МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИЕиС И.Ю. Мезин

17.02.2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ОСНОВЫ ФИЗИЧЕСКОГО ЭКСПЕРИМЕНТА И МЕТРОЛОГИИ

Направление подготовки (специальность) 03.03.02 ФИЗИКА

Уровень высшего образования - бакалавриат Программа подготовки - академический бакалавриат

Форма обучения очная

Институт/ факультет

Институт естествознания и стандартизации

Кафедра

Физики

Курс

1

Семестр

2

Магнитогорск 2020 год Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 03.03.02 ФИЗИКА (уровень бакалавриата) (приказ Минобрнауки России от 07.08.2014 г. № 937)

Рабочая программа рассмотрена и одобрена на заседании кафедры Физики 06.02.2020, протокол № 5
Зав. кафедрой М.Б. Аркулис
Рабочая программа одобрена методической комиссией ИЕиС 17.02.2020 г. протокол № 6
ПредседательИ.Ю. Мезин
Рабочая программа составлена: ст. преподаватель кафедры Физики,
Рецензент: зав. кафедрой ВТиП, д-р техн. наук О.С. Логунова

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2021 - 2022 учебном году на заседании кафедры Физики						
	Протокол от	20 г.	№ М.Б. Аркулис			
Рабочая программа пересмот учебном году на заседании ка	рена, обсуждена и одобрена дл. афедры Физики	я реали	зации в 2022 - 2023			
	Протокол от	20 г.	№ М.Б. Аркулис			
Рабочая программа пересмот учебном году на заседании ка	рена, обсуждена и одобрена дл. афедры Физики	я реали	зации в 2023 - 2024			
	Протокол от Зав. кафедрой	20 г.	№ М.Б. Аркулис			
Рабочая программа пересмот учебном году на заседании ка	рена, обсуждена и одобрена дл. афедры Физики	я реали	зации в 2024 - 2025			

1 Цели освоения дисциплины (модуля)

- овладение системой знаний по организации и постановке физического эксперимента с последующим анализом и оценкой полученных результатов;
- формирование умений применять теоретический материал к анализу конкретных физических ситуаций, экспериментально изучать основные закономерности.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Основы физического эксперимента и метрологии входит в вариативную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Элементарная физика

Практикум решения физических задач

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Учебная - практика по получению первичных профессиональных умений и навыков

Методы ультразвуковых исследований конденсированных сред

Планирование эксперимента

Физические и химические методы контроля окружающей среды

Обработка данных эксперимента

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Основы физического эксперимента и метрологии» обучающийся должен обладать следующими компетенциями:

Структурный	Планируемые результаты обучения		
1	планируемые результаты обучения		
элемент			
компетенции			
ОК-7 способносты	о к самоорганизации и самообразованию		
Знать	теоретические основы фундаментальных физических явлений,		
	основные понятия, законы и модели физики		
Уметь	осуществлять поиск необходимой для проведения экспериментального		
	исследования информации с использованием различных источников		
Владеть	навыками обработки, систематизации, критического анализа		
	физической информации		
ОПК-1 способност	ью использовать в профессиональной деятельности базовые		
естественнонаучны	пе знания, включая знания о предмете и объектах изучения, методах		
исследования, совр	ременных концепциях, достижениях и ограничениях естественных наук		
	1		
Знать основные законы, принципы, теории, лежащие в основе з			
	области всех разделов элементарной физики		
Уметь	самостоятельно на-ходить, систематизировать, критически		
	анализировать и отбирать необходимую для решения прикладных		
	задач физики информацию		
	Surga i prisinci impopiantino		

Владеть	навыками обработки, систематизации, критического анализа физической информации					
ПК-3 готовностью применять на практике профессиональные знания теории и методов физических исследований						
Знать	теоретические основы физических методов исследования					
	использовать возможности современных методов физических исследований для решения физических задач					
Владеть	навыками работы с оборудованием, применяемым для проведения физических экспериментов; методами экспериментального определения характеристик объектов					

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц 108 акад. часов, в том числе:

- контактная работа 36,1 акад. часов:
- аудиторная 36 акад. часов;
- внеаудиторная 0,1 акад. часов
- самостоятельная работа 71,9 акад. часов;

Форма аттестации - зачет с оценкой

Раздел/ тема дисциплины	Семестр	конт	худиторі гактная _І акад. ча	работа	Самостоятельная работа студента	Вид самостоятельной	Форма текущего контроля успеваемости и	Код компетенции
дисциплины	Ce	Лек.	лаб. зан.	практ. зан.	Самост работа	работы	промежуточной аттестации	компетенции
1. Введение								
1.1 Техника безопасности и общие правила работы в лаборатории. Правила работы с электроприборами и схемами, с оптическими приборами и деталями. Правила записи и обработки результатов эксперимента. Требования к	2		2		3,9	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме	Устный опрос, консультации	ОК-7, ОПК-1, ПК-3
Итого по разделу			2		3,9			
2. Измерительные прибо установки и мето	-							
2.1 Измерительные приборы и установки. Чувствительность и точность измерительных приборов. Классификация измерений по точности. Основные типы измерительных методов. Абсолютные и			2/2И		4	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме	Устный опрос, консультации, лабораторно-практическая работа	ОК-7, ОПК-1, ПК-3
2.2 Интерполяционные шкалы. Нониус и микрометрический винт.	2		2/2И		4	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Устный опрос, консультации, лабораторно-практическая работа, защита лабораторной работы	ОК-7, ОПК-1, ПК-3

2.3 Классификация электроизмерительных приборов. Обозначения на шкалах.		2/2И	4	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Устный опрос, консультации, лабораторно-практическая работа, защита лабораторной работы	ОК-7, ОПК-1, ПК-3
2.4 Основные системы электроизмерительных приборов. Некоторые условные обозначения, наносимые на электроизмерительные приборы и вспомогательные части		2/2И	4	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Устный опрос, консультации, лабораторно-практическая работа	ОК-7, ОПК-1, ПК-3
Итого по разделу		8/8И	16			
3. Обработка результа	тов					
измерений 3.1 Типы погрешностей измерения физической величины. Случайные погрешности и некоторые сведения из теории вероятностей. Абсолютная и относительная погрешности. Погрешности прямых и косвенных измерений.	2	4/2И	8	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Устный опрос, консультации, лабораторно-практическая работа, защита лабораторной работы	ОК-7, ОПК-1, ПК-3
4. Измерение физичес	ких					
величин 4.1 Масса и ее измерение. Измерение температуры: • ртутный и спиртовой термометры; • термометр сопротивления. Принцип работы термопары	2	2	4	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов Подготовка к лабораторно-	Устный опрос, консультации, лабораторно-практическая работа, защита лабораторной работы	ОК-7, ОПК-1, ПК-3
4.2 Измерение электрических величин: силы тока, напряжения, мощности, энергии, электрического сопротивления		2	4	лабораторно- практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Устный опрос, консультации, лабораторно-практическая работа	ОК-7, ОПК-1, ПК-3
Итого по разделу		4	8			
5. Лабораторный практи	кум					

5.1 Измерение линейных размеров твердых тел		4	8	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Отчет о выполнении лабораторных работ. Консультация. Защита лабораторных работ.	ОК-7, ОПК-1, ПК-3								
5.2 Определение удельной теплоемкости калориметрическим методом	. 2	2	-	л						2	4	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Отчет о выполнении лабораторных работ. Консультация. Защита лабораторных работ	ОК-7, ОПК-1, ПК-3
5.3 Методы экспериментального и теоретического определения центра масс (инерции) и центра тяжести					4	8	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Отчет о выполнении лабораторных работ. Консультация. Защита лабораторных работ.	ОК-7, ОПК-1, ПК-3					
5.4 Изучение электронного осциллографа			2	4	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Отчет о выполнении лабораторных работ. Консультация. Защита лабораторных работ.	ОК-7, ОПК-1, ПК-3							
5.5 Определение КПД при подъеме тела по наклонной плоскости и коэффициента трения скольжения) I	4	8	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Отчет о выполнении лабораторных работ. Консультация. Защита лабораторных работ.	ОК-7, ОПК-1, ПК-3						
5.6 Определение показателя преломления плоскопараллельной пластины		2	4	Подготовка к лабораторно-практическому занятию, поиск дополнительной информации по данной теме, оформление результатов измерений и расчетов	Отчет о выполнении лабораторных работ. Консультация. Защита лабораторных работ.	ОК-7, ОПК-1, ПК-3								

Итого по разделу	18	36		
Итого за семестр	36/10И	71,9	зао	
Итого по дисциплине	36/10И	71,9	зачет с оценкой	ОК-7,ОПК- 1,ПК-3

5 Образовательные технологии

- 1. Традиционные образовательные технологии. Форма учебных занятий лабораторная работа.
- 2. Технологии проблемного обучения. Формы учебных занятий с использованием технологий проблемного обучения: практическое занятие в форме лабораторного практикума

На лабораторных занятиях применяются как активные, так и интерактивные методы обучения.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

- 1. Аксенова, Е. Н. Методы оценки погрешностей при измерениях физических величин : учебно-методическое пособие / Е. Н. Аксенова, Н. П. Калашников. Санкт-Петербург : Лань, 2019. 40 с. ISBN 978-5-8114-3559-3. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/113371 (дата обращения: 18.11.2020). Режим доступа: для авториз. пользователей.
- 2. Позднякова, С. А. Теория и техника современного физического эксперимента: учебно-методическое пособие / С. А. Позднякова, И. Ю. Денисюк. Санкт-Петербург: НИУ ИТМО, 2016. 75 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/91467 (дата обращения: 18.11.2020). Режим доступа: для авториз. пользователей.

б) Дополнительная литература:

- 1. Техника физического эксперимента. Лабораторный практикум : учебное пособие / П. С. Парфенов, А. П. Литвин, Е. В. Ушакова, А. В. Баранов. Санкт-Петербург : НИУ ИТМО, 2015. 88 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/91541 (дата обращения: 18.11.2020). Режим доступа: для авториз. пользователей.
- 2. Шкуратник, В. Л. Измерения в физическом эксперименте : учебник / В. Л. Шкуратник. 2-е изд., доп. и испр. Москва : Горная книга, 2006. 335 с. ISBN 5-98672-032-6. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/3471 (дата обращения: 18.11.2020). Режим доступа: для авториз. пользователей.

в) Методические указания:

1.Основы физического эксперимента и метрологии : учебно-методическое пособие [для вузов] / Е. Н. Подкопаева [и др.] ; Магнитогорский гос. технический ун-т им. Г. И. Носова. - Магнитогорск : МГТУ им. Г. И. Носова, 2019. - 1 CD-ROM. - ISBN 978-5-9967-1657-9. - Загл. с титул. экрана. - URL : https://magtu.informsystema.ru/uploader/fileUpload?name=3920.pdf&show=dcatalogues/1/1530 491/3920.pdf&view=true (дата обращения: 23.10.2020). - Макрообъект. - Текст : электронный. - Сведения доступны также на CD-ROM.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
7Zip	свободно распространяемое ПО	бессрочно
FAR Manager	свободно распространяемое ПО	бессрочно

MS Office 2007		_
	№ 135 от 17.09.2007	бессрочно
Professional		1

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Электронная база периодических изданий East View Information Services, OOO «ИВИС»	https://dlib.eastview.com/
	URL: https://scholar.google.ru/
Информационная система - Единое окно доступа к информационным ресурсам	URL: http://window.edu.ru/

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Лаборатория «ОСНОВЫ ФИЗИЧЕСКОГО ЭКСПЕРИМЕНТА И МЕТРОЛОГИИ»:

Секундомер

Микрометр

Штангенциркуль

Весы с разновесами

Ртутный, спиртовой термометры.

Пирометр

Термометр сопротивления

Микроскоп

Отсчетный микроскоп.

Уровни

Амперметры

Вольтметры

Омметры

Авометр

Источники тока

Штатив с муфтой и лаками

Набор грузов

Линейка измерительная

Динамометр

Брусок деревянный

Каток

Отвес

Набор плоских фигур

Алюминиевый, латунный цилиндры

Калориметр

Стакан калориметра

Мензурка

Электрическая плита

Плоскопараллельные пластины

Булавки

Сферометр

Линзы

Скамья оптическая

Приложение 1. Учебно-методическое обеспечение самостоятельной работы обучающихся

Примерный перечень лабораторных работ

- 1. «Измерение линейных размеров твердых тел методом непосредственной оценки».
 - 2. «Определение удельной теплоемкости жидкости калориметрическим методом»
 - 3. «Изучение электронного осциллографа»
- 4. «Методы экспериментального и теоретического определения центра масс (инерции) и центра тяжести»
- 5. «Определение коэффициента полезного действия при подъеме тела по наклонной плоскости и коэффициента трения скольжения динамическим методом»
 - 6. «Определение показателя преломления стекла»

Требования к оформлению отчета по лабораторной работе

Структура отчета по лабораторной работе отражает следующие элементы:

- 1) цель и задачи выполняемой лабораторной работы;
- 2) Схема лабораторной установки и используемое в работе оборудование;
- 3) Подробный конспект, содержащий теорию по работе (основные законы, формулы с необходимыми пояснениями, графики зависимостей, физические величины, единицы измерений, физический смысл измеряемых величин, назначение, устройство и принцип действия приборов...);
 - 4) Таблицы, с результатами экспериментальных измерений и вычисления;
- 5) Формулы для расчета промежуточных и конечных результатов (с «расшифровкой» величин, входящих в формулу) с подстановкой данных, результаты расчетов с указанием единиц измерения итоговых величин;
- 6) Графики построенные с помощью карандаша и линейки на миллиметровой бумаге (в зависимости от требования к ходу выполнения работы).

<u>При построении графиков зависимостей необходимо соблюдать следующие</u> правила:

- а) на миллиметровой бумаге начертите оси координат;
- б) на осях нанесите масштабную сетку, укажите единицы измерения и символы изображаемых величин;
 - в) экспериментальные точки фиксируйте с максимальной точностью;
- г) график должен быть максимально плавный (кривая без изломов и перегибов), либо провести кривую так, чтобы экспериментальные точки равномерно распределялись по обе стороны от нее;
- 7) Сделать вывод по результатам выполнения работы (он должны быть аргументированным: со ссылками на полученные результаты, таблицу или график).

Правила записи и обработки результатов лабораторного эксперимента

- 1. Результаты измерений необходимо записывать с одной и той же точностью (количество знаков после запятой одинаковое).
- 2. Усредненное значение x_{cp} должно быть записано с большим количеством значащих цифр, чем измеренное.
- 3. Следует помнить, что в записи измеренной величины должно содержаться столько значащих цифр, сколько было измерено: точность записи должна соответствовать точности измерения.
- 4. При записи доверительного интервала последняя цифра результата и последняя цифра его абсолютной погрешности должны принадлежать к одному и тому же десятичному разряду при одинаковом порядке.

Если в ответе содержится множитель вида 10^{y} , то показатель степени y и в результате, и в абсолютной погрешности должен быть одинаковым.

Правила построения графиков (графическое представление результатов измерений)

- 1) Графики зависимости нужно строить вручную на отдельном листе рабочей тетради либо на миллиметровой бумаге (и вклеивают), либо можно использовать специальные компьютерные программы, полученные таким образом графики выводят на печать и вклеиваются в рабочую тетрадь.
- 2) График должен содержать заголовок, из которого будет ясна суть проведенной работы, т.е. физический смысл представленной закономерности.
- 3) Обязательно нужно маштабировать график (крупно, деления масштаба (метки) равно отстоят друг от друга) отметить точки начала отсчёта по координатным осям.
 - 4) График должен быть достаточно крупным.
 - 5) Значения, полученные в эксперименте, на координатных осях не отмечаются!
- 6) На координатных осях (в конце, снизу, сбоку) обязательно указываются «заголовки» обозначения откладываемых величин и, через запятую, их единицы измерения. Допускается указывать полное название откладываемой величины.
- 7) Для очень больших либо очень малых значений отложенных по осям величин следует выносить их порядок в «заголовок оси».
 - 8) Экспериментальные точки отмечаются в виде крупных читаемых символов (▲ ◊ □ ⊗и т.д.)
- 9) Кроме экспериментальных точек на графике указывают и погрешности измеренных величин. Они указываются в виде отрезков
- 10) длиной в доверительный интервал, расположенных параллельно соответствующей оси
- 11) Экспериментальная кривая, проводится в виде плавной линии. Линия должна проходить через доверительные интервалы всех или большинства экспериментальных точек так, чтобы экспериментальные точки по возможности близко и равномерно располагались с разных сторон кривой.
- 12) Если на графике приводится теоретическая кривая, то нужно указать закономерность, на основании которой она строиться.

Приложение 2 «Оценочные средства для проведения промежуточной аттестации»

Структу	_	Планируемые результаты обучения
элемент		
компете	енции юсобностью к самоорганизац	
Знать	теоретические основы фундаментальных физических явлений, основные понятия, законы и модели физики	Вопросы для самоконтроля: 1. Что такое физический эксперимент? 2. Что значит: измерить физическую величину? 3. Прямые измерения — это? 4. Измерения косвенные — это? 5. Систематическая ошибка возникает из-за?
		 6. Появления грубых ошибок зависит от? 7. Промахи в эксперименте появляются из-за? 8. Как появляются случайные ошибки? 9. Что такое среднее значение измеряемой величины? 10. Абсолютная погрешность – это? Единицы её измерения? 11. Что называют относительной погрешностью? Единицы её измерения? 12. Формула для подсчёта среднеквадратичной погрешности при однократном прямом измерении? 13. Формула для подсчёта среднеквадратичной погрешности прямых многократных измерений? 14. Ошибка косвенного измерения подсчитывается? 15. Дисперсия – это? 16. Доверительный интервал – это? 17. каков физический смысл доверительной вероятности? 18. Конечный результат измерений записывают в виде? 19. Что такое приборная ошибка и от чего она зависит?
	осуществлять поиск необходимой для проведения экспериментального исследования информации с использованием различных источников	Пример задания Определите, на каком рисунке график построен правильно
	навыками обработки, систематизации, критического анализа физической информации	Пример задания Определите, на каком рисунке величины отложены правильно а) 1 15 /, см

ОПК-1 способностью использовать в профессиональной деятельности базовые естественнонаучные знания, включая знания о предмете и объектах изучения, методах исследования, современных концепциях, достижениях и ограничениях естественных наук

Знат	основные законы,	Алгоритмы расчета погрешностей
Ь	принципы, теории,	
	лежащие в основе знаний из области всех разделов	<u>Алгоритм расчета погрешностей № 1:</u>
	элементарной физики	1. Находим значение косвенно измеряемой величины ξ для каждого проведённого эксперимента:
		$\xi_1 = f(x, y, z,)$, $\xi_2 = f(x, y, z,)$,
		$\xi_n = f(x, y, z, \dots);$
		2. Определяем средне арифметическое значение величины ξ (поскольку измеряется одна и та же физическая величина, и её показатель, различается лишь погрешностью измерений):
		$\langle \xi \rangle = \frac{\xi_1 + \xi_2 + \dots + \xi_n}{n};$
		3. Проводится оценка приборной погрешности величины ξ.
		При оценки погрешности величины ξ
		$\xi_n = f(x,y,z,)$, используют вывод формулы на базе
		формулы (11) или (12) (или таблицы 2). Вместо
		Δx , Δy , Δz , подставляются показатели приборных
		погрешностей $\Delta x_{npuборa}$, $\Delta y_{npuборa}$, $\Delta Z_{приборa}$, а вместо
		величин x , y , z – любые (только не минимальные и не
		максимальные) значения измеренной физической величины. 4. Лалее нужно опенить погрешность измерений величины Е:
		4. Далее нужно оценить погрешность измерений величины ξ:
		$\Delta \xi_{u_{3Mep}} = \frac{1}{n} \sum_{i=1}^{n} \Delta \xi_i ,$
		B этом алгоритме расчета погрешность измерений косвенно измеренной величины ξ оценивается так же, как и при прямых измерениях.
		5. Затем определяем полную погрешность эксперимента:
		$\Delta \xi = \Delta \xi_{u_{3Mep}} + \Delta \xi_{npu\delta opa;}$
		6. Оценим относительную погрешность для физической величины ξ в эксперименте:
		$\epsilon - \frac{\Delta \xi}{2}$
		$arepsilon_{\xi} = rac{\Delta \xi}{\left\langle \xi ight angle}$
		7. Конечный результат:
		$\xi = \left(\!\left\langle \xi \right\rangle \pm \Delta \xi \right)$ ед. измерения (ε_{ξ} , %).
Уме	самостоятельно	Примерное задание
ТЬ	находить, систематизировать,	Выберите нужные формулы для оценки результатов измерения
	критически анализировать	
	и отбирать необходимую для решения прикладных	
	задач физики информацию	

Формулы для оценки погрешности косвенно измеряемых величин					
	Расчётная	Абсолютная	Относительная		
	формула для	погрешность	погрешность		
	величины ξ	величины ξ	величины ξ		
	$\xi = f(x, y)$	Δξ	$\varepsilon_{\xi} = \frac{\Delta \zeta}{\langle \xi \rangle}$		
	<i>x</i> + <i>y</i>	$\Delta x + \Delta y$	$\frac{\Delta x + \Delta y}{\langle x \rangle + \langle y \rangle}$		
	x - y	$\Delta x + \Delta y$	$\frac{\Delta x + \Delta y}{ \langle x \rangle - \langle y \rangle }$		
	$x \cdot y$	$\langle x \rangle \cdot \Delta y + \langle y \rangle \cdot \Delta x$	$\frac{\Delta x}{\langle x \rangle} + \frac{\Delta y}{\langle y \rangle} = \varepsilon_x + \varepsilon_y$		
	$\frac{x}{y}$	$\frac{\langle x \rangle \cdot \Delta y + \langle y \rangle \cdot \Delta x}{\langle y \rangle^2}$	$\frac{\Delta x}{\langle x \rangle} + \frac{\Delta y}{\langle y \rangle} = \varepsilon_x + \varepsilon_y$		
	x^n	$ n \cdot \langle x \rangle^{n-1} \Delta x$	$ n \cdot \frac{\Delta x}{\langle x \rangle} = n \cdot \varepsilon_x$		

Таблица 2

Вла навыками обработки, деть систематизации, критического анализа физической информации Примерное задание

Оценить класс точности прибора

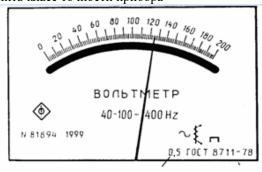


Рис. 1. Лицевая панель вольтметра

ПК-3 готовностью применять на практике профессиональные знания теории и методов физических исследований

	Знат	теоретические	основы
Ь		физических	методов
		исследования	

Оценка конечного результата проведенных измерений

Полная погрешность измерений может быть представлена в

_{виде:}
$$\Delta \xi = \Delta \xi_{измер} + \Delta \xi_{прибора}$$

Слагаемые имеют разное значение — измерительная погрешность может быть больше погрешности приборов, и наоборот. Целесообразно оценивать погрешность, вносимую приборами, перед проведением измерений. Оценка величин соответствующих погрешностей, позволяет сделать определённые выводы о работе приборов (если она велика, то приборы нужно заменить на более точные) и о качестве измерений (если её размер вели, то необходимо более тщательно проводить измерения, и увеличить количество опытов). Если погрешности примерно сравнимы друг с другом, то результаты измерений вполне удовлетворительны.

Требования к округлению результата:

После завершения измерений и проведения вычислений руководствуются следующими правилами округления:

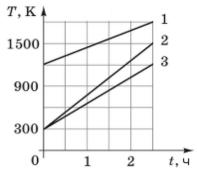
- 1) При округлении погрешности $\Delta \xi$ нужно оставить одну «значащую» цифру (округление проводить всегда в большую сторону).
- 2) Результат ξ измерений округляется до того разряда, в котором содержится погрешность.
- 3) В промежуточных расчётах следует использовать на одну значащую цифру больше

7	⁷ ме	использовать	
ТЬ		возможности	современных
		методов	физических

Ответьте на вопросы к каждой лабораторной работе, обосновав свой ответ.

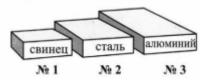
Лабораторная работа № 1

исследований для решения физических задач


«Измерение линейных размеров твердых тел методом непосредственной оценки»

- 20. Что такое физический эксперимент?
- 21. Что значит: измерить физическую величину?
- 22. Прямые измерения это ...?
- 23. Измерения косвенные это ...?
- 24. Систематическая ошибка возникает из-за...?
- 25. Появления грубых ошибок зависит от ...?
- 26. Промахи в эксперименте появляются из-за...?
- 27. Как появляются случайные ошибки?
- 28. Что такое среднее значение измеряемой величины?
- 29. Абсолютная погрешность это ...? Единицы её измерения?
- 30. Что называют относительной погрешностью? Единицы её измерения?
- 31. Формула для подсчёта среднеквадратичной погрешности при однократном прямом измерении?
- 32. Формула для подсчёта среднеквадратичной погрешности прямых многократных измерений?
 - 33. Ошибка косвенного измерения подсчитывается....?
 - **34.** Дисперсия это...?
 - 35. Доверительный интервал это ...?
 - 36. каков физический смысл доверительной вероятности?
 - 37. Конечный результат измерений записывают в виде ...?
 - 38. Что такое приборная ошибка и от чего она зависит?
- 39. Принцип действия и схема устройства штангенциркуля. Для чего служит нониус?
- 40. Использование нониуса для измерений (на примере штангенциркуля).
- 41. Как измерить внутренние размеры образца с помощью штангенциркуля?
 - 42. Как устроен микрометр. Что такое фрикционная головка?
- 43. Чему равна цена деления на втулке микрометра? Чему равна цена деления на муфте микрометра?
- 44. Каково смещение барабана вдоль основной шкалы при его полном обороте?
- 45. Расскажите методику измерений длины с помощью микрометра?

Лабораторная работа № 2


«Определение удельной теплоемкости жидкости калориметрическим методом»

1. Нагревают три тела одинаковой массы. На рисунке изображены графики зависимости температуры этих тел от времени. Считая, что каждому из них ежесекундно передавалось одно и то же количество теплоты, укажите соотношение между удельными теплоемкостями c_1 , c_2 , c_3 этих тел.

- 1) $c_3 < c_2 < c_1$
- 2) $c_1 < c_2 < c_3$
- 3) $c_1 < c_3 < c_2$
- 4) $c_2 < c_3 < c_1$
- 2. Алюминиевую и серебряную ложки одинаковой массы опустили в кипяток. Какое количество теплоты они получат от воды?
 - 1) Одинаковое.

- 2) Алюминиевая ложка получит большее количество теплоты.
- 3) Серебряная ложка получит большее количество теплоты.
- 1. В чем физический смысл такой физической величины как удельная теплоемкость?
- 2. От чего зависит количество теплоты, выделяемое телом при одинаковой температуре нагрева. Бруски металлические. Масса одинаковая.

- 1. Если сообщить разным жидкостям равной массы (подсолнечное масло, вода и керосин) одинаковое количество теплоты? Какая из них нагреется меньше?
- 2. В сосуды налит кипяток. В первый сосуд поместили тело стальной цилиндр, в другой медный, в третий железный. Их массы одинаковы. В каком из сосудов температура воды при этом понизится больше?
- 3. Цинковый цилиндр массой 5 кг нагрели на 10 °C. При этом израсходовали количество теплоты 20 кДж. Найдите удельную теплоемкость цинка?

3) 200 Дж кг · °С

9. Найдите удельную теплоемкость латуни, если при остывании латунного цилиндра массой 400 г. на 20 °C выделяется количество теплоты 3,2 кДж.

1) 4000
$$\frac{\text{Дж}}{\text{кг} \cdot {}^{\circ}\text{C}}$$

10. Что означает: удельная теплоемкость воды с = 4190 Дж/(кг·К)?

Лабораторная работа № 3

«Изучение электронного осциллографа»

- 1. Для чего предназначен осциллограф?
- 2. Что называется напряженностью электрического поля?
- 3. Что называется потенциалом электрического поля?
- 4. Чему равна работа электростатического поля?
- 5. Какова связь напряженности и разности потенциалов для однородного поля?
- 6. Каким образом электростатические поля изображаются графически.
- 7. Как проводятся силовые линии напряженности и как строятся эквипотенциальные поверхности?
 - 8. Как устроена электронно-лучевая трубка?
- 9. Каково устройство и назначение электронной пушки? Каким образом

рассчитывается скорость электронов на выходе из электронной пушки?

- 10.Получите зависимость смещения точки на экране от величины напряжения, подаваемого на отклоняющие пластины.
- 11.Для чего служит генератор разверток? Какова форма его напряжения?
 - 12. Для чего нужна синхронизация генератора разверток?
- 13. Как проводятся измерения амплитуд и периодов переменных сигналов?

Лабораторная работа № 4

«Методы экспериментального и теоретического определения центра масс (инерции) и центра тяжести»

- 1. Что называют центром масс (инерции) и как он находится? Что такое геометрический центр фигуры? При каких условиях эти центры совпадают?
- 2. Как ведет себя тело, к которому приложена сила, линия действия которой не проходит через центр масс?
- 3. Дайте определение центра тяжести. Предложите способы определения положения центра тяжести.
- 4. Сопоставьте понятия «центр масс» и «центр тяжести». Зависят ли эти положения центров от положения тела относительно Земли?
 - 5. Как положение центра тяжести влияет на устойчивость тел?
- 6. В каком положении тело устойчивее: грузовик везет стальную двухтонную плиту или тот же грузовик везет две тонны сена; гимнаст делает стойку на кольцах или гимнаст висит на кольцах?
- 7. Как определяется радиус-вектор центра масс (центра инерции) в классической механике для однородного тела произвольной конфигурации?
- 8. Чему равен статический момент массы всей механической системы?
- 9. Как определяются координаты центра масс твердого тела, состоящего из дискретного числа материальных точек?
- 10. Как определяются координаты центра масс твердого тела, масса которого непрерывно распределена по объему тела?
- 11. Как определяются координаты центра масс твердого тела, состоящего из нескольких частей с известным расположением их центров?
 - 12. Методы определения центра масс материальной системы.

Лабораторная работа № 5

«Определение коэффициента полезного действия при подъеме тела по наклонной плоскости и коэффициента трения скольжения динамическим методом»

- 1. Что такое наклонная плоскость?
- 2. Как можно добиться увеличения выигрыша в силе, помощью наклонной плоскости?
- 3. Чтобы увеличить коэффициент полезного действия наклонной

плоскости нужно ...?

- 4. Возможно ли одновременно изменить коэффициент полезного действия наклонной плоскости и выигрыш в силе, получаемый с ее помощью?
 - 5. Чему равна и как направлена сила трения скольжения?
 - 6. Сформулируйте первый закон Ньютона.
 - 7. Сформулируйте второй закон Ньютона.
- 8. Какие силы действуют на тело на наклонной плоскости? Чему они равны и как направлены?
- 9. Чему равны проекции этих сил на координатные оси? Ответ сопроводите рисунком.
- 10. От чего зависит коэффициент трения скольжения? Зависит ли он от скорости движения тела? От массы тела?
- 11. Найдите теоретическую зависимость КПД наклонной плоскости от угла ее наклона.
- 12. В чем заключается данный метод измерения коэффициента трения?
 - 13. Как найти среднее значение измеряемой величины?
- 14. Как найти абсолютную и относительную погрешности измерения?

Лабораторная работа № 6 «Определение показателя преломления стекла» Что такое абсолютный и относительный показатели преломления? Как их определить? Как определить смещение падающего луча? 3. Как можно определить показатель преломления, используя геометрию Что такое фронт волны и поверхность? Показатель преломления стекла больше показателя преломления воды. Как изменяется угол преломления луча при переходе из воды в стекло? Луч света преломляется на границе стекло — воздух. Как соотносятся угол падения и угол преломления? Каков показатель преломления стекла, если угол падения лучей из воздуха на стеклянную пластинку 60°, а угол преломления - 30°. Найдите относительный показатель преломления среды, если падающий луч и граница раздела сред составляет угол 45° , а угол преломления - 60° . Луч из воздуха переходит в стекло. При каком угле падения луча угол падения равен углу преломления? 10. Абсолютный показатель преломления равен...? 11. В какой среде свет распространяется с максимальной скоростью? 12. Абсолютный показатель преломления воды 1,33. С какой скоростью распространяется свет в этой жидкости? распространяется 13. каком веществе свет минимальной скоростью: в воздухе, в воде, в стекле, в алмазе? В каком веществе свет имеет максимальную длину волны: в воздухе, в воде, в стекле, в алмазе? работы Вла навыками Примерное задание леть оборудованием, Оценить погрешность прибора Таблица 1. применяемым лля Абсолютные инструментальные погрешности простейших проведения физических измерительных приборов экспериментов; методами Ν° Измерительный прибор Абсолютная Предел из-Цена деэкспериментального п/п мерения ления инструментальная определения характеристик погрешность объектов Линейка чертёжная инст-До 20.см 1. MM ±0,1 мм рументальная До 50.см 1. MIM ± 0.1 mm До 100 см ±0,5 cm 1.cm Лента измерительная 150 см 0,5.cm ±0,5.cm До 250 мл Измерительный цилиндр 1 мл $\pm 1 \text{ M/H}$ Штанг енциркуль 150 mm $0.1 \, \mathrm{mm}$ $\pm 0.05 \, \text{mm}$ ±0.005 мм Микрометр 25.mm 0.01 mm Безмен 4 H 0,1 H ±0,05 H Весы пружинные 200.r ±0,01r ±1 с за 30 мин 0-30 мин 0,2 c Секундомер Термометр лабораторный 0-100°C ±1,°C 10 Шприц медицинский 2 мл ±0,05 мл 0,1 мл Мензурка медицинская 0.2 дл ±0,15дл б мл

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине проводится в форме зачета.

Показатели и критерии оценивания зачета:

- на оценку «зачтено» обучающийся демонстрирует уровень, не ниже порогового, сформированности компетенций: в ходе контрольных мероприятий могут допускаться

ошибки, может проявляться отсутствие отдельных знаний, умений, навыков, обучающийся может испытывать значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.

- на оценку «не зачтено» обучающийся не может показать знания на пороговом уровне сформированности компетенций, т.е. обучающийся не показывает знание основного материала в объеме, необходимом для предстоящей профессиональной деятельности; не способен аргументировано и последовательно излагать, допускает грубые ошибки в ответах; не может показать интеллектуальные навыки решения простых задач. не подтверждает освоение компетенций, предусмотренных программой.