафедра

Магнитогорск 2019 год Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 18.03.01 Химическая технология (уровень бакалавриата) (приказ Минобрнауки России от 11.08.2016 г. № 1005)

| Рабочая программа рассмотрена и одобрена на заседании кафедры химических технологий 18.02.2020, протокол № 6 |                 |
|--------------------------------------------------------------------------------------------------------------|-----------------|
| Зав. кафедрой                                                                                                | _ А.С. Харченко |
| Рабочая программа одобрена методической комиссией ИММиМ 20.02.2020 г. протокол № 5                           |                 |
| Председатель                                                                                                 | _ А.С. Савинов  |
| Рабочая программа составлена:<br>ст. преподаватель кафедры МиХТ,                                             | С.В.Юдина       |
| Рецензент:<br>доцент кафедры ТСиСА, канд. техн. наук                                                         | _И.В.Понурко    |

## Лист актуализации рабочей программы

| учебном году на заседании                           | отрена, обсуждена и одобрена для реализации в 2020 - 2021 кафедры Металлургии и химических технологий |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                                     | Протокол от $31$ О $8$ . 20 $10$ г. № $1$ А.С. Харченко                                               |
|                                                     | отрена, обсуждена и одобрена для реализации в 2021 - 2022 кафедры Металлургии и химических технологий |
|                                                     | Протокол от                                                                                           |
| Рабочая программа пересмо                           | отрена, обсуждена и одобрена для реализации в 2022 - 2023                                             |
|                                                     | кафедры Металлургии и химических технологий                                                           |
|                                                     |                                                                                                       |
| учебном году на заседании Рабочая программа пересмо | кафедры Металлургии и химических технологий                                                           |

#### 1 Цели освоения дисциплины (модуля)

Целью освоения дисциплины (модуля) «Физическая химия тугоплавких неметаллических и силикатных материалов» является освоение обучающимися знаний физикой химии тугоплавких неметаллических и силикатных материалов, фазовых равновесии в силикатных и оксидных системах, принципов построения фазовых диаграмм состояния систем, теории процессов, протекающих при синтезе материалов в разнообразных условиях при высоких температурах.

#### 2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Физическая химия тугоплавких неметаллических и силикатных материалов входит в вариативную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Коллоидная химия

Минералогия и петрография неметаллических и горючих ископаемых

Физическая химия

Общая и неорганическая химия

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Химическая технология тугоплавких неметаллических и силикатных материалов

Химические реакторы

Моделирование химико-технологических процессов

Планирование и организация эксперимента

Тепловые процессы и агрегаты в технологии тугоплавких неметаллических и силикатных материалов

Системы управления химико-технологическими процессами

# 3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Физическая химия тугоплавких неметаллических и силикатных материалов» обучающийся должен обладать следующими компетенциями:

| компетенциими.                                                            |                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Структурный                                                               | Планируемые результаты обучения                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| элемент                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| компетенции                                                               |                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| ОПК-3 готовностью использовать знания о строении вещества, природе химиче |                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| связи в различных                                                         | классах химических соединений для понимания свойств материалов и                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| механизма химичес                                                         | ских процессов, протекающих в окружающем мире                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Знать                                                                     | -основы физической химии тугоплавких неметаллических и силикатных материалов, особенности изучаемых материалов, типовые процессы и оборудование химической технологии силикатных материалов                                                                                                                                                                                                                  |  |  |  |  |
| Уметь                                                                     | -применять различные методы теоретического и экспериментального исследования физико-химических свойств тугоплавких неметаллических материалов; -проводить качественные и количественные расчеты по диаграммам состояния двух- и трехкомпонентных систем; -прогнозировать вероятные ситуации соотношения фаз и структуры материалов, используя однокомпонентные, двухкомпонентные и трехкомпонентные системы. |  |  |  |  |

|                    | Ţ                                                                 |  |  |  |
|--------------------|-------------------------------------------------------------------|--|--|--|
| Владеть            | -навыками экспериментального исследования основных физико-        |  |  |  |
|                    | химических свойств силикатных материалов, сырья и готовой         |  |  |  |
|                    | продукции;                                                        |  |  |  |
|                    | -навыками определения минерального состава природных силикатов и  |  |  |  |
|                    | глин, используя комплексный термический и рентгеновский методы    |  |  |  |
|                    | исследования.                                                     |  |  |  |
| ПК-16 способности  | ью планировать и проводить физические и химические эксперименты,  |  |  |  |
| проводить обработ  | ку их результатов и оценивать погрешности, выдвигать гипотезы и   |  |  |  |
| устанавливать гран | ницы их применения, применять методы математического анализа и    |  |  |  |
| моделирования, те  | оретического и экспериментального исследования                    |  |  |  |
| Знать              | -основные закономерности протекания химических процессов и        |  |  |  |
|                    | характеристики равновесного состояния, методы описания химических |  |  |  |
| равновесий;        |                                                                   |  |  |  |
|                    | -основные физико-химические методы анализа структуры и свойств    |  |  |  |
|                    | силикатных и тугоплавких неметаллических материалов.              |  |  |  |
| Уметь              | -выполнять основные химические операции, определять               |  |  |  |
|                    | термодинамические характеристики химических реакций и             |  |  |  |
|                    | равновесные концентрации веществ;                                 |  |  |  |
|                    | -использовать основные химические законы, термодинамические       |  |  |  |
|                    | справочные данные и количественные соотношения неорганической     |  |  |  |
|                    | химии для решения профессиональных задач.                         |  |  |  |
| Владеть            | -методами исследование фазового состава, микро- и макроструктуры  |  |  |  |
|                    | неметаллических материалов;                                       |  |  |  |
|                    | -методами анализа диаграмм состояния силикатных и тугоплавких     |  |  |  |
|                    | систем.                                                           |  |  |  |
|                    | •                                                                 |  |  |  |

# 4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 4 зачетных единиц 144 акад. часов, в том числе:

- контактная работа 12,9 акад. часов:
- аудиторная 10 акад. часов;
- внеаудиторная 2,9 акад. часов
- самостоятельная работа 122,4 акад. часов;
- подготовка к экзамену 8,7 акад. часа

## Форма аттестации - экзамен

| Раздел/ тема                                                                                                                               | Kypc | Аудиторная контактная работа (в акад. часах) |              | H E.1          | Вид самостоятельной | Форма текущего контроля успеваемости и                                                    | Код                                                                  |              |
|--------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------|--------------|----------------|---------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------|
| дисциплины                                                                                                                                 | У    | Лек.                                         | лаб.<br>зан. | практ.<br>зан. | Самосто<br>работа   | работы                                                                                    | промежуточной аттестации                                             | компетенции  |
| 1. 1                                                                                                                                       |      |                                              |              |                |                     |                                                                                           |                                                                      |              |
| 1.1 Общие понятия о диаграммах состояния тугоплавких систем. Однокомпонентные системы. Двухкомпонентные системы. Трехкомпонентные системы. | 3    | 1                                            | 4/2И         |                | 30                  | Самостоятельное изучение учебной и научно литературы. Подготовка к лабораторной работе №1 | Выполнение и обсуждение данных лабораторной работы №1.               | ОПК-3, ПК-16 |
| Итого по разделу                                                                                                                           |      | 1                                            | 4/2И         |                | 30                  |                                                                                           |                                                                      |              |
| 2. 2                                                                                                                                       |      |                                              |              |                |                     |                                                                                           |                                                                      |              |
| 2.1 Кристаллохимические принципы строения веществ в конденсированном состоянии.                                                            | 3    | 1                                            |              |                | 30                  | Самостоятельное изучение учебной и научно литературы                                      | Собеседование по теме                                                | ОПК-3, ПК-16 |
| Итого по разделу                                                                                                                           |      | 1                                            |              |                | 30                  |                                                                                           |                                                                      |              |
| 3. 3                                                                                                                                       |      |                                              |              |                |                     |                                                                                           |                                                                      |              |
| 3.1 Понятие о твердофазных реакциях.                                                                                                       | 3    | 1                                            | 2/2И         |                | 30                  | Самостоятельное изучение учебной и научно литературы. Подготовка к лабораторной работы №2 | Выполнение и обсуждение данных лабораторной работы № 2               | ОПК-3, ПК-16 |
| Итого по разделу                                                                                                                           |      | 1                                            | 2/2И         |                | 30                  |                                                                                           |                                                                      |              |
| 4. 4                                                                                                                                       |      |                                              |              |                |                     |                                                                                           |                                                                      |              |
| 4.1 Твердофазные процессы, их особенности и значение для технологии тугоплавких неметаллических и силикатных материалов.                   | 3    | 1                                            |              |                | 32,4                | Работа с<br>электронными<br>учебниками.<br>Выполнение<br>индивидуальног о<br>задания №1.  | Собеседование по теме. Проверка и защита индивидуального задания №1. | ОПК-3, ПК-16 |
| Итого по разделу                                                                                                                           |      | 1                                            |              |                | 32,4                |                                                                                           |                                                                      |              |
| Итого за семестр                                                                                                                           |      | 4                                            | 6/4И         |                | 122,4               |                                                                                           | экзамен                                                              |              |
| Итого по дисциплине                                                                                                                        |      | 4                                            | 6/4И         |                | 122,4               |                                                                                           | экзамен                                                              | ОПК-3,ПК-16  |

#### 5 Образовательные технологии

Образовательные технологии — это целостная модель образовательного процесса, системно определяющая структуру и содержание деятельности обеих сторон этого процесса (преподавателя и студента), имеющая целью достижение планируемых результатов с поправкой на индивидуальные особенности его участников. Технологичность учебного процесса состоит в том, чтобы сделать учебный процесс полностью управляемым.

Основными признаками образовательной технологии в ее современном понимании являются:

- детальное описание образовательных целей;
- поэтапное описание (проектирование) способов достижения заданных результатов-целей;
- использование обратной связи с целью корректировки образовательного процесса;
  - гарантированность достигаемых результатов;
- воспроизводимость образовательного процесса вне зависимости от мастерства преподавателя;
  - оптимальность затрачиваемых ресурсов и усилий.

Реализация компетентностного подхода предусматривает использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся.

Цели, поставленные при изучении курса, достигаются за счет комплексного подхода к обучению студентов, основанного на сочетании теоретического курса, лабораторных занятий и самостоятельной познавательной деятельности студентов. Изучение теоретического курса проводится в специализированных лекционных аудиториях с использованием видеотехники, позволяющей транслировать через монитор рисунки, схемы, модели, которые в значительной степени облегчают понимание курса.

Занятия проводятся с применением традиционной и модульно-компетентностной технологий с использованием Интернет-ресурсов.

Лекции проходят как в традиционной форме, в виде презентаций, так и в форме лекций-информаций, ориентированных на изложение и объяснение студентам научной информации, подлежащей осмыслению и запоминанию, лекций-консультаций, где теоретический материал заранее выдается студентам для самостоятельного изучения, для под-готовки вопросов лектору, таким образом, лекция проходит по типу вопросы-ответы-дискуссия.

Лекционный материал закрепляется в ходе практических занятий и лабораторных работ, на которых выполняются групповые или индивидуальные задания по пройденной теме. На практических и лабораторных занятиях студенты приобретают навыки исследовательской деятельности и умения объяснять результаты эксперимента, основываясь на знаниях теоретической части курса. При проведении лабораторных занятий используется метод контекстного обучения, который позволяет усвоить материал путем выявления связей между конкретным знанием и его применением, а также технология модульного обучения и коллективного взаимообучения (парная работа трех видов: статическая пара, динамическая пара, вариационная пара).

Индивидуальная самостоятельная познавательная деятельность студентов заключается в подборе литературы по разделам курса и ее изучении. При этом предусмотрены индивидуальные и групповые консультации по изучаемым разделам курса. В результате изучения данной дисциплины студенты должны прибрести знания, умения и определенный опыт, необходимые для будущей практической деятельности. Самостоятельная работа студентов стимулирует студентов к самостоятельной

проработке тем в процессе выполнения индивидуальных заданий, в процессе подготовки к контрольным работам и итоговой аттестации. Самостоятельная работа студентов направлена на закрепление теоретического материала, изложенного преподавателем, на проработку тем, отведенных на самостоятельное изучение, на подготовку к выполнению и защите лабораторных работ, подготовку к контрольной работе и итоговой аттестации.

В ходе занятий предполагается использование комплекса инновационных методов интерактивного обучения студентов, включающего в себя:

- создание проблемных ситуаций с показательным решением проблемы преподавателем;
- самостоятельную поисковую деятельность в решении учебных проблем, направляемую преподавателем;
  - самостоятельное решение проблем студентами под контролем преподавателя.
- проблемное обучение стимулирование студентов к самостоятельной «добыче» знаний, необходимых для решения конкретной проблемы.
- контекстное обучение мотивация студентов к усвоению знаний путем выявления связей между конкретным знанием и его применением.
- обучение на основе опыта активизация познавательной деятельности студентов за счет ассоциации их собственного опыта с предметом изучения.
- индивидуальное обучение выстраивание студентами собственных образовательных траекторий на основе формирования индивидуальных учебных планов и про-грамм с учетом интересов и предпочтений студентов.
- междисциплинарное обучение использование знаний из разных областей, их группировка и концентрация в контексте конкретной решаемой задачи.
- опережающая самостоятельная работа изучение студентами нового материала до его изложения преподавателем на лекции и других аудиторных занятиях.

# **6 Учебно-методическое обеспечение самостоятельной работы обучающихся** Представлено в приложении 1.

# **7 Оценочные средства для проведения промежуточной аттестации** Представлены в приложении 2.

# 8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

1 Горшков, В. И. Основы физической химии: учебник / В. И. Горшков, И. А. Кузнецов. — 6-е изд. — Москва: Лаборатория знаний, 2017. — 410 с. — ISBN 978-5-00101-539-0. — Текст: электронный // Лань: электронно-библиотечная система. — URL: <a href="https://e.lanbook.com/book/97412">https://e.lanbook.com/book/97412</a>.

#### б) Дополнительная литература:

- 1. Белов, Н. А. Диаграммы состояния тройных и четверных систем: учебное пособие / Н. А. Белов. Москва: МИСИС, 2007. 360 с. ISBN 978-5-87623-174-1. Текст: элек-тронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/1828.
- 2. Чурюмов, А. Ю. Металловедение. Методические указания по использованию тренинго-вой системы для построения и анализа диаграмм состояния : методические указания / А. Ю. Чурюмов, С. В. Медведева, А. Н. Солонин. Москва : МИСИС, 2013. 44 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/117271 ).
  - 3. Теплофизика, теплотехника, теплообмен: Тепломассоперенос. Топливо и

огнеупоры: учебное пособие / В. А. Арутюнов, В. А. Капитанов, И. А. Левицкий, С. Н. Шибалов. — Москва: МИСИС, 2007. — 136 с. — Текст: электронный // Лань: электронно-библиотечная система. — URL: <a href="https://e.lanbook.com/book/117074">https://e.lanbook.com/book/117074</a>

### в) Методические указания:

- 1. Смирнов, А. Н. Определение свойств глинистого сырья: практикум / А. Н. Смирнов, Н. Ю. Свечникова, С. В. Юдина; Магнитогорский гос. технический ун-т им. Г. И. Носова. Магнитогорск: МГТУ им. Г. И. Носова, 2019. 1 CD-ROM. Загл. с титул. экрана. URL: <a href="https://magtu.informsystema.ru/uploader/fileUpload?name=3819.pdf&show=dcatalogues/1/1530">https://magtu.informsystema.ru/uploader/fileUpload?name=3819.pdf&show=dcatalogues/1/1530</a> 255/3819.pdf&view=true .
- 2. Свечникова Н.Ю., Смирнов А.Н., Юдина С.В. Методические указания: для выполнения лабораторных работ по дисциплине «Физическая химия пирометаллургических процессов» для студентов всех специальностей всех форм обучения. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И.Носова, 2015, 29 с.

## г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

| Наименование ПО                        | № договора                      | Срок действия лицензии |
|----------------------------------------|---------------------------------|------------------------|
| MS Windows 7 Professional(для классов) | Д-1227-18 от 08.10.2018         | 11.10.2021             |
| FAR Manager                            | свободно распространяемое<br>ПО | бессрочно              |
| MS Office 2007<br>Professional         | № 135 от 17.09.2007             | бессрочно              |
| 7Zip                                   | свободно распространяемое       | бессрочно              |

Профессиональные базы данных и информационные справочные системы

| T T                                                                               |                                                                                              |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Название курса                                                                    | Ссылка                                                                                       |
| Электронная база периодических изданий East View Information Services, OOO «ИВИС» | https://dlib.eastview.com/                                                                   |
| цитирования (РИНЦ)                                                                | URL: <a href="https://elibrary.ru/project_risc.asp">https://elibrary.ru/project_risc.asp</a> |
| Поисковая система Академия Google (Google Scholar)                                |                                                                                              |
| Информационная система - Единое окно доступа к информационным ресурсам            | URL: http://window.edu.ru/                                                                   |

### 9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

- 1. Учебная аудитория для проведения занятий лекционного типа оснащена:
- техническими средствами обучения, служащими для представления учебной информации большой аудитории: мультимедийными средства хранения, передачи и представления учебной информации;
  - специализированной мебелью.
- 2. Учебная аудитория для проведения лабораторных занятий «Лаборатория физической химии» оснащена лабораторным оборудованием:
- лабораторное оборудование (химическая посуда, реактивы, весы лабораторные равноплечие ВЛР-200, Весы электронные лабораторные ВК-300, низкотемпературная лабораторная электропечь SNOL10/10, магнитные мешалки, эл. плитки.).
  - специализированной мебелью.
- 3. Учебная аудитория для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации оснащена:
- компьютерной техникой с пакетом MS Office, с подключением к сети «Интернет» и с доступом в электронную информационно-образовательную среду университета;
  - специализированной мебелью.
  - 4. Помещение для самостоятельной работы оснащено:
- компьютерной техникой с пакетом MS Office, с подключением к сети «Интернет» и с доступом в электронную информационно-образовательную среду университета;
  - специализированной мебелью.
- 5. Помещение для хранения и профилактического обслуживания учебного оборудования оснащено:
  - специализированной мебелью: стеллажами для хранения учебного оборудования;
  - -инструментами для ремонта учебного оборудования;
  - шкафами для хранения учебно-методической документации и материалов.

# Учебно-методическое обеспечение самостоятельной работы обучающихся Содержание теоретического раздела дисциплины (самостоятельное изучение)

- 1. Общие понятия о диаграммах состояния тугоплавких систем и их информативности. Однокомпонентные системы. Диаграммы состояния соединений, имеющих несколько полиморфных модификаций. Элементы строения диаграмм и правила работы с ними. Полиморфизм. Диаграмма состояния SiO2; последовательность фазовых превращений, характеристика полиморфных форм, отклонение от равновесных состояний, значение системы для химии и технологии силикатов. Двухкомпонентные системы. Элементы строения и правила работы с диаграммами состояния двухкомпонентных систем различных типов. Правило рычага и его применение для количественных расчетов в Явление двухкомпонентных системах. ликвации. Диаграммы двухкомпонентных систем: Na2O - SiO2, CaO - SiO2, Al2O3 - SiO2, MgO - SiO2. Характеристика бинарных соединений в этих системах: мета- и ортосиликаты натрия и кальция, алит, муллит, энстатит, форстерит. Трехкомпонентные системы. Элементы строения и правила работы с диаграммами состояния трехкомпонентных систем различных типов. Правило рычага и его применение для количественных расчетов трехкомпонентных системах. Трехкомпонентные системы: CaO - Al2O3 - SiO2, MgO -Al2O3 - SiO2, CaO - MgO - SiO2. Характеристика тройных соединений в этих системах.
- 2. Кристаллохимические принципы строения веществ в конденсированном состоянии. Природа химической связи в силикатных и других тугоплавких соединениях. Электронное строение атомов кремния и кислорода, гибридизация связей, геометрия, тип и характер связей Si-O и SiO-Si. Особенности строения кристаллических силикатов. Природные и технические силикаты с различным типом кремнекислородного мотива. Изоморфные замещения в силикатах. Основные положения кристаллохимии силикатов. Структура тугоплавких оксидов, карбидов, боридов, нитридов и силицидов.
- 3. Понятие о твердофазных реакциях. Особенности твердофазных реакций и факторы, влияющие на их скорость. Многостадийность твердофазных реакций. Кинетика твердофазных реакций (диффузионные модели, модели зародышеобразования; модели реакций, лимитируемые химическим актом).
- 4. Твердофазные процессы, их особенности и значение для технологии тугоплавких неметаллических и силикатных материалов. Спекание, сущность, признаки и движущая сила процесса. Виды спекания. Механизм твердофазного спекания. Теория Пинеса. Факторы, влияющие на спекание; изменение свойств материала в процессе спекания

### Лабораторные работы:

Лабораторная работа № 1: Построение диаграммы состояния двухкомпонентной системы;

Лабораторная работа № 2: Гравиметрическое исследование кинетики диссоциации карбоната кальция.

#### Формулировка индивидуального задания №1

Рассмотреть кристаллизацию двух тройных сплавов заданного состава.

В таблице 1 приведены составы сплавов согласно предложенным вариантам.

- 1. Построить кристаллизационные кривые сплавов.
- 2.Определить температуру ликвидус, солидус, температуру начала кристаллизации двух фаз и построить предполагаемую кривую охлаждения сплавов из жидкого состояния до полного отвердевания.
  - 3. Определить относительное количество фаз в затвердевшем сплаве.

### Состав сплавов для рассмотрения их кристаллизации.

| Вариант | Сплав 1 |                  |           | Сплав 2 |                  |           |
|---------|---------|------------------|-----------|---------|------------------|-----------|
|         | CaO     | SiO <sub>2</sub> | $Al_2O_3$ | CaO     | SiO <sub>2</sub> | $Al_2O_3$ |
| 1       | 20      | 20               | 60        | 80      | 5                | 15        |
| 2       | 20      | 35               | 45        | 80      | 8                | 12        |
| 3       | 15      | 60               | 25        | 80      | 7                | 13        |
| 4       | 23      | 47               | 30        | 70      | 10               | 20        |
| 5       | 25      | 50               | 25        | 70      | 14               | 16        |

#### Примерные вопросы для собеседования по темам:

**Тема 1.** Общие понятия о диаграммах состояния тугоплавких систем. Однокомпонентные системы. Двухкомпонентные системы. Трехкомпонентные системы.

- 1. Общие понятия о диаграммах состояния тугоплавких систем и их информативности.
- 2. Однокомпонентные системы.
- 3. Диаграммы состояния соединений, имеющих несколько полиморфных модификаций.
- 4. Элементы строения диаграмм и правила работы с ними.
- 5. Полиморфизм.
- 6. Диаграмма состояния SiO2; последовательность фазовых превращений, характеристика полиморфных форм, отклонение от равновесных состояний, значение системы для химии и технологии силикатов.
- 7. Двухкомпонентные системы.
- 8. Элементы строения и правила работы с диаграммами состояния двухкомпонентных систем различных типов.
- 9. Правило рычага и его применение для количественных расчетов в двухкомпонентных системах.
- 10. Явление ликвации.
- 11. Диаграммы состояния двухкомпонентных систем: Na2O SiO2, CaO SiO2, Al2O3 SiO2, MgO SiO2.
- 12. Характеристика бинарных соединений в этих системах: мета- и ортосиликаты натрия и кальция, алит, муллит, энстатит, форстерит.
- 13. Трехкомпонентные системы.
- 14. Элементы строения и правила работы с диаграммами состояния трехкомпонентных систем различных типов.
- 15. Правило рычага и его применение для количественных расчетов в трехкомпонентных системах.
- 16. Трехкомпонентные системы: CaO Al2O3 SiO2, MgO Al2O3 SiO2, CaO MgO SiO2.
- 17. Характеристика тройных соединений в этих системах.

**Тема 2.** Кристаллохимические принципы строения веществ в конденсированном состоянии.

- 1. Кристаллохимические принципы строения веществ в конденсированном состоянии.
- 2. Природа химической связи в силикатных и других тугоплавких соединениях.
- 3. Электронное строение атомов кремния и кислорода, гибридизация связей, геометрия, тип и характер связей Si-O и Si-O-Si.
- 4. Особенности строения кристаллических силикатов.

- 5. Природные и технические силикаты с различным типом кремнекислородного мотива.
- 6. Изоморфные замещения в силикатах.
- 7. Основные положения кристаллохимии силикатов.
- 8. Структура тугоплавких оксидов, карбидов, боридов, нитридов и силицидов.

### Тема 3. Понятие о твердофазных реакциях.

- 1. Понятие о твердофазных реакциях.
- 2. Особенности твердофазных реакций и факторы, влияющие на их скорость.
- 3. Многостадийность твердофазных реакций.
- 4. Кинетика твердофазных реакций (диффузионные модели, модели зародышеобразования; модели реакций, лимитируемые химическим актом).
- 5. В каких технологических процессах происходит термическая диссоциация CaCO<sub>3</sub>?
- 6. Дайте определение термину «упругость диссоциации карбоната".
- 7. В чем заключается отличие констант равновесия Ка и Кр?
- 8. В каком случае значения Кр и упругости диссоциации CaCO<sub>3</sub> численно совпадают?
- 9. С какой целью перед опытом вакуумируют рабочую установку?
- 10. Термодинамика образования и диссоциация карбонатов; температуры начала.
- 11. Термодинамика горения твердого топлива
- 12. Как влияет степень дисперсности карбоната и извести на упругость диссоциации CaCO<sub>3</sub>.

**Тема 4.** Твердофазные процессы, их особенности и значение для технологии тугоплавких неметаллических и силикатных материалов.

- 1. Твердофазные процессы, их особенности и значение для технологии тугоплавких неметаллических и силикатных материалов.
- 2. Спекание, сущность, признаки и движущая сила процесса.
- 3. Виды спекания.
- 4. Механизм твердофазного спекания.
- 5. Факторы, влияющие на спекание; изменение свойств материала в процессе спекания.

# 7 Оценочные средства для проведения промежуточной аттестации

# а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

| Структурный элемент компетенции | Планируемые результаты обучения             | Оценочные средства                                                                                        |
|---------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| ОПК-3 готовнос                  | тью использовать знания о строении вещества | а, природе химической связи в различных классах химических соединений для понимания                       |
| свойств материа.                | лов и механизма химических процессов, проте | екающих в окружающем мире                                                                                 |
| Знать                           | - основы физической химии тугоплавких       | Список вопросов для проведения экзамена по дисциплине «Физическая химия                                   |
|                                 | неметаллических и силикатных материалов,    | тугоплавких неметаллических и силикатных материалов»                                                      |
|                                 | •                                           | Общие понятия о диаграммах состояния тугоплавких систем и их информативности.                             |
|                                 | 1                                           | Однокомпонентные системы.                                                                                 |
|                                 |                                             | Диаграммы состояния соединений, имеющих несколько полиморфных модификаций.                                |
|                                 | материалов                                  | Элементы строения диаграмм и правила работы с ними.                                                       |
|                                 |                                             | Полиморфизм.                                                                                              |
|                                 |                                             | Диаграмма состояния SiO2; последовательность фазовых превращений, характеристика                          |
|                                 |                                             | полиморфных форм, отклонение от равновесных состояний, значение системы для химии и технологии силикатов. |
|                                 |                                             | Двухкомпонентные системы.                                                                                 |
|                                 |                                             | Элементы строения и правила работы с диаграммами состояния двухкомпонентных систем различных типов.       |
|                                 |                                             | Правило рычага и его применение для количественных расчетов в двухкомпонентных                            |
|                                 |                                             | системах.                                                                                                 |
|                                 |                                             | Явление ликвации.                                                                                         |
|                                 |                                             | Диаграммы состояния двухкомпонентных систем: Na2O - SiO2, CaO - SiO2, Al2O3 - SiO2,                       |
|                                 |                                             | MgO - SiO2.                                                                                               |
|                                 |                                             | Характеристика бинарных соединений в этих системах: мета- и ортосиликаты натрия и                         |
|                                 |                                             | кальция, алит, муллит, энстатит, форстерит.                                                               |
|                                 |                                             | Трехкомпонентные системы.                                                                                 |
|                                 |                                             | Элементы строения и правила работы с диаграммами состояния трехкомпонентных                               |
|                                 |                                             | систем различных типов.                                                                                   |

| Структурный элемент компетенции | Планируемые результаты обучения                                                                                                                                                                                                                                                                                                                                                                              | Оценочные средства                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                              | Правило рычага и его применение для количественных расчетов в трехкомпонентных системах.  Трехкомпонентные системы: CaO - Al2O3 - SiO2, MgO - Al2O3 - SiO2, CaO - MgO - SiO2.  Характеристика тройных соединений в этих системах.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Уметь                           | -применять различные методы теоретического и экспериментального исследования физико-химических свойств тугоплавких неметаллических материалов; -проводить качественные и количественные расчеты по диаграммам состояния двух- и трехкомпонентных систем; -прогнозировать вероятные ситуации соотношения фаз и структуры материалов, используя однокомпонентные, двухкомпонентные и трехкомпонентные системы. | Задача 1. Для расплавов, соответствующих точкам 1 и 2, определить:  1) их концентрацию; 2) температуры начала и окончания кристаллизации; 3) что образуется и в каком количестве при охлаждении расплавов до температур t1 и t2.  **Wuðkocmb** (ж)  1. **  **AB+***  **AB+**  ** |
| Владеть                         | -навыками экспериментального исследования основных физико-химических свойств силикатных материалов, сырья и готовой продукции; -навыками определения минерального состава природных силикатов и глин, используя комплексный термический и                                                                                                                                                                    | Задание на решение задач из профессиональной области (домашнее индивидуальное задание) Для смесей, соответствующих точкам $1-8$ , изображенных на рис., определить: 1) какие фазы и в каком количественном соотношении будут находиться в равновесии при нагревании смесей до температуры $1200\ ^{\circ}$ C.; 2) при какой температуре начнется и                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

рентгеновский методы исследования.

| Структурный элемент компетенции | Планируемые результаты обучения             | Оценочные средства                                                                   |
|---------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------|
|                                 |                                             | B 20 70 80 80 80 80 80 80 80 80 80 80 80 80 80                                       |
| IПК-16 способно                 | стью планировать и проволить физические и х | кимические эксперименты, проводить обработку их результатов и опенивать погрешности. |

ПК-16 способностью планировать и проводить физические и химические эксперименты, проводить обработку их результатов и оценивать погрешности, выдвигать гипотезы и устанавливать границы их применения, применять методы математического анализа и моделирования, теоретического и экспериментального исследования

| Знать | -основные закономерности протекания      | Контрольные вопросы для самопроверки:                                                    |
|-------|------------------------------------------|------------------------------------------------------------------------------------------|
|       | химических процессов и характеристики    | Понятие о твердофазных реакциях.                                                         |
|       | равновесного состояния, методы описания  | Особенности твердофазных реакций и факторы, влияющие на их скорость.                     |
|       | химических равновесий;                   | Многостадийность твердофазных реакций.                                                   |
|       | -основные физико-химические методы       | Кинетика твердофазных реакций (диффузионные модели, модели зародышеобразования;          |
|       | анализа структуры и свойств силикатных и | модели реакций, лимитируемые химическим актом).                                          |
|       | тугоплавких неметаллических материалов.  | В каких технологических процессах происходит термическая диссоциация СаСО <sub>3</sub> ? |
|       |                                          | Дайте определение термину «упругость диссоциации карбоната".                             |
|       |                                          | В чем заключается отличие констант равновесия Ка и Кр?                                   |
|       |                                          | В каком случае значения Кр и упругости диссоциации СаСО3 численно совпадают?             |
|       |                                          | С какой целью перед опытом вакуумируют рабочую установку?                                |
|       |                                          | Термодинамика образования и диссоциация карбонатов; температуры                          |
|       |                                          | начала.                                                                                  |
|       |                                          | Термодинамика горения твердого топлива                                                   |

| Структурный элемент компетенции | Планируемые результаты обучения                                                                                                                                                                                                                                                                                 | Оценочные средства                                                                                                                                                                                                                                           |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 |                                                                                                                                                                                                                                                                                                                 | Как влияет степень дисперсности карбоната и извести на упругость диссоциации СаСО3.                                                                                                                                                                          |
| Уметь                           | -выполнять основные химические операции, определять термодинамические характеристики химических реакций и равновесные концентрации веществ; -использовать основные химические законы, термодинамические справочные данные и количественные соотношения неорганической химии для решения профессиональных задач. | 2600 - Жидкость (ж)<br>2400 - &-Ca <sub>2</sub> SiO <sub>4</sub> +ж СаО+ж<br>2000 - &-Ca <sub>3</sub> SiO <sub>5</sub> +                                                                                                                                     |
| Владеть                         | -методами исследование фазового состава, микро- и макроструктуры неметаллических материалов; -методами анализа диаграмм состояния                                                                                                                                                                               | Задание на решение задач из профессиональной области (домашнее индивидуальное задание) Задача 1. Описать ход кристаллизации расплава CaO = 10 %, Al2O3 = = 10 %, SiO2 = 80 %. Определить начало и окончание кристаллизации расплава. Определить концентрацию |
|                                 | силикатных и тугоплавких систем;                                                                                                                                                                                                                                                                                | жидкой фазы в момент выпадения первых 20 % кристаллов кремнезема.                                                                                                                                                                                            |

| Структурный элемент компетенции | Планируемые результаты обучения | Оценочные средства |
|---------------------------------|---------------------------------|--------------------|
|                                 |                                 | Si 0 2  30         |

# б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация ПО дисциплине «Физическая химия тугоплавких неметаллических силикатных материалов» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме экзамена. Экзамен по данной дисциплине проводится в устной форме по экзаменационным билетам, каждый из которых включает 2 теоретических вопроса и одно практическое задание.

#### Показатели и критерии оценивания экзамена:

- на оценку **«отлично»** (5 баллов) обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку **«хорошо»** (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку **«удовлетворительно»** (3 балла) обучающийся демонстрирует пороговый уровень сформированности компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку **«неудовлетворительно»** (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку **«неудовлетворительно»** (1 балл) задание преподавателя выполнено частично, обучающийся не может воспроизвести и объяснить содержание, не может показать интеллектуальные навыки решения поставленной задачи.