МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИММиМ А.С. Савинов

20.02.2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

АНАЛИТИЧЕСКАЯ ХИМИЯ И ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

Направление подготовки (специальность) 18.03.01 Химическая технология

Направленность (профиль/специализация) программы Химическая технология тугоплавких неметаллических и силикатных материалов

> Уровень высшего образования - бакалавриат Программа подготовки - академический бакалавриат

> > Форма обучения заочная

Институт/ факультет

Институт металлургии, машиностроения и материалообработки

Кафедра

Металлургии и химических технологий

Курс

3

Семестр

Магнитогорск 2019 год Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 18.03.01 Химическая технология (уровень бакалавриата) (приказ Минобрнауки России от 11.08.2016 г. № 1005)

хим	Рабочая программа рассмотре ических технологий	ена и одобрена на за	аседании кафедр	вы Металлургии и
	18.02.2020, протокол № 6	Зав. кафедрой _	Thurs	А.С. Харченко
	Рабочая программа одобрена № 20.02.2020 г. протокол № 5	методической комис Председатель	ссией ИММиМ	А.С. Савинов
	Рабочая программа составлена доцент кафедры МиХТ, канд.		agnil	_С.А. Крылова
	Рецензент: доцент кафедры Химии, канд.	техн. наук	Se_	Л.Г. Коляда

Лист актуализации рабочей программы

	и кафедры Металлургии	и химических технологий
	Протокол от <u>31</u>	08. 20 <u>10</u> г. № <u>1</u> А.С. Харченко
		брена для реализации в 2021 - 2022 и химических технологий
	Протокол от Зав. кафедрой	г. № А.С. Харченко
		брена для реализации в 2022 - 2023
учебном году на заседани	ии кафедры Металлургии	и химических технологий
учебном году на заседани		и химических технологий20 г. № А.С. Харченко
Рабочая программа перес	Протокол от Зав. кафедрой смотрена, обсуждена и одо	

1 Цели освоения дисциплины (модуля)

- теоретическая и практическая подготовка студентов по вопросам выбора метода анализа и его практического осуществления для получения информации о качественном и количественном составе того или иного объекта при решении выпускником задач буду-щей профессиональной деятельности;
- формирование общепрофессиональных и профессиональных компетенций в соответствии с требованиями ФГОС ВО по направлению подготовки 18.03.01 Химическая технология.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Аналитическая химия и физико-химические методы анализа входит в базовую часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Физика

Математика

История химии и химической технологии

Общая и неорганическая химия

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Химическая технология тугоплавких неметаллических и силикатных материалов

Физическая химия тугоплавких неметаллических и силикатных материалов

Физико-химические основы металлургических процессов

Проектная деятельность

Учебно-исследовательская работа студента

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Аналитическая химия и физико-химические методы анализа» обучающийся должен обладать следующими компетенциями:

Структурный	Планируемые результаты обучения
элемент	
компетенции	
ОПК-1 способ	оностью и готовностью использовать основные законы
естественнонаучны	х дисциплин в профессиональной деятельности
Знать	основные законы естественнонаучных дисциплин
	теоретические основы химии
Уметь	использовать знание свойств химических соединений для проведения
	хи-мического анализа
	характеризовать свойства соединений на основе их химической
	формулы и строения;
	проводить лабораторные испытания.
Владеть	методами теоретического исследования, методами идентификации
	хими-ческих веществ, классическими методами химического и физико-
	химиче-ского анализа.

ПК-10 способности	ью проводить анализ сырья, материалов и готовой продукции,
осуществлять оцен	ку результатов анализа
Знать	□ Основные определения и понятия аналитической химии;
	П классификации методов анализа в аналитической химии;
	□ сущность методов анализа;
	□ теоретические основы и принципы химических и физико-
	химических методов анализа
	□ устройство и принципы работы используемых в анализах
	аппаратуры и оборудования;
•	□ методы статистической обработки результатов измерений
Уметь	Проводить исследования по заданной методике;
	□ составлять описание проводимых экспериментов;
	□ выполнять расчеты результатов анализа
	□ обосновать выбор метода анализа для исследуемых образцов проб;
	□ готовить данные для составления обзоров, отчетов и научных
	публи-каций
	□ анализировать результаты экспериментов
Владеть	□ Навыками работы с химическими реактивами и приборами,
	соб¬людая правила безо¬пасной работы с веществами и
	лабо¬раторным обору¬дова-нием;
	□ навыками проведения химического и физико-химического анализа;
	□ навыками расчетов результатов анализа
	□ профессиональным языком предметной области знания;
	□ методами математической обработки результатов анализа
ПК-18 готовностью	о использовать знание свойств химических элементов, соединений и
материалов на их о	снове для решения задач профессиональной деятельности
Знать	□ Основные принципы, мето¬ды, области применения химического и
511W12	физико-химического анализа;
	□ общие закономерности протекания химических процессов ;
	 □ методы и средства получения информации о вещественном составе
	те потоды и средства полу тепия информации о вещественном составе
Уметь	□ подготовить пробу к анализу;
J MC1B	□ готовить пробу к анализу, □ готовить растворы с заданной концентрацией решать типовые задачи
	по аналити¬ческой химии;
	по аналити ческой химий, □ составлять уравнения реакции,
	□ выполнять расчеты по стехиометрическим соотношениям, расчеты равновесий в растворах
	□ выбрать метод разделения и концентрирования исследуемого
	компо-нента;
	□ работать с раз¬личными справочными источ¬никами информации
	по аналитической хи¬мии.
	□ составлять и анализировать мето¬дики анализа; опреде¬лять
	оптималь-ные условия проведения анализа с использо ванием
	различных мето-дов, предполатать пути снижения погрешности
	ана¬литических опера-ций

□ навыками работы с химическими реактивами и приборами
□ навыками выполнения химического и физико-химического анализа;
□ способами сос¬тавления и анализа схем и методик анализа,
□ навыками статистичес¬кой обработки резуль¬татов лабораторного
экс-пери¬мента.
□ метода¬ми самостоятельного планирования и про¬веде¬ния
химических экспериментов, методами математической обработки
результатов ана-лиза

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 7 зачетных единиц 252 акад. часов, в том числе:

- контактная работа 23,6 акад. часов:
- аудиторная 20 акад. часов;
- внеаудиторная 3,6 акад. часов
- самостоятельная работа 215,8 акад. часов;
- подготовка к экзамену 12,6 акад. часа
- подготовка к зачёту 12,6 акад. часа

Форма аттестации - зачет, экзамен

Раздел/ тема дисциплины	Семестр	конт	Аудиторная контактная работа (в акад. часах)		Самостоятельная работа студента	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной	Код компетенции
)	Лек.	лаб. зан.	практ. зан.	Самост работа нторва		аттестации	
1. 1. Аналитическая химия								
1.1 Качественный анализ		1			10	Самостоятельное изучение учебной и научной литературы. Подготовка к собеседованию, тестированию, Выполнение домашней контрольной работы №1	Собеседование, тестирование Домашняя контрольная рабо-та №1	ОПК-1, ПК-10, ПК-18
1.2 Гравиметрический анализ	3	1	2/1И		30	Самостоятельное изучение учебной и научной литературы. Подготовка к собеседованию, тестированию, Выполнение домашней контрольной работы №1	Собеседование, тестирование Домашняя контрольная рабо-та №1	ОПК-1, ПК-10, ПК-18
1.3 Титриметрический анализ. Кислотно-основное титрование Окислительно-восстановительное титрование Комплексонометрическое титрование		2,5	4/3И		40	Самостоятельное изучение учебной и научной литературы. Подготовка к собеседованию, тестированию, Выполнение домашней контрольной работы №1	Собеседование, тестирование Домашняя контрольная рабо-та №1	ОПК-1, ПК-10, ПК-18

					-		
1.4 Статистическая обработка результатов анализа		0,5		18	Самостоятельное изучение учебной и научной литературы. Подготовка к собеседованию, Выполнение домашней контрольной работы №1	Собеседование Домашняя контрольная рабо-та №1	ОПК-1, ПК-10, ПК-18
Итого по разделу		5	6/4И	98			
2. Физико-химические мето	ДЫ						
анализа. 2.1 Введение. Классификация методов		0,5		7,8	Самостоятельное изучение учебной и научной литературы. Подготовка к собеседованию, тестированию, Выполнение домашней контрольной работы №2	Собеседование, тестирование Домашняя контрольная рабо-та №2	ОПК-1, ПК-10, ПК-18
2.2 Электрохимические методы анализа.		1	3/2И	25	Самостоятельное изучение учебной и научной литературы. Подготовка к собеседованию, тестированию, Выполнение домашней контрольной работы №2	Собеседование, тестирование Домашняя контрольная рабо-та №2	ОПК-1, ПК-10, ПК-18
2.3 Спектроскопические методы анализа	3	1	3/2И	40	Самостоятельное изучение учебной и научной литературы. Подготовка к собеседованию, тестированию, Выполнение домашней контрольной работы №2	Собеседование, тестирование Домашняя контрольная рабо-та №2	ОПК-1, ПК-10, ПК-18
2.4 Методы разделения и концентрирования		0,5		45	Самостоятельное изучение учебной и научной литературы. Подготовка к собеседованию, тестированию, Выполнение домашней контрольной работы №2	Собеседование, тестирование Домашняя контрольная рабо-та №2	ОПК-1, ПК-10, ПК-18
Итого по разделу		3	6/4И	117,8			

Итого за семестр	8	12/8И	215,8	экзамен,зачёт	
Итого по дисциплине	8	12/8И	215,8	зачет, экзамен	ОПК-1,ПК- 10,ПК-18

5 Образовательные технологии

Проектирование обучения строится на основе следующих принципов:

- Обучение на основе интеграции с наукой и производством.
- Профессионально-творческая направленность обучения.
- Ориентированность обучения на личность.
- Ориентированность обучения на развитие опыта самообразовательной деятельно-сти будущего специалиста.

Для достижения планируемых результатов обучения, в дисциплине «Аналитическая химия и физико-химические методы анализа» используются различные образовательные технологии:

- 1. Традиционные образовательные технологии: информационная лекция, лабора-торные занятия.
- 2. Информационно-коммуникационные образовательные технологии: лекция-визуализация. Практическое занятие в форме презентации представление результатов с использованием специализированных программных сред.
- 3. Информационно-развивающие технологии, направленные на формирование сис-темы знаний, запоминание и свободное оперирование ими. При самостоятельном изуче-нии литературы применение современных информационных технологий для самостоя-тельного пополнения знаний, включая использование технических и электронных средств информации.
- 4. Деятельностные практико-ориентированные технологии, направленные на формирование системы профессиональных практических умений при разборе конкретных ситуаций, основанных на практических примерах, обеспечивающих возможность качественно выполнять профессиональную деятельность.
- 5. Развивающие проблемно-ориентированные технологии, направленные на форми-рование и развитие проблемного мышления, мыслительной активности, способности ви-деть и формулировать проблемы, выбирать способы и средства для их решения.
- 6. Интерактивные технологии: коллективное обсуждение какого-либо спорного вопроса, проблемы, выявление мнений в группе. Изложение проблем и их совместное решение.
- 7. Личностно-ориентированные технологии обучения, обеспечивающие в ходе учебного процесса учет различных способностей обучаемых, создание необходимых ус-ловий для развития их индивидуальных способностей, развитие активности личности в учебном процессе. Личностно-ориентированные технологии обучения реализуются в ре-зультате индивидуального общения преподавателя и студента.

Реализация такого подхода осуществляется следующим образом:

- 1. Распределение тем рефератов (реферат входит в домашнюю контрольную работу) с учетом пожеланий студентов, тематики их научных интересов и т.п.
 - 2. Подготовка студентами формы отчетности самостоятельной работы (реферат).
- 3. Обсуждение выполненного домашнего задания при собеседовании и сдаче зачета.
 - **6 Учебно-методическое обеспечение самостоятельной работы обучающихся** Представлено в приложении 1.
 - **7** Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.
 - 8 Учебно-методическое и информационное обеспечение дисциплины (модуля)

а) Основная литература:

- 1. Аналитическая химия : учебник / Н.И. Мовчан, Р.Г. Романова, Т.С. Горбунова [и др.]. Москва :ИНФРА-М, 2018. 394 с. (Высшее образование:Бакалавриат). www.dx.doi.org/10.12737/12562. Текст : электронный. URL: https://new.znanium.com/document?id=320794
- 2. Никитина, Н. Г. Аналитическая химия и физико-химические методы анализа : учебник и практикум для академического бакалавриата / Н. Г. Никитина, А. Г. Борисов, Т. И. Хаханина ; под редакцией Н. Г. Никитиной. 4-е изд., перераб. и доп. Москва : Издательство Юрайт, 2019. 394 с. (Бакалавр. Академический курс). ISBN 978-5-534-00427-4. Режим доступа : https://urait.ru/viewer/analiticheskaya-himiya-i-fiziko-himicheskie-metody-analiza-449690#page/1

б) Дополнительная литература:

- 1. Крылова, С. А. Аналитическая химия. Количественные методы химического анализа: учебное пособие / С. А. Крылова, З. И. Костина, И. В. Понурко; МГТУ. [2-е изд., подгот. по печ. изд. 2017 г.]. Магнитогорск: МГТУ, 2018. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=3472.pdf&show=dcatalogues/1/1514 287/3472.pdf&view=true .
- 3. Костина, 3. И. Титриметрические методы анализа: окислительно-восстановительное и комплексонометрическое титрование : учебное пособие / 3. И. Костина, С. А. Крылова, И. В. Понурко ; МГТУ. [2-е изд., подгот. по печ. изд. 2016 г.]. Магнитогорск : МГТУ, 2017. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=3227.pdf&show=dcatalogues/1/1136 894/3227.pdf&view=true.
- 4. Крылова, С. А. Практическое руководство по аналитической химии. Качественный анализ: учебное пособие / С. А. Крылова, З. И. Костина, И. В. Понурко; МГТУ. Магнитогорск: МГТУ, 2016. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана.

 URL: https://magtu.informsystema.ru/uploader/fileUpload?name=27.pdf&show=dcatalogues/1/113005 0/27.pdf&view=true .
- 5. Крылова, С. А. Практическое руководство по физико-химическим методам анализа: учебное пособие / С. А. Крылова, З. И. Костина, И. В. Понурко; МГТУ. Магнито-горск: МГТУ, 2014. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL:
- $\frac{https://magtu.informsystema.ru/uploader/fileUpload?name=29.pdf\&show=dcatalogues/1/112385}{4/29.pdf\&view=true}\;.$
- 6. Хроматографические методы анализа: Учебное пособие / Пашкова Е.В., Волосова Е.В., Шипуля А.Н. Москва :СтГау "Агрус", 2017. 59 с.: ISBN Текст : электронный. URL: https://new.znanium.com/catalog/product/976652

в) Методические указания:

- 1. Крылова, С. А. Аналитическая химия. Количественные методы химического анализа : учебное пособие / С. А. Крылова, З. И. Костина, И. В. Понурко ; МГТУ. Магнито-горск : МГТУ, 2017. 115 с. : ил., табл. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=2709.pdf&show=dcatalogues/1/1131 778/2709.pdf&view=true .
- 2. Крылова, С. А. Практическое руководство по физико-химическим методам анализа : учебное пособие / С. А. Крылова, З. И. Костина, И. В. Понурко ; МГТУ. Магнито-горск : МГТУ, 2014. 1 электрон. опт. диск (CD-ROM). URL: https://magtu.informsystema.ru/uploader/fileUpload?name=29.pdf&show=dcatalogues/1/112385 4/29.pdf%view=true .
- 3. Костина, 3. И. Титриметрические методы анализа: окислительно-восстановительное и комплексонометрическое титрование : учебное пособие / 3. И. Костина, С. А. Крылова, И. В. Понурко ; МГТУ. Магнитогорск : МГТУ, 2016. 63 с. : ил., табл. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=1232.pdf&show=dcatalogues/1/1122 446/1232.pdf&view=true .
- 4. Шабалин, Е.И. Рентгенофлуоресцентный метод анализа [Текст]: метод. указ. к лаб.работе/ Е.И.Шабалин, С.А. Крылова Магнитогорск: Изд-во Магнитогорск. гос.техн.ун-та им.Г.И. Носова, 2014. 9 с. Текст :непосредственный.
- 5. Хроматографический анализ : учебное пособие / Е. С. Махоткина, Н. Ю. Свечникова, М. В. Шубина, В. И. Сысоев ; МГТУ. Магнитогорск : МГТУ, 2017. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=3307.pdf&show=dcatalogues/1/1137744/3307.pdf&view=true .

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

	iipoi paniminoe oceane ienne							
Наименование ПО	№ договора	Срок действия лицензии						
FAR Manager	свободно распространяемое ПО	бессрочно						
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021						
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно						
7Zip	свободно распространяемое ПО	бессрочно						

Профессиональные базы данных и информационные справочные системы

профессиональные оказы данных и информационные справо ные спетемы									
Название курса	Ссылка								
Напиональная информационно-аналитическая система —	URL: https://elibrary.ru/project_risc.asp								
II louckopag cuctema Akanemug Google (Google Scholar)	URL: https://scholar.google.ru/								
	URL: http://window.edu.ru/								

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа

Мультимедийные средства хранения, передачи и представления информации.

Учебная аудитория для проведения лабораторных работ:

Химическая лаборатория.

Химическая посуда, реактивы, весы лабораторные равноплечие ВЛР-200, Весы электронные лабораторные ВК-300, Низкотемпературная лабораторная электропечь SNOL10/10, электропечь сопротивления камерная лабораторная СНОЛ 10/10, магнитные мешалки, эл. Плитки.

Учебная аудитория для проведения лабораторных работ:

Лаборатория аналитической химии. Иономер унив. ЭВ-74, рН-метр рН-150М рН-метр Эксперт-рН, Колориметр ф/эл. однол.КФО-УХЛ 4.2, Кондуктометр К-1-4, Мешалка магнитная ПЭ-6110 с подогревом, Спектрофотометр ПЭ-5300 ВИ, Термостатд/терм.вискозим.нефт. по ГОСТ 33-2000, Титратор АТП-02 автоматический, Титратор лабораторный высокочастотный ТВ-6Л1, Аппарат АРНП-ПХП , Центрифуга лабораторная ОПн-8, Весы ВЛР-200(лабораторные) равнопл., Весы электронные ВК-300, Аквадистиллятор ДЭ-4.

Учебные аудитории для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации Доска, учебные столы, стулья.

Учебные аудитории для самостоятельной работы обучающихся Персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета

Помещение для хранения и профилактического обслуживания учебного оборудования:

Препараторская Дистиллятор, методические указания по дисциплине, учебные пособия, планы лабораторных работ, журнал по технике безопасности. Стеллажи для хранения. Лабораторный стол. Инструменты для ремонта и вспомогательные материалы.

Учебно-методическое обеспечение самостоятельной работы обучающихся

Вопросы по темам для самостоятельного контроля знаний

«Качественный анализ»

- 1. Предмет и методы качественного анализа;
- 2. отбор и подготовка пробы к анализу;
- 3. аналитический сигнал;
- 4. погрешности химического анализа. Обработка результатов измерений;
- 5. условия выполнения аналитических реакций;
- 6. чувствительность, избирательность и специфичность аналитических реакций;
- 7. предел обнаружений (минимальная концентрация, обнаруживаемый минимум, предельное разбавление);
- 8. комплексообразование в аналитической химии;
- 9. регулирование рН растворов. Буферные растворы;
- 10. образование и растворение осадков;
- 11. влияние рН на полноту осаждения;
- 12. влияние избытка осадителя на полноту осаждения;
- 13. понятие об активности электролита. Ионная сила растворов. Солевой эффект. Влияние избытка одноименных ионов и солевого эффекта;
- 14. дробное осаждение;
- 15. соосаждение примесей;
- 16. окислительно-восстановительные процессы в качественном анализе;
- 17. методы маскировки, разделения и концентрирования;
- 18. специфичность аналитических реакций;
- 19. дробный и систематический анализ;
- 20. групповые реагенты и требования к ним;
- 21. деление катионов на аналитические группы
- 22. частные реакции.

" Гравиметрический анализ»

- 1. Сущность гравиметрического анализа. Методы, используемые в гравиметрии : осаждение, выделение, отгонка.
- 2. Осаждаемая и гравиметрическая формы. Требования к ним. Гравиметрический фактор.
- 3. Основные этапы гравиметрического анализа. Преимущества и недостатки метода.
- 4. Требования, предъявляемые к осадкам. Выбор величины навески, осадителя. Расчет объема осадителя. Проба на полноту осаждения.
- 5. Образование осадков. Процессы зародышеобразования, агрегации, созревания осадка. Растворимость и сверхрастворимость осадков. Относительное пересыщение и его влияние на скорость процессов зародышеобразования и рост кристаллов. Условия осаждения кристаллических и аморфных осадков.
- 6. Причины загрязнения осадков: совместное осаждение, соосаждение, последующее осаждение. Виды соосаждения: адсорбция, окклюзия, изоморфное соосаждение. Способы уменьшения соосаждения.
- 7. Фильтрование, промывание, высушивание, прокаливание осадка.
- 8. Определение серы гравиметрическим методом.
- 9. Вычисления в гравиметрическом анализе.

"Кислотно-основное титрование"

- 1. Титриметрический анализ. Сущность метода.
- 2. Концентрация растворов: молярная, молярная концентрация эквивалента (нормальность), титр, титр по определяемому веществу.
- 3. Титрант, титрование, точка эквивалентности. Стандартные и стандартизованные растворы. Фиксанал.
- 4. Методы титриметрического анализа. Классификация методов:
- 5. по типу протекаемых реакций (кислотно-основное, окислительно-восстановительное, комплексонометрическое, осадительное).
- 6. по способу титрования: прямое, обратное, титрование заместителя
- 7. Кривые титрования в кислотно-основном методе. В каких координатах строят, точка эквивалентности, скачок титрования. Расчет рН. Зависимость скачка титрования от различных факторов.
- 8. Индикаторы кислотно-основного титрования. Выбор индикаторов. Индикаторные погрешности. Обязательно ли совпадение точки титрования и конечной точки титрования?
- 9. Титрование многоосновных кислот и многокислотных оснований
- 10. Стандартизация раствора НС1 по тетраборату натрия (Na₂B₄O₇ * 10 H₂O)
- 11. Определение содержания щелочи в растворе.
- 12. Определение содержания щелочи и карбоната натрия при совместном присутствии в растворе.
- 13. Определение содержания карбоната и гидрокарбоната натрия при совместном присутствии в растворе.

« Окислительно-восстановительное титрование»

- 1. Окислительно-восстановительное титрование. Особенности реакций окисления -восстановления. Окислительно-восстановительный потенциал., его зависимость от природы окислителя и восстановителя, температуры, кислотности среды. Уравнение Нернста. Определение направления реакций окисления-восстановления.
- 2. Требования к окислительно-восстановительным реакциям, используемым в титриметрическом анализе. Методы окислительно-восстановительного титрования в химическом анализе. Титранты.
- 3. Кривая титрования. Скачок титрования, его зависимость от различных факторов. Титрование смесей окислителей (восстановителей).
- 4. Окислительно-восстановительные индикаторы. Требования к индикаторам.
- 5. Безиндикаторное титрование. Сущность метода перманганатометрии. Какие вещества можно определить методом перманганатометрии? Как определяется конец титрования в перманганатометрии?
- 6. Определение восстановителей в перманганатометрии методе окислительно-восстановительного титрования. Установление концентрации раствора

 $KMnO_4$ по исходному веществу - раствору $(NH)_4C_2O_4$. Определение точки эквивалентности.

7. Какие вещества (окислители или восстановители) и с какими значениями стандартного электродного потенциала можно определять прямым титрованием $KMnO_4$? ($\phi^0_{MnO4}/_{Mn}^{2+}$ = 1,51 B). Определение железа (2) в соли Мора .

«Комплексонометрия»

- 1. Комплексные соединения. Основные положения координационной теории. Строение комплексных соединений.
- 2. Химическая связь в комплексных соединениях . Координационное число. Дентатность лигандов. Внутрикомплексные соединения.
- 3. Диссоциация комплексных соединений. Устойчивость комплексов. Константы нестойкости и устойчивости.
- 4. Комплексонометрическое титрование. Комплексоны. Требования к реакциям комплексонометрического титрования
- 5. Факторы, влияющие на процесс комплексообразования. Эффективная константа устойчивости.
- 6. Кривые комплексонометрического титрования. Расчет. Факторы, влияющие на величину скачка титрования. Влияние разбавления раствора на величину рМ.
- 7. Способы обнаружения конечной точки титрования. Металлоиндикаторы.
- 8. Методы комплексонометрического титрования : прямое, обратное, вытеснительное и косвенное.
- 9. Прямое и обратное титрование катионов алюминия раствором ЭДТА.
- 10. Условия титрования смеси катионов в одной аликвоте.
- 11. Причина индикаторных погрешностей при комплексонометрическом титровании.
- 12. Определение жесткости воды комплексонометрическим методом.
- 13. Определение металлов в растворах (уравнения реакций, условия определения, индикатор).

Экстракция

- 1. Основные законы и количественные характеристики.
- 2. Закон распределения. Константа распределения, коэффициент распределения. Классификация экстракционных процессов.
- 3. Способы осуществления экстракции.
- 4. Практическое использование.
- 5. Разделение элементов методом экстракции.
- 6. Основные органические реагенты, используемые для разделения элементов методом экстракции.
- 7. Селективное разделение элементов методом подбора органических растворителей, изменение рН водной фазы, маскирования и демаскирования.
- 8. Приборы для экстракции.

Хроматография

- 1. Определение хроматографии.
- 2. Понятие о подвижной и неподвижной фазах.
- 3. Классификация методов по агрегатному состоянию подвижной и неподвижной фаз, по механизму разделения, по технике выполнения.
- 4. Способы получения хроматограмм (фронтальный, вытеснительный, элюентный).

- 5. Основные параметры хроматограммы. Основное уравнение хроматографии.
- 6. Селективность и эффективность хроматографического разделения. Теория теоретических тарелок. Кинетическая теория. Разрешение как фактор оптимизации хроматографического процесса.
- 7. Качественный и количественный хроматографический анализ.
- 8. Газо-жидкостная хроматография. Аппаратура. Подготовка к работе. Детекторные системы. Применение.
- 9. Возможности хроматографии как для разделения, так и для анализа веществ.

«Физические и физико- химические (инструментальные) методы анализа»

Спектроскопические методы анализа

Общая характеристика и классификация спектральных методов анализа (по природе частиц, взаимодействующих с излучением (атомные, молекулярные); характеру процесса (абсорбционные, эмиссионные); диапазону электромагнитного излучения).

Атомные и молекулярные спектры, их происхождение, вид и основные характеристики.

Спектры атомов. Основные и возбужденные состояния атомов, характеристики состояний. Энергетические переходы, правила отбора. Вероятности электронных переходов и времена жизни возбужденных состояний. Характеристики спектральных линий: положение в спектре, интенсивность, полуширина. Причины уширения спектральных линий.

Спектры молекул; их особенности. Схемы электронных уровней молекулы. Электронные, колебательные и вращательные спектры молекул. Зависимость вида спектра от агрегатного состояния вещества.

Абсорбционная спектроскопия: сущность и особенности наиболее распространенных в аналитической практике методов. Фотометрический анализ. Основной закон светопоглощения, оптическая плотность, пропускание, молярный коэффициент светопоглощения. Аддитивность светопоглощения. Условия соблюдения Бугера-Ламберта-Бера. Главные ОТ причины отклонения основного закона светопоглощения (инструментальные и физико-химические).

Классификация аппаратуры с точки зрения способа монохроматизации (фотометры, спектрофотометры). Выбор оптимальных условий фотометрического определения. Способы определения концентрации вещества в практике фотометрических измерений: метод градуированного графика, метод добавок. Достоинства и недостатки каждого из них. Расчеты в фотометрическом анализе.

Определение меди методом дифференциальной фотометрии.

Люминесцентный анализ

- 1. Какова природа люминесцентного излучения?
- 2. Чем объясняется смещение максимума спектра люминесценции в область больших длин волн по сравнению со спектром поглощения?
- 3. На чем основан качественный люминесцентный анализ? Как проводят качественные определения методом люминесценции?

- 4. От чего зависит интенсивность люминесцентного излучения? Как она связана с концентрацией?
- 5. Энергетический и квантовый выходы люминесценции.
- 6. Достоинства и недостатка метода.

Рефрактометрия

- 1. Показатель преломления, от каких факторов он зависит?
- 2. Что называется углом полного внутреннего отражения?
- 3. Как изменяется угол полного внутреннего отражения с изменением показателя преломления?
- 4. Поляризация и рефракция. Методы определения. Как рассчитать молярную и удельную рефракции? Правило аддитивности.
- 5. Определение строения вещества по показателю преломления жидкости.
- 6. Типы рефракторов. Принцип работы рефрактометров.
- 7. Области применения рефрактометрического метода.

Потенциометрический анализ

- 1. Причина возникновения разности потенциалов между металлом и раствором его соли. Равновесный электродный потенциал.
- 2. Математическое выражение зависимости величины электродного потенциала от концентрации определяемых ионов в растворе (уравнение Нернста).
- 3. Стандартный электродный потенциал и его измерение.
- 4. Сущность потенциометрического метода анализа,
- 5. область его применения, достоинства и недостатки.
- 6. Точность и чувствительность метода.
- 7. Требования к индикаторному электроду и электроду сравнения. Типы индикаторных электродов. Электроды сравнения. Хлорсеребряный электрод.
- 8. От концентрации каких ионов зависит потенциал хлорсеребряного электрода. Напишите уравнение Нернста для хлорсеребряного электрода.
- 9. Металлические и мембранные индикаторные электроды. Электроды первого и второго рода.
- 10. Стеклянный электрод, его устройство, достоинства и недостатки. Электродная реакция.
- 11. Объясните характер кривой титрования при титровании карбоната натрия раствором соляной кислоты.
- 12. Интегральная и дифференциальная кривые титрования при титровании карбоната натрия соляной кислотой.
- 13. Требования к реакциям, используемым в потенциометрическом титровании.
- 14. Отличие прямой потенциометрии от потенциометрического титрования.
- 15. Определение конечной точки титрования (эквивалентного объема).
- 16. Обратимые и необратимые окислительно-восстановительные системы.
- 17. Напишите уравнение Нернста для окислительно- восстановительного электрода, на котором протекает реакция:
- a) $Fe^{2+} 1e = Fe^{3+}$
- 6) $Cr_2O_7^{2-} + 6 e = 2 Cr^{3-} + 7 H_2O.$

- 18. Определение щелочности воды.
- 19. Определение хрома.

Вольтамперометрический анализ

- 1. Вольтамперометрия. Сущность метода, определение.
- 2. Каковы характерные особенности ячейки для вольтамперометрических измерений и чем они обусловлены.
- 3. Классическая полярография. Сущность ее, электроды. Устройство, достоинства и недостатки ртутного капающего микроэлектрода.
- 4. Условия регистрации полярограмм. На что расходуется внешнее напряжение, налагаемое на полярографическую ячейку? Индифферентный электролит, его роль. Зачем нужно удалять из раствора растворенный кислород перед регистрацией полярограммы?
- 5. Вольтамперная кривая, ее характеристики (конденсаторный ток, потенциал выделения, предельный ток). При каких условиях предельный ток является диффузионным? Почему величина $E_{1/2}$ характеризует природу деполяризатора?
- 6. Зависимость диффузионного тока от концентрации деполяризатора: уравнение Ильковича. Изобразите кривые зависимости величины диффузионного тока от концентрации деполяризатора и покажите как выбирается рабочий потенциал для амперометрического титрования.
- 7. Уравнение обратимой полярографической волны. Какую информацию можно получить из него?
- 8. Качественный полярографический анализ. Влияние состава фонового электролита на величину $E_{1/2}$. В каких случаях возможно одновременное полярографическое определение нескольких веществ?
- 9. Количественный полярографический анализ. Методы определения концентрации (градуировочного графика, стандартов, добавок)
- 10. Приемы в полярографии для повышения чувствительности и разрешающей способности.
- 11. Форма и характеристики классической. осциллографической и переменно-токовой полярограмм
- 12. Вольтамперометрия. Индикаторные электроды. Вид вольтамперограмм, полученных на стационарном и вращающемся твердых электродах.
- 13. Инверсионная вольтамперометрия. Ее суть. Чем обусловлена высокая чувствительность метода?
- 14. Амперометрическое титрование, принцип метода, электроды. Типы кривых титрования. Преимущества амперометрического титрования перед прямой вольтамперометрией.

Кондуктометрия

- 1. Теоретические основы метода. Электропроводность растворов (удельная, эквивалентная).
- 2. Электрофоретический и релаксационные эффекты.
- 3. Покажите, при каких условиях удельная электропроводность численно равна силе тока, проходящего через сечение раствора поверхностью 1 m^2 .
- 4. Почему измерения электропроводности растворов электролитов обычно проводят с использованием переменного тока?
- 5. Представьте графическую зависимость удельной электропроводности от концентрации для слабых и для сильных электролитов. Почему в обоих случаях на кривых наблюдается максимум?

- 6. От каких факторов зависит удельная электропроводность раствора? Как найти ее величину для смеси растворов?
- 7. Как зависит эквивалентная электропроводность от разбавления для сильных и слабых электролитов? В каком случае достигается предельное значение электропроводности. Почему?
- 8. В каких случаях применяют методы прямой кондуктометрии?
- 9. Кондуктометрическое титрование. Вид кривых кондуктометрического титрования. Примеры. Особенности и достоинства метода.
- 10. Какие эффекты возникают в растворе электролита под действием тока высокой частоты?
- 11. Высокочастотное титрование. Типы измерительных ячеек. Поляризация молекул в поле высокой частоты (ориентационная и деформационная). Активная и реактивная составляющие электропроводности ячейки. Возможности и ограничения метода.
- 12. Определение бария методом высокочастотного титрования титровании.

Кулонометрия

- 1. В чем сущность кулонометрического метода анализа?
- 2. Какие законы лежат в его основе? Что характеризует выход по току? Почему при кулонометрических измерениях необходим 100% выход по току?
- 3. Кулонометрия прямая и косвенная (потенциостатическая и гальваностатическая).
- 4. Потенциостатическая кулонометрия. Выбор величины потенциала. Определение времени электролиза. Способы определения количества электричества.
- 5. Кулонометрическое титрование. Генераторный электрод. Электрогенерированный титрант. Вспомогательный реагент. Особенности кулонометрического титрования, достоинства и недостатки метода.

Статистическая обработка результатов анализа

- 1. Приведите классификацию погрешностей измерения по способу их выражения.
- 2. Приведите классификацию погрешностей по характеру вызывающих их причин.
- 3. Как зависит относительная погрешность измерения объема по бюретке от величины измеряемого объема?
- 4. Как зависит относительная погрешность взвешивания на аналитических весах от величины навески?
- 5. Что такое среднее арифметическое значение измеряемой величины?
- 6. Какими причинами вызваны систематические, случайные и грубые погрешности?
- 7. Что такое правильность и воспроизводимость экспериментальных данных?
- 8. Какими способами можно уменьшить систематическую погрешность: титрования, взвешивания, осаждения и промывания осадков, калибрования мерной посуды?
- 9. Какими статистическими характеристиками определяется случайная погрешность?
- 10. Что такое стандартное отклонение отдельного измерения?
- 11. Как пользуясь Q критерием, можно обнаружить грубые погрешности?
- 12. Что представляют собой стандартные образцы и для чего их используют?

Примеры расчетных заданий:

. Примеры расчетных заданий

Аналитическая химия

- 1. Какую навеску анализируемого вещества соли Мора с массовой долей $(NH_4)_2SO_4FeSO_4\cdot 6H_2O$ равной 0,9 необходимо взять для гравиметрического анализа чтобы масса весовой формы осадка Fe_2O_3 была равна 0,150 г?
- 2. Вычислите массу фосфорной кислоты, находящейся в растворе, если на титрование этого раствора по приведенному ниже уравнению реакции пошло 20,00 мл 0,1 М раствора гидроксида натрия.

$$H_3PO_4 + NaOH = Na_2HPO_4 + H_2O$$

- 3. Вычислите рН раствора, полученного при добавлении к 20 мл 0,05 H раствора NaOH 15 мл 0,06 H раствора HCl.
- 4. Мышьяк (III) встречается в природе в виде минерала клаудетита. На титрование 0,210 г минерала израсходовано 29,3 мл 0,052н раствора I_2 . Рассчитайте массовую долю As_2O_3 в образце.
- 5. Постройте кривую титрования 0,1 Н раствора уксусной кислоты 0,1Н раствором гидроксида натрия. Как выбрать подходящий индикатор?

Физико-химические методы анализа

6. Вычислить потенциал индикаторного металлического электрода относительно электрода сравнения, имеющего потенциал $\phi_{3.cp.}$, без учета и с учетом ионной силы раствора при следующих условиях

Электрод	Объем	Растворенное вещество, его	t,°C	Электрод	φ _{э.ср.} , В
	электролита, см ³	масса или количество		сравнения	
D.1	100	7.70	22		0.005
Pd	100	$FeSO_4 - 0.01$ моль – эк	22	Каломельный	0,337
		$Fe_2(SO_4)_3 - 0.3\varepsilon$		(0,1H KCl)	

Вычислить рН раствора и концентрацию ионов водорода, если потенциал водородного электрода относительно насыщенного каломельного электрода (ϕ = 0,438 B) составил 0,315 B.

Раствор вещества FeCl₃ титруют раствором KF. Составьте уравнение химической реакции и, пользуясь значениями подвижностей ионов (табл. 6), определите вид кривой кондуктометрического титрования.

Для определения иодид-ионов использовали кулонометрический метод, титруя иодид-ионы перманганат-ионами, которые электрогенерируются в анодном пространстве в сернокислой среде. Точку эквивалентности установили потенциометрически. Составьте уравнение реакции при титровании. Получены следующие данные, мг: 6,45; 6,48; 6,42; 6,53; 6,50. Оцените наличие грубых погрешностей по Q - критерию. Вычислите стандартное отклонение среднего результата и доверительный интервал при 95 %

вероятности. Какова точность определения? Сколько значащих цифр следует указать в результате?

Определить концентрацию ионов MnO_4 в растворе (г/л), если при амперометрическом титровании 10,0 мл раствором соли Мора (Fe^{2+}) с титром по железу равным 0,00279 г/мл при E=+1,15 В получили следующие результаты:

V соли Мора, мл	0	0,5	1,0	1,5	2,0	2,5	3,0	4,0
I d, мкА	9,0	10,0	15,0	18	20	40	60	90

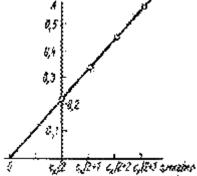
Написать уравнения химической и электрохимической реакций.

При полярографировании стандартных растворов свинца (II) получили следующие результаты:

C(Pb)•10 ⁶ , г/мл	0,50	1,00	1,50	2,00	2,50
h, мм	4,0	8,0	12,0	16,0	20,0

Навеску алюминиевого сплава массой 2,5000 г растворили, раствор разбавили до 50,0 мл. Высота полярографической волны свинца в полученном растворе оказалась равной 6,0 мм. Вычислить массовую долю (%) свинца в алюминиевом сплаве.

Вычислить молярный коэффициент поглощения меди, если оптическая плотность раствора, содержащего 0,48 мг меди в 500 мл, при толщине слоя кюветы 2 см равна 0,14.


Для определения железа в промышленной воде из 200 мл воды после упаривания и обработки о-фенантролином было получено 50 мл окрашенного раствора. Оптическая плотность этого раствора при толщине кюветы 2 см оказалась равной 0,92. Определить содержание железа (в мг/л), если молярный коэффициент поглощения этого окрашенного соединения равен 1100.

Вычислить молярную рефракцию четыреххлористого углерода CCl_4 , если показатель преломления n = 1,4603, а плотность $\rho = 1,604$. Сравните найденную рефракцию с вычисленной по табличным значениям атомных рефракций.

Примеры решения задач

Атомно-абсорбционный анализ

Задача. При определении марганца в сплаве методом добавок навеску массой 0,5000г растворили и разбавили раствор до 200,0 мл. Отобрали четыре одинаковые порции раствора и к каждой порции добавили такие же порции стандартных растворов марганца, содержащих 0; 2; 4; 6 мкг/мл марганца.

На атомно - абсорбционном спектрофотометре измерили оптическую плотность для аналитической линии 279,48 нм, распыляя растворы в пламени ацетилен-воздух. Получили значения оптической плотности соответственно 0,225; 0,340; 0,455; 0,570. Вычислите массовую долю марганца в сплаве (%).

Решение. Принимаем концентрацию исследуемого раствора за c_x . Тогда концентрации измеряемых растворов составляют $c_x/2$; $(c_x/2)+1$; $(c_x/2)+2$; $(c_x/2)+3$ мкг/мл. На оси абсцисс произвольно выбираем точку $c_x/2$ и откладываем от нее точки: $(c_x/2)+1$; $(c_x/2)+2$; $(c_x/2)+3$. Для построения градуировочного графика на оси ординат откладываем соответствующие точкам значения оптической плотности A.

Считаем, что зависимость A–c линейна, находим положение точки на прямой при A=0, экстраполируя построенную по четырем точкам прямую до пересечения с осью абсцисс, как это показано на рисунке. Длина отрезка 0– c_x /2 соответствует c_x /2=2,0 мкг/мл. Следовательно, c_x =4,0 мкг/мл.

Вычисляем массовую долю (%) Mn в сплаве: \Box (Mn)=(4,0 $^{\circ}$ 200,0 $^{\circ}$ 10 $^{-6}$ $^{\circ}$ 100%) / 0,5 = 0,16% Mn.

Ответ: Содержание Мп в сплаве 0,16%.

" Хроматография"

Задача 1. Определить массовую долю (%) компонентов газовой смеси по следующим данным:

Компонент:	Пропан	Бутан	Пентан	Циклогексан
S, mm ²	175	203	182	35
k	0,68	0,68	0,69	0,85

Решение: Расчеты проводим по методу внутренней нормализации, согласно которому:

$$\omega_i = S_i \cdot k_i / \sum S_i \cdot k_i \cdot 100\%$$
,

где ω_i – массовая доля i-го компонента в смеси, %; S_i – площадь пика i-го компонента; k_i – поправочный коэффициент, определяемый чувствительностью детектора к i-му компоненту.

Найдем приведенную суммарную площадь пиков:

$$\sum S_i \cdot k_i = 175 \cdot 0.68 + 203 \cdot 0.68 + 182 \cdot 0.69 + 35 \cdot 0.85 = 412.4.$$

Отсюда массовая доля (%) пропана равна

$$\omega$$
(пропана) = $(175 \cdot 0.68 / 412.4) \cdot 100\% = 28.6\%$.

Ответ: Массовая доля пропана 28,6%.

Аналогично находим массовые доли ω (%) остальных компонентов смеси: ω (бутана) = 33,46%, ω (пентана) = 30,46%, ω (циклогексана) = 7,22%.

При выполнении анализа по **методу внутреннего стандарта** расчет проводят по формуле

$$\omega_i = (S_i \cdot k_i) / (S_{ct} \cdot k_{ct}) \cdot R \cdot 100\%,$$

где $S_{\rm cr}$ – площадь пика вещества, введенного в качестве внутреннего стандарта; $k_{\rm cr}$ – его поправочный коэффициент; R – отношение массы внутреннего стандарта к массе анализируемой пробы.

Задача 2. Реакционную массу после нитрования толуола проанализировали методом газожидкостной хроматографии с применением этилбензола в качестве внутреннего стандарта. Определить процент непрореагировавшего толуола по следующим экспериментальным данным:

Взято толуола, г	12,7500
Внесено этилбензола, г	1,2530
$S_{ m толуола},\ { m MM}^2$	307
$k_{ m толуола}$	1,01
$S_{ m этилбензола,}$ мм 2	352
<i>k</i> _{этилбензола}	1,02

Решение: Расчет проводят по методу внутреннего стандарта, используя формулу:

$$\omega_i = (S_i \cdot k_i) / (S_{ct} \cdot k_{ct}) \cdot R \cdot 100\%,$$

Подставляем данные задачи в эту формулу:

$$\omega_i = (307 \cdot 1,01) / (352 \cdot 1,02) \cdot (1,2530 / 12,75) \cdot 100 = 8,49\%$$

Ответ: 8,49%.

Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
ОПК-1	способностью и готовностью использо	вать основные законы естественнонаучных дисциплин в профессиональной деятельности
Знать	основные законы естественнонаучных дисциплин теоретические основы химии	сформулировать законы сохранения массы и энергии написать формулу Менделеева-Клапейрона, дать к ней пояснения сформулировать принцип Ле-Шателье, закон действующих масс
Уметь	использовать знание свойств химических соединений для проведения химического анализа характеризовать свойства соединений на основе их химической формулы и строения; проводить лабораторные испытания.	предложить метод определения железа (3) в растворе
Владеть	методами теоретического исследования, методами идентификации химических веществ, классическими методами химического и физико- химического анализа.	подобрать индикатор для кислотно - основного метода титрования провести качественные реакции на обнаружение ионов железа (2) и железа (3) в растворе построить калибровочный график и провести анализ на содержание в растворе ионов меди.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
ПК-10	способностью проводить анализ сырья	, материалов и готовой продукции, осуществлять оценку результатов анализа
Знать	 Основные определения и понятия аналитической химии; классификации методов анализа в аналитической химии; сущность методов анализа; теоретические основы и принципы химических и физико-химических методов анализа устройство и принципы работы используемых в анализах аппаратуры и оборудования; методы статистической обработки результатов измерений 	Качественный анализ. Предмет и методы качественного анализа. Аналитические реакции и их типы. Дробный и систематический качественный анализ. Гравиметрический метод. Сущность гравиметрического анализа. Операции в гравиметрическом анализе. Осаждаемая и гравиметрическая формы. Требования к ним. Гравиметрический фактор. Для чего применяются муфельные печи? Что означает выражение: «прокалить до постоянной массы»? Титриметрические методы. Сущность. Классификация. Требования к реакциям в титриметрии. Способы и методы титрования. Способ пипетирования и отдельных навесок. Прямое титрование. Косвенное титрование: заместительное, обратное. Стандартные и стандартизованные растворы. Кривые титрования. Скачок титрования. Точка эквивалентности и точка конца титрования. Способы установления конечной точки титрования. Кислотно-основное титрование. Титрование сильной кислоты (основания) сильным

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		основанием (кислотой). Вид кривой титрования. Расчет скачков титрования. Значения рН в точке эквивалентности.
		Титрование слабого основания (кислоты) сильной кислотой (основанием). Вид кривой титрования. Расчет скачков титрования. Значения рН в точке эквивалентности.
		Выбор индикаторов. Индикаторные погрешности кислотно-основного титрования
		Титрование многокислотных оснований и многоосновных кислот. Определение соды в растворе.
		Окислительно-восстановительное титрование . Окислительно-восстановительный потенциал, его зависимость от природы окислителя и восстановителя, температуры, кислотности среды. Уравнение Нернста.
		Определение направления реакций окисления-восстановления. Привести примеры.
		Окислительно-восстановительное титрование. Классификация. Кривые титрования.
		Редокс-индикаторы. Их выбор.
		Титрование смесей окислителей (восстановителей).
		Сущность метода перманганатометрии. Приготовление и стандартизация титранта. Условия титрования. Определение конечной точки титрования.
		Комплексонометрическое титрование. Комплеконы. Комплексон 3 (трилон Б) как основной комплексообразующий реагент. Пример уравнения реакции.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
компетенции		Кривые комплексонометрического титрования. Расчет. Факторы, влияющие на величину скачка титрования. Влияние разбавления раствора на величину рМ. Способы обнаружения конечной точки титрования. Металлоиндикаторы. Методы комплексонометрического титрования : прямое, обратное, вытеснительное и косвенное. Прямое и обратное титрование катионов алюминия раствором ЭДТА. Практическое применение комплексонометрического титрования (определение ионов кальция, магния, железа). Метрологические основы аналитической химии. Аналитический сигнал. Точность результатов анализа: воспроизводимость и правильность. Погрешности хим.анализа. Доверительный интервал. Предел обнаружения. Обработка результатов измерений. Случайные погрешности. Их оценка. Закон нормального распределения. t-Распределение. Сравнение дисперсий и средних двух методов анализа. Общая характеристика электрохимических методов. Природа аналитического сигнала. Классификация электрохимических методов . Электрохимические ячейки. Индикаторный электрод и электрод сравнения. Равновесные и неравновесные электрохимические системы. Явления, возникающие при протекании тока (омическое падение напряжения, концентрационная и кинетическая поляризация). Поляризационные кривые и их использование в различных электрохимических методах.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		Потенциометрия. Прямая потенциометрия. Равновесный потенциал. Измерение
		потенциала. Обратимые и необратимые окислительно-восстановительные системы.
		Индикаторные электроды. Металлические и мембранные индикаторные электроды. Электроды первого и второго рода.
		Электроды сравнения. Хлорсеребряный электрод. Каломельный электрод.
		Потенциометрическое титрование. Изменение электродного потенциала в процессе титрования. Способы обнаружения конечной точки титрования; индикаторы.
		Вольтамперометрия. Основы метода. Особенности электрохимической ячейки.
		Электроды. Теоретические основы классической полярографии. Устройство, достоинства и недостатки ртутного капающего микроэлектрода.
		Характеристики полярограммы. Потенциал полуволны. Диффузионный ток. Зависимость диффузионного тока от концентрации деполяризатора: уравнение Ильковича.
		Практическое применение полярографии. Качественный анализ. Количественный анализ. Методы определения концентрации (градуировочного графика, стандартов, добавок). Возможности и ограничения метода.
		Амперометрическое титрование. Выбор условий амперометрического титрования. Виды кривых титрования. Примеры практического применения. Преимущества амперометрического титрования перед прямой вольтамперометрией.
		Кондуктометрия. Теоретические основы метода. Электропроводность растворов

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		(удельная, эквивалентная). Электрофоретический и релаксационные эффекты. Зависимость электропроводности от концентрации электролита в растворе. Электропроводность бесконечно разбавленного раствора. Кондуктометрическое титрование. Вид кривых кондуктометрического титрования. Примеры. Особенности и достоинства метода. Высокочастотное титрование. Типы измерительных ячеек. Поляризация молекул в поле высокой частоты (ориентационная и деформационная). Активная и реактивная составляющие электропроводности ячейки. Возможности и ограничения метода. Кулонометрия. применение законов Фарадея в анализе. Выход по току. Кулонометрия прямая и косвенная (потенциостатическая и гальваностатическая). Потенциостатическая кулонометрия. Выбор величины потенциала. Определение времени электролиза. Способы определения количества электричества. Кулонометрическое титрование. Генераторный электрод. Электрогенерированный титрант. Вспомогательный реагент. Особенности кулонометрического титрования, достоинства и недостатки метода. Спектроскопические методы. Общая характеристика и классификация. Электромагнитный спектр. Взаимодействие электромагнитного излучения с анализируемым веществом. Частицы, формирующие аналитический сигнал: атомные и молекулярные спектры, их происхождение. Взаимосвязь основных характеристик спектральных линий с природой и количеством вещества (качественный и количественный и количественный анализ).

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		Молекулярная абсорбционная спектроскопия : ее сущность. Фотометрический анализ. Основной закон светопоглощения, оптическая плотность, пропускание, молярный коэффициент светопоглощения. Аддитивность светопоглощения. Условия соблюдения закона Бугера-Ламберта-Бера.
		Приборы для фотометрии и спектрофотометрии. Основные узлы приборов для абсорбционных измерений. Выбор оптимальных условий фотометрического определения. Способы определения концентрации.
		Эмиссионная спектроскопия. Молекулярная люминесцентная спектроскопия. Классификация видов люминесценции по источникам возбуждения (хемилюминесценция, биолюминесценция, электролюминесценция, фотолюминесценция и др.); механизму и длительности свечения. Флуоресценция и фосфоресценция. Выход люминесценции. Закон Стокса - Ломмеля, правило зеркальной симметрии Левшина. Факторы, влияющие на интенсивность люминесценции. Тушение люминесценции. Количественный анализ люминесцентным методом.
		Рентгеноспектральные методы анализа. Рентгеновские спектры. Механизм возбуждения внутренних электронов. Схема электронных переходов рентгеновского спектра. Характеристическое рентгеновское излучение. Вторичное (флуоресцентное) рентгеновское излучение. Ретгенофлуоресцентный анализ (РФА). Энергия излучения.
		Основные узлы рентгеноспектральных приборов. Качественный РФА. Количественный РФА. Факторы, влияющие на интенсивность характеристического излучения.
		Статистическая обработка результатов измерений. Случайные погрешности. Их оценка. Закон нормального распределения. t-Распределение. Сравнение дисперсий и средних двух

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		методов анализа.
Уметь	 Проводить исследования по заданной методике; составлять описание проводимых экспериментов; выполнять расчеты результатов анализа обосновать выбор метода анализа для исследуемых образцов проб; готовить данные для составления обзоров, отчетов и научных публикаций анализировать результаты экспериментов 	Вычислите массу фосфорной кислоты, находящейся в растворе, если на титрование этого раствора по приведенному ниже уравнению реакции пошло 20,00 мл 0,1 М раствора гидроксида натрия. $H_3\text{PO}_4 + \text{NaOH} = \text{Na}_2\text{HPO}_4 + \text{H}_2\text{O}$ Вычислите pH раствора, полученного при добавлении к 20 мл 0,05 H раствора NaOH 15 мл 0,06 H раствора HCl. Мышьяк (III) встречается в природе в виде минерала клаудетита. На титрование 0,210 г минерала израсходовано 29,3 мл 0,052н раствора I_2 . Рассчитайте массовую долю As_2O_3 в образце. Вычислить молярный коэффициент поглощения меди, если оптическая плотность раствора, содержащего 0,48 мг меди в 500 мл, при толщине слоя кюветы 2 см равна 0,14. Чему равно значение pH для раствора $1,9\cdot10^{-2}$ М раствора HNO $_3$? С какой точностью нужно записать результат вычисления?
Владеть	 Навыками работы с химическими реактивами и приборами, соблюдая правила безопасной работы с веществами и лабораторным оборудова- 	1. Для чего используется ценрифуга в химическом анализе? Расскажите основные правила безопасной работы с центрифугой. 2. Какие существуют методы устранения мешающего влияния компонентов?

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
	нием; — навыками проведения химического и физико-химического анализа; — навыками расчетов результатов анализа — профессиональным языком предметной области знания; — методами математической обработки результатов анализа	В чем они заключаются? 3. Объясните механизм буферного действия. Как используются буферные системы в химическом анализе? Постройте кривую титрования 0,1 Н раствора уксусной кислоты 0,1Н раствором гидроксида натрия. Как выбрать подходящий индикатор? Запишите результат измерения объема раствора пятнадцать миллилитров, если измерение проводилось а) цилиндром с погрешностью ±1 мл, б) бюреткой с погрешностью ±0,01 мл? Записать результат вычисления 2,5·3,75. Расскажите, как провести определение серы гравиметрическим методом. 1. Каким будет результат определения кальция — заниженным или завышенным, если: использовать в качестве осадителя оксалат аммония, а полученный осадок промыть чистой водой?
ПК-18 профессиональ	готовностью использовать знание свой ной деятельности	ств химических элементов, соединений и материалов на их основе для решения задач
Знать	 Основные принципы, методы, области применения химического и физико-химического анализа; общие закономерности протекания химических процессов; 	Качественный анализ. Сущность метода, область применения. Аналитические группы. Групповые реагенты и требования к ним. Классификация катионов по кислотно-основному методу. Регулирование рН растворов. Буферные растворы. Принцип действия буферных

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
	 методы и средства получения информации о вещественном составе 	растворов. Привести пример. Гравиметрический метод. Сущность гравиметрического анализа. Область применения (примеры). Кислотно-основное титрование. Сущность метода, варианты метода, их применение, достоинства. Окислительно-восстановительное титрование. Сущность метода, варианты метода, их применение, достоинства. Определение направления реакций окисления-восстановления. Привести примеры. Титрование смесей окислителей (восстановителей). Комплексонометрическое титрование. Комплеконы. Комплексон 3 (трилон Б) как основной комплексообразующий реагент. Пример уравнения реакции. Химическая связь в комплексных соединениях. Координационное число. Дентатность лигандов. Внутрикомплексные соединения. Привести примеры. Диссоциация комплексных соединений. Устойчивость комплексов. Константы нестойкости и устойчивости. Факторы, влияющие на процесс комплексообразования. Эффективная константа устойчивости.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства				
		кальция, магния, железа).				
		Общая характеристика электрохимических методов. Природа аналитического сигнала. Классификация электрохимических методов.				
		Потенциометрия. Сущность метода. Прямая потенциометрия. Потенциометрическое титрование. Примеры потенциометрического анализа.				
		Вольтамперометрия. Сущность метода. Практическое применение полярографии. Качественный анализ. Количественный анализ.				
		Амперометрическое титрование. Примеры практического применения. Преимущества амперометрического титрования перед прямой вольтамперометрией.				
		Кондуктометрия. Сущность метода. Кондуктометрическое титрование. Особенности и достоинства метода.				
		Кулонометрия. Сущность метода. Применение законов Фарадея в анализе.				
		Спектроскопические методы. Общая характеристика и классификация.				
		Электромагнитный спектр. Взаимодействие электромагнитного излучения с анализируемым веществом. Частицы, формирующие аналитический сигнал: атомные и				
		молекулярные спектры, их происхождение. Взаимосвязь основных характеристик				
		спектральных линий с природой и количеством вещества (качественный и количественный анализ).				
		Молекулярная абсорбционная спектроскопия : ее сущность. Фотометрический анализ.				

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		Эмиссионная спектроскопия. <i>Молекулярная люминесцентная спектроскопия</i> . Количественный анализ люминесцентным методом. Рентгеноспектральные методы анализа. Сущность метода. Качественный РФА. Количественный РФА.
Уметь	 подготовить пробу к анализу; готовить растворы с заданной концентрацией решать типовые задачи по аналитической химии; составлять уравнения реакции, выполнять расчеты по стехиометрическим соотношениям, расчеты равновесий в растворах работать с различными справочными источниками информации по аналитической химии. составлять и анализировать методики анализа; определять оптимальные условия проведения анализа с использованием различных методов, предполагать пути снижения погрешности аналитических операций; 	 Какую навеску анализируемого вещества - соли Мора - с массовой долей (NH₄)₂SO₄FeSO₄·6H₂O равной 0,9 необходимо взять для гравиметрического анализа чтобы масса весовой формы осадка Fe₂O₃ была равна 0,150 г ? Пользуясь справочными данными, подобрать индикатор для кислотно-основного титрования раствора кислоты, если скачок титрования находится в пределах рН 4-7,5. Составить уравнения реакций, соответствующие первому и второму скачку на кривой титрования раствора соды раствором соляной кислоты.
Владеть	навыками работы с химическими реактивами и прибораминавыками выполнения химического и	Раствор вещества FeCl ₃ титруют раствором KF. Составьте уравнение химической реакции и, пользуясь значениями подвижностей ионов, определите вид кривой

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства									
	физико-химического анализа; — способами составления и анализа схем и методик анализа, — навыками статистической обработки результатов лабораторного эксперимента. — методами самостоятельного планирования и проведения химических экспериментов, методами математической обработки результатов анализа	Для опреденодид-иония сернокис, уравнение 6,53; 6,50 стандартнострезультате Определититрования	етрического ти еления иодид-и ы перманганат- глой среде. Точ реакции при ти о Оцените нали ре отклонение с ти. Какова точн с? ть концентраци и 10,0 мл раств 15 В получили	онов ис чонами трован чие гру реднегость оп	спользов и, которь валентно полубых погро результ пределення МпО ₄ - и мора	пе элект рести усти учены сл решност гата и до ия? Ско.	рогенер ановили педующ тей по С оверителько зна ре (г/л),	ируются потенцие данны ранный и потенците данный и призацих и прессии пр	н в аноди диометри ые, мг: (грию. Вы нтервал цифр сло	ном прос ически. (6,45; 6, ичислите при 95 о едует ук	Составьте 48; 6,42; е 2% азать в
		Id, M	оли Мора, мл мкА уравнение реак	9,0 ции.	0,5	1,0	1,5	2,0	2,5	3,0	90
		погрешнос правильно Ча	олнив несколькотью ±0,01 мл, записать резулем руководствействием окса.	студеі ьтат? зуются	нт получ при вь	ил усро иборе о	едненны	ай резул я? Поч	тьтат 15 пему ка.	5,121667 льций (мл. Как

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		раствором NaOH или NH ₄ OH – более предпочтительно осаждать гидроксиды железа и алюминия и почему?

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Аналитическая химия и физико-химические методы анализа» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме зачета (3 семестр) и экзамена (4 семестр).

Зачет по данной дисциплине проводится в устной форме по вопросам из списка, доведенного до сведения студентов, вопрос может содержать небольшое практическое задание.

Показатели и критерии оценивания зачета:

- оценку «зачтено» студент получает, если может показать знания на уровне воспроизведения и объяснения информации, интеллектуальные навыки решения простых задач, может дать оценку предложенной ситуации.
- оценку **«незачтено»** студент получает, если не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач, дать оценку предложенной ситуации.

Экзамен по данной дисциплине проводится в устной форме по экзаменационным билетам, каждый из которых включает 2 теоретических вопроса и одно практическое задание.

Показатели и критерии оценивания экзамена:

- на оценку **«отлично»** (5 баллов) –обучающийся демонстрирует высокий уровень сформированности компетенций, высокий уровень знаний не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач:
 - дается комплексная оценка предложенной ситуации;
 - демонстрируются глубокие знания теоретического материала и умение их применять;
 - последовательное, правильное выполнение всех практических заданий;
 - умение обоснованно излагать свои мысли, делать необходимые выводы.
- на оценку **«хорошо»** (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций:
 - дается комплексная оценка предложенной ситуации;
 - демонстрируются достаточные знания теоретического материала и умение их применять; но допускаются незначительные ошибки, неточности
 - выполнение всех практических заданий; возможны единичные ошибки, исправляемые самим студентом после замечания преподавателя;
 - затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.

– на оценку **«удовлетворительно»** (3 балла) – обучающийся демонстрирует пороговый уровень сформированности компетенций:

- затруднения с комплексной оценкой предложенной ситуации;
- неполное теоретическое обоснование, требующее наводящих вопросов преподавателя;
- выполнение заданий при подсказке преподавателя;
- затруднения в формулировке выводов.
- на оценку **«неудовлетворительно»** (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку **«неудовлетворительно»** (1 балл) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.