МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ВЕКТОРНЫЙ И ТЕНЗОРНЫЙ АНАЛИЗ

Направление подготовки (специальность) 03.03.02 ФИЗИКА

Уровень высшего образования - бакалавриат Программа подготовки - академический бакалавриат

> Форма обучения очная

Институт/ факультет Институт естествознания и стандартизации

Кафедра Прикладной математики и информатики

Курс 3 5

Семестр

Магнитогорск 2020 год

Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 03.03.02 ФИЗИКА (уровень бакалавриата) (приказ Минобрнауки России от 07.08.2014 г. № 937)

Рабочая программа рассмотрена и одобрена на заседании кафедры Прикладной математики и информатики

11.02.2020 г., протокол № 6

Зав. кафедрой

С.И. Кадченко

Рабочая программа одобрена методической комиссией ИЕиС 17.02.2020 г. протокол № 6

Председатель

И.Ю. Мезин

Согласовано:

Зав. кафедрой Физики

М.Б. Аркулис

Рабочая программа составлена:

доцент кафедры ПМиИ, канд. пед. наук

CBAKILL

С.В. Акманова

Рецензент:

доцент кафедры Уравнений математической физики

ФГАОУ ВО «ЮУрГУ (НИУ)»,

канд. физ.-мат. наук

_Г.А. Закирова

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2021 - 2022 учебном году на заседании кафедры Прикладной математики и информатики				
	Протокол от			
Рабочая программа пересмотрена, заседании кафедры Прикладной м	обсуждена и одобрена для реализации в 2022 - 2023 учебном году на атематики и информатики			
	Протокол от			
Рабочая программа пересмотрена, заседании кафедры Прикладной м	обсуждена и одобрена для реализации в 2023 - 2024 учебном году на атематики и информатики			
	Протокол от			
Рабочая программа пересмотрена, заседании кафедры Прикладной м	обсуждена и одобрена для реализации в 2024 - 2025 учебном году на атематики и информатики			
	Протокол от			

1 Цели освоения дисциплины (модуля)

Целью освоения дисциплины "Векторный и тензорный анализ" является расширение и углубление знаний по математике, лежащих в основе теоретического обоснования многих физических явлений и решения ряда прикладных задач, способствующих формированию общепрофессиональных и профессиональных компетенций, необходимых для осуществления профессиональной деятельности.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Векторный и тензорный анализ входит в вариативную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Математический анализ

Аналитическая геометрия

Линейная алгебра

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Теоретическая физика

Методы математической физики

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Векторный и тензорный анализ» обучающийся должен обладать следующими компетенциями:

Структурный	Индикатор достижения компетенции
элемент	тидикатор достижения компетенции
компетенции	
компетенции	
ОПК-2 способностью и	использовать в профессиональной деятельности базовые знания фундаментальных
разделов математики, с	создавать математические модели типовых профессиональных задач и
интерпретировать полу	ученные результаты с учетом границ применимости моделей
знать	основные теоретические положения, формулировки и доказательства ряда
	теорем, методы и приемы решения основных задач дисциплины, этапы
	математического моделирования при решении задач
уметь	интерпретировать понятия и утверждения, применять к решению задач
	изученную теорию; базовые знания естественных наук, математики, основные
	факты, концепции, принципы теорий, связанных с физикой; осуществлять этапы
	математического моделирования, решать задачи разными методами
	математического моделирования
владеть	методами математического моделирования, достаточно грамотно
	интерпретирует результаты моделирования
ПК-4 способностью пр	именять на практике профессиональные знания и умения, полученные при освоении
профильных физически	
знать	знать теоретические основы и закономерности векторного и тензорного
	анализа, принципы соотношения методологии и методов естественно-научного
	познания

уметь	Использовать математическую технологию для обработки статистической информации и математические методы для решения практических задач
владеть	методологией, методикой и техникой проведения статистических и прикладных исследований

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 2 зачетных единиц 72 акад. часов, в том числе:

- контактная работа 37 акад. часов:
 аудиторная 36 акад. часов;
 внеаудиторная 1 акад. часов

- самостоятельная работа 35 акад. часов;

Форма аттестации - зачет

Раздел/ тема дисциплины	Семестр	конт	удитор актная акад. ча лаб. зан.	работа	Самостоятельная работа студента	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код компетенции
		P	аздел 1.	Элемен	ты ве	кторной алгебры		
1.1 Векторное пространство, его размерность и базис. Скалярное произведение векторов. Правило Энштейна		1		1/1И	2	Самостоятельное изучение учебной и научной литературы	Проверка конспектов. Письменный опрос, обсуждение	ОПК-2, ПК-4
1.2 Скалярное, векторное и смешанное произведение геометрических векторов.	5	1		2	2	Работа с электронными тестовыми средствами	Проверка интернет-теста, выполненного в домашних условиях	ПК-4, ОПК-2
1.3 Преобразование координат векторов при повороте и инверсии декартовой системы координат		2		2/1И	2	Поиск дополнительной информации по заданной теме	Проверка индивидуальных заданий	ОПК-2, ПК-4
Итого по разделу		4		5/2И	6			
		Разде	л 2. Тен	вор. Эле	ементі	ы тензорной алгеб	ры	
2.1 Понятие тензора. Основные операции над тензорными величинами		2		2/1И	4	Самостоятельное изучение учебной и научной литературы	Проверка конспектов. Письменный опрос, обсуждение	ОПК-2, ПК-4
2.2 Симметрия тензоров. Изотропные тензоры	5	2		1	4	Выполнение тренировочных комплексов	Обсуждение, письменный опрос	ОПК-2, ПК-4
2.3 Приведение симметричного тензора второго ранга к диагональному виду. Инварианты тензоров второго ранга.		2		2/1И	4	Поиск дополнительной информации по заданной теме	Устный опрос, проверка конспектов	ПК-4, ОПК-2
Итого по разделу		6		5/2И	12			

	Разд	цел 3. I	Трилож	ения тес	рии т	ензоров. Тензорны	е поля	
3.1 Ковариантность физических законов в тензорной форме. Тензор инерции		2		2	4	Самостоятельное изучение учебной и научной литературы	Проверка конспектов. Письменный опрос, обсуждение	ПК-4, ОПК-2
3.2 Дифференциальные операторы тензорного анализа. Векторные тождества		2		2	4	Самостоятельное изучение учебной и научной литературы	Проверка конспектов. Письменный опрос, обсуждение	ПК-4, ОПК-2
3.3 Интегральное представление дифференциальных операторов. Интегральные теоремы векторного анализа	3	2		2	4	Поиск дополнительной информации по заданной теме	Устный опрос, проверка конспектов	ОПК-2, ПК-4
3.4 Криволинейные системы координат. Дифференциальные операторы в криволинейных коорлинатах		2		2	5	Самостоятельное изучение учебной и научной литературы	Контрольная работа	ОПК-2, ПК-4
Итого по разделу		8		8	17			
Итого за семестр		18		18/4И	35		зачёт	
Итого по дисциплине		18		18/4И	35		зачет	ОПК-2,ПК-4

5 Образовательные технологии

С целью успешного усвоения дисциплины «Векторный и тензорный анализ» и формирования требуемых компетенций предполагается применение различных образовательных технологий (личностно-ориентированных и развивающих), которые обеспечивают достижение планируемых результатов образования согласно основной образовательной программе. В их числе: дифференцированный подход, проблемное обучение, эвристическое обучение.

Основными формами занятий являются лекции, практические занятия, контрольно-оценочные занятия, консультации. Лекции строятся на основе сочетания информационной и проблемной составляющих, а также элементов беседы и визуализации.

В ходе проведения лекционных занятий предусматривается:

- обсуждение задач, приводящих к тем или иным математическим понятиям;
- изложение теоретического материала в режиме диалога с целью развития критического мышления студентов и привития им исследовательских умений;
- обсуждение и систематизация теоретических вопросов темы с целью лучшего понимания их взаимосвязи и практического применения.

Практические занятия по данной дисциплине направлены на привитие прочных навыков решения задач по каждой теме и сочетают применение методов обучения в сотрудничестве, дифференцированный подход, методы, привлекающие электронные формы работы со студентами, классические контрольные и тестовые технологии. При этом предполагается проведение некоторых таких занятий в интерактивной форме (деловые и ролевые игры, разбор конкретных ситуаций).

Выбирая ту или иную технологию работы со студентами, необходимо иметь в виду, что наибольшего эффекта от ее применения можно достичь, если учитывать :

- а) цели образования, на реализацию которых должна быть направлена избираемая технология;
- б) содержание материала, которое предстоит передать обучающимся с ее помощью;
- в) условия, в которых она будет использоваться;
- г) направленность её на самообразование и медиаобразование студентов.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся

Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации

Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля)

а) Основная литература:

- 1) Малышев, А. И. Основы векторного и тензорного анализа для физиков: электронное учебнометодическое пособие / А. И. Малышев, Г. М. Максимова. Нижний Новгород: Нижегородский госуниверситет, 2012. 101 с. Текст: электронный. URL: http://window.edu.ru/resource/324/79324/files/VTA4phys.pdf (дата обращения: 16.10.2019).
- 2) Келлер И. Э. Тензорное исчисление: Учебное пособие. СПб.: Издательство «Лань», 2012. 176 с.: ил. (Учебники для вузов. Специальная литература). ISBN 978-5-8114-1352-2 http://e.lanbook.com/view/book/2660/ (дата обращения: 16.10.2019). Режим доступа: для авториз. пользователей
- 3) Шаров, Г.А. Векторное, матричное и тензорное исчисление. Справочник для технических университетов: учебное пособие / Г.А. Шаров. 2-е изд. Долгопрудный : Издательский Дом «Интеллект», 2018. 368 с. ISBN 978-5-91559-256-7. Текст : электронный. URL:

<u>https://znanium.com/catalog/product/1022060</u> (дата обращения: 16.10.2019). — Режим доступа: для авториз. пользователей

б) Дополнительная литература:

- 1) Введение в тензорное исчисление [Электронный ресурс] / Матвеев К.А. Новосибирск Изд-во НГТУ, 2016. http://www.studentlibrary.ru/book/ISBN9785778230927.html (дата обращения: 16.10.2019).
- 2) Практикум по линейной и тензорной алгебре [Электронный ресурс]: учебное пособие / Казакова О.Н., Фомина Т.А., Харитонова С.В., Рустанов А.Р. Оренбург: ОГУ, 2017. http://www.studentlibrary.ru/book/ISBN9785741018279.htm (дата обращения: 16.10.2019).

в) Методические указания:

Игнаточкина, Л.А. Руководство к решению задач по тензорной алгебре векторных пространств : учебное пособие / Л.А. Игнаточкина. — Москва : МПГУ, 2014. — 64 с. — ISBN 978-5-4263-0159-7. — Текст : электронный // Электронно-библиотечная система «Лань» : [сайт]. — URL: https://e.lanbook.com/book/70039 (дата обращения: 16.10.2019). — Режим доступа: для авториз. пользователей

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
7Zip	свободно распространяемое ПО	бессрочно
FAR Manager	свободно распространяемое ПО	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка		
Национальная информационно-аналитическая система – Российский индекс научного цитирования (РИНЦ)	URL: https://elibrary.ru/project_risc.asp		
Поисковая система Академия Google (Google Scholar)	URL: https://scholar.google.ru/		
Информационная система - Единое окно доступа к информационным ресурсам	URL: http://window.edu.ru/		
Электронные ресурсы библиотеки МГТУ им. Г.И. Носова	http://magtu.ru:8085/marcweb2/Default.asp		
Международная наукометрическая реферативная и полнотекстовая база данных научных изданий «Web of science»	http://webofscience.com		
Международная реферативная и полнотекстовая справочная база данных научных изданий «Scopus»	http://scopus.com		
Архив научных журналов «Национальный электронно- информационный концорциум» (НП НЭИКОН)	https://archive.neicon.ru/xmlui/		

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Материально-техническое обеспечение дисциплины включает:

- 1) Учебные аудитории для проведения занятий лекционного типа. Оснащение: мультимедийные средства хранения, передачи и представления информации;
- 2) Учебные аудитории для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Оснащение: доска, мультимедийный проектор, экран. Комплекс тестовых заданий для проведения промежуточных и рубежных контролей;
- 3) Помещение для хранения и профилактического обслуживания учебного оборудования. Оснащение: шкафы для хранения учебно-методической документации, учебно-наглядных пособий и учебного оборудования;
- 4) Помещения для самостоятельной работы обучающихся. Оснащение: персональные компьютеры с пакетом MS Office и выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Приложение 1

Учебно-методическое обеспечение самостоятельной работы обучающихся

По дисциплине «Векторный и тензорный анализ» предусмотрена аудиторная и внеаудиторная самостоятельная работа обучающихся.

Аудиторная самостоятельная работа студентов предполагает решение контрольных задач на практических занятиях.

Примерные аудиторные контрольные работы (АКР):

АКР №1 «Элементы векторной алгебры»

1. Выяснить, является ли данная система векторов линейно независимой

$$\overline{a}_{1}(4;-5;2;6), \overline{a}_{2}(2;-2;1;3), \overline{a}_{3}(6;-3;3;9); \overline{a}_{4}(1;4;2;5)$$
?

- 2. Даны векторы $\vec{\mathbf{a}} = -3\vec{\mathbf{i}} + 2\vec{\mathbf{j}} \vec{\mathbf{k}}$, $\vec{\mathbf{b}} = 2\vec{\mathbf{i}} + 2\vec{\mathbf{j}}$. Найти длины проекций этих векторов друг на друга.
- 3. Дана пирамида ABCD, где A(-2,3,1), B(-2,-3,-1), C(1,1,0), D(1,5,4). Найти: а) длины рёбер AD и BC; б) угол между ребрами AB и CD; с) площадь грани BCD; д) объём пирамиды ABCD.

$$\vec{a} = \{5, 8, 11\}, \ \vec{b} = \{3, 5, 7\}, \ \vec{c} = \{1, t, 3\}$$

- 4. При каком значении t векторы к двойное векторное произведение этих векторов при найденном t.
- 5. В исходной декартовой системе координат известны компоненты вектора \overline{a} . Найти его компоненты в системе координат, повёрнутой относительно исходной на 135° вокруг оси Оу, при этом $\overline{a(0;4;-4\sqrt{2})}$. *АКР №2 «Тензор. Элементы тензорной алгебры»*
- 1. В некоторой декартовой системе координат известно соотношение . Известно, что A_i и B_{jk} составляют

м

компоненты тензоров 1-го и 2-го рангов соответственно. Доказать, что — тензор 3-его ранга.

2. В системе координат, полученной из исходной декартовой системы путём её поворота на 60° вокруг оси Ох, известны компоненты тензора A_{ij} . Найти его компоненты в исходной системе координат, если

$$A_{ij} = \begin{pmatrix} 1 & \sqrt{3} & 1 \\ -3 & 1 & 0 \\ -\sqrt{3} & 0 & 1 \end{pmatrix}$$

$$\mathsf{T}_{ij} = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{2} \\ -\mathbf{1} & -\mathbf{1} & \mathbf{2} \\ \mathbf{0} & \mathbf{0} & \mathbf{4} \end{pmatrix}$$

3. Из тензора второго ранга

_{и векторов}
$$\vec{A} = \{1,1,1\}$$
 и

 $\vec{B} = \{0,2,1\}$ построить величины: а) $\left(T_{ij} - \frac{1}{4}\delta_{ij}T_{ll}\right)A_iB_j$; б) $T_{ij}\delta_{ij}A_n$; в) $\varepsilon_{ijk}B_i$.

$$\mathsf{T}_{ij} = \begin{pmatrix} 1 & 0 & -2 \\ 3 & -1 & 0 \\ 2 & 1 & 3 \end{pmatrix}$$

4. Дан тензор . Найти его симметричную и антисимметричную составляющие, а также вектор, дуальный тензору $^{A}{}_{ij}$.

5. Найти собственные значения и собственные векторы тензора. Проверить свойство ортогональности собственных векторов. Привести тензор к диагональному виду:

$$C_{ij} = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & -3 \\ 4 & -3 & 1 \end{pmatrix}$$

Записать уравнения соответствующей ему тензорной поверхности, как в исходной системе координат, так и в системе главных осей тензора. Найти три инварианта данного тензора.

АКР №3 «Приложения теории тензоров»

1. Материал, характеризуемый тензором диэлектрической проницаемости

1. Материал, характеризуемый тензором диэлектрической проницаемости
$$\varepsilon_{ij} = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 4 & -2 \\ 0 & -2 & 5 \end{pmatrix} \quad \text{помещён в однородное поле с напряжённостью } \overline{E} \quad \text{. Найти:}$$
 а) тензор диэлектрической восприимчивости α_{ij} диэлектрика;

- а) тензор диэлектрической восприимчивости α_{ij} диэлектрика;
- б) векторы поляризации диэлектрика \overline{P} и электрической индукции \overline{D} , а также углы, которые они образуют $_{\text{с вектором}} \overline{E}_{,\text{ если}} \overline{E} = \{2; 1; -2\}.$

Монокристалл, характеризуемый тензором проводимости

$$\sigma_{jk} = \sigma_0 \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix},$$

помещён в однородное электрическое поле \vec{E} . Найти направление вектора плотности электрического тока \vec{i} , угол, образуемый им с направлением поля, а также количество джоулева тепла $q = (\vec{j} \cdot \vec{E})$, выделяющегося при его прохождении. Рассмотреть два случая:

a).
$$\vec{E} = E_0 \{1, 2, -1\};$$
 6). $\vec{E} = E_0 \{1, 1, 0\}.$

АКР №4 «Тензорные поля»

Найти напряженность электрического поля \vec{E} , если распределение ска-

пярного потенциала φ в пространстве имеет вид:

г). $\varphi = \alpha \ln kr$; д). $\varphi = \frac{q}{e^{-\frac{r}{a}}}$ (потенциал Юкавы).

2. Вычислить: a) div $\varphi(r)$ \vec{r} ; 6) rot $(\vec{A}(r)/r^n)$

3. Интеграл по объёму $\int_{\nu} \left(\operatorname{grad} \varphi, \operatorname{rot} \bar{A} \right) dV$ преобразовать в интеграл по поверхности. 4. Найти значения интегралов, не прибегая к их прямому вычислению:

a).
$$\overline{n}_i = \frac{1}{4\pi} \int n_i d\Omega$$
, 6). $\overline{n_i n_j} = \frac{1}{4\pi} \int n_i n_j d\Omega$

 $_{5.}$ Найти функцию ρ , удовлетворяющую уравнению $\Delta \varphi = 4\pi \rho$, если

a).
$$\varphi = -Bz^2$$
; 6). $\varphi = -Be^{-\alpha z}$.

Примеры классических задач дисциплины и задач профессиональной сферы:

В некоторой системе координат K известны компоненты вектора $\vec{a} = \{1, -1, 1\}$. В системе K', получающейся из K поворотом на угол 30° вокруг оси x, известны компоненты вектора $\vec{c}' = \{-1, 2, 2\}$. Найти скалярное произведение этих векторов.

. В некоторой декартовой системе координат имеет место соотношение $T_{nkm} = A_{mi}R_{ink}$. Доказать, что

- а). $A_{\it mi}$ тензор II-го ранга, если $T_{\it nkm}$ и $R_{\it ink}$ тензоры III-го ранга;
- б). $R_{\mbox{\tiny ink}}$ тензор III-го ранга, если $T_{\mbox{\tiny nkm}}$ и $A_{\mbox{\tiny mi}}$ тензоры III-го и II-го рангов соответственно.

3. В некоторой системе координат известны компоненты двух векторов – $\vec{A}=\{1,2,-1\}$ и $\vec{B}=\{\,2,3,-4\}$. Найти матрицу тензора $T_{ij}=A_iB_j-arepsilon_{ijk}A_k$ и вычислить его след. 4.

Для двумерного газа невзаимодействующих электронов с плотностью n, находящегося в перпендикулярном постоянном и однородном магнитном поле \vec{H} , вычислить компоненты тензора проводимости σ_{ii} , связывающего усреднённую по большому промежутку времени плотность тока с напряжённостью электрического поля. Считать, что на электрон действует сила вязкого трения $\vec{F} = -\gamma \vec{v}$.

Задания на решение задач из профессиональной области, комплексные задания:

- Найти потенциал точечного заряда в однородной анизотропной среде, характеризуемой тензором диэлектрической проницаемости ε_{ii} .
- $_{2.}$ Найти напряженность электрического поля $ec{E}$, если распределение скалярного потенциала φ в пространстве имеет вид:

3 Найти поток радиус-вектора через замкнутую поверхность конуса с радиусом основания a и высотой h.

4. Найти плотность распределения заряда ρ при известном распределении электрического поля:

$$\vec{E} = \begin{cases} a\vec{r}, \text{ при } 0 \le r \le R, \\ \frac{aR^3}{r^3}\vec{r}, \text{ при } r \ge R. \end{cases}$$

Вопросы для проработки:

- 1. Векторное пространство. Базис и размерность векторного пространства
- 2. Скалярное произведение векторов произвольного векторного пространства
- 3. Символ Кронекера. Правило Энштейна.
- 4. Скалярное произведение геометрических векторов
- 5. Векторное и двойное векторное произведение геометрических векторов
- 6. Смешанное произведение геометрических векторов
- 7. Преобразование компонент вектора при повороте декартовой системы координат
- 8. Преобразование компонент вектора при инверсии декартовой системы координат
- 9. Понятие тензора. Законы прямого и обратного преобразования тензоров
- 10. Сложение и умножение тензорных величин
- 11. Свёртка тензоров. Теорема деления
- 12. Симметрия тензоров
- 13. Изотропные тензоры
- 14. Приведение симметричного тензора второго ранга к диагональному виду
- 15. Инварианты тензоров второго ранга
- 16. Тензорная форма физических законов
- 17. Тензор инерции
- 18. Тензорное поле. Градиент скалярной функции
- 19. Дивергенция и ротор векторного поля. Теорема Гельмгольца
- 20. Циркуляция вектора по замкнутому контуру.
- 21. Поток векторного поля через поверхность
- 22. Интегральные теоремы векторного анализа
- 23. Криволинейные системы координат
- 24. Дифференциальные операторы в криволинейных координатах

Оценочные средства для проведения промежуточной аттестации а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		ости базовые знания фундаментальных разделов математики, создавать математические модели
		ие результаты с учетом границ применимости моделей
Знать	Основные теоретические положения,	Перечень теоретических вопросов к зачету
	формулировки и доказательства ряда теорем,	1 Индексные обозначения.
	методы и приемы решения основных задач	2 Инварианты, контравариантные и ковариантные векторы.
	дисциплины, этапы математического	3 Понятие тензора произвольного порядка.
	моделирования при решении задач	4 Сложение, умножение, свертывание тензоров.
		5 Тензор деформаций и тензор напряжений
		Вектор-функция скалярного и векторного аргумента: определение, предел, непрерывность.
		7 Дифференцирование вектор-функции.
		8 Высшие производные.
		9 Интеграл от вектор-функции по скалярному аргументу.
		10 Векторное уравнение кривой. Натуральный параметр
		11 Соприкасающаяся плоскость.
		12 Вычисление кривизны и кручения кривой
		13 Естественный трехгранник кривой 14 Скалярные поля. Поверхности (линии) уровня. Производная по направлению и градиент
		16 Дивергенция векторного поля 17 Формула Гаусса-Остроградского.
		17 Формула Гаусса-Остроградского.18 Формула Грина.
		19 Циркуляция векторного поля
		20 Вихревые поля и ротор вектора
		20 Вихревые поля и ротор вектора 21 Формула Стокса
		22 Потенциальные поля
		23 Соленоидальные поля
		24 Оператор набла. Оператор Лапласа
		2-т Оператор наола. Оператор лаппаса
Уметь	Интерпретировать понятия и утверждения,	Примеры типовых задач
	применять к решению задач изученную теорию;	1. Найти площадь треугольника, построенного на векторах $\vec{a} - 2\vec{b}$ и $3\vec{a} + 2\vec{b}$, $ \vec{a} = 3$, $ \vec{b} = 1$, $ \vec{a} ^ 5 = 60^\circ$.
	базовые знания естественных наук, математики,	
	основные факты, концепции, принципы теорий,	2. Вектор \overline{m} , перпендикулярный к оси Oz и вектору $\overline{a} = (8; -15; 3)$, образует острый угол с осью Ox .
	связанных с физикой; осуществлять этапы	

Код индикатора	Индикатор достижения компетенции	Оценочные средства
	математического моделирования, решать задачи разными методами математического моделирования	Зная, что $ \vec{m} =51$, найти его координаты. 3. Найти $np_{\vec{c}}(\vec{a}+\vec{b})$, $\vec{a}=(3;-6;-1)$, $\vec{b}=(1;4;-5)$, $\vec{c}=(3;-4;12)$. 4. Дана векторная функция скалярного аргумента $\vec{r}(x(t),y(t),z(t))$, точка M, направление \vec{l} : $u=\cos t\vec{i}+\sin t\vec{j}+t\vec{k}$; $M(1;1;1)$; $\vec{l}=2\vec{i}-3\vec{j}+\vec{k}$ Найти: 1) производную векторной функции в точке M; 2) годограф векторной функции, параллельную вектору \vec{l} . 5. Дано: скалярное поле $U(x,y,z)$, точка M, направление \vec{l} : $u=\ln\left(3x^2+4y^2\right)+5xz$; $M(1;1;1)$; $\vec{l}=2\vec{i}-3\vec{j}+\vec{k}$ Найти: 1) производную скалярного поля $U(x,y,z)$ в точке M в направлении \vec{l} ; 2) градиент поля $U(x,y,z)$ в точке M. 5. Найти центр масс однородного тела $(\gamma=1)$, ограниченного поверхностями $y^2+z^2\leq x\leq 2$.
	Методами математического моделирования, достаточно грамотно интерпретирует результаты моделирования	Задания на решение задач из профессиональной области, комплексные задания 1. Для двух данных тензоров и данных векторов найти а) сумму тензоров, б) произведение тензора на вектор справа и слева, в) скалярное произведение тензора на тензор справа и слева, г) тензоры, обратные к данным, д) продифференцировать данные тензорыи разложить полученные тензоры на симметричную и антисимметричную части. нания и умения, полученные при освоении профильных физических дисциплин

Код индикатора	Индикатор достижения компетенции	Оценочные средства
Знать	Знать теоретические основы и закономерности векторного и тензорного анализа, принципы соотношения методологии и методов естественно-научного познания	 Теоретические вопросы Понятие геометрического вектора, равные векторы, действия над геометрическими векторами. Коллинеарность, компланарность векторов. Необходимые и достаточные условия компланарности трех векторов и коллинеарности двух векторов (возможность представления одного в виде ЛК других). Базис на плоскости и в пространстве, аффинный и декартов базис. Разложение вектора по базису, теорема о возможности разложения и его единственности, координаты вектора в базисе. Определение направляющих косинусов. Связь между ортом и направляющими косинусами. Основное свойство направляющих косинусов. Проекция вектора на ось, вычисление, связь между декартовыми координатами и проекциями вектора на координатные оси, проекция и скалярное произведение. Естественный трехгранник кривой
Уметь	Использовать математическую технологию для обработки статистической информации и математические методы для решения практических задач	 Уметь решать практические задачи следующего содержания: Действия над векторами, заданными координатами. Необходимые и достаточные условия коллинеарности двух векторов (пропорциональность координат), компланарности трех векторов (равенство нулю определителя). Скалярное произведение двух векторов: определение, геометрические приложения, физический смысл, вычисление в ДСК. Векторное произведение двух векторов: определение, геометрические приложения, свойства, вычисление в ДСК. Смешанное произведение трех векторов: определение, геометрические приложения, свойства, вычисление в ДСК. Определение орта вектора, нахождение орта для заданного вектора и вектора по его орту Определения уравнений линии на плоскости и поверхности в пространстве, примеры. Линия и поверхность по отношению к уравнению, вырожденные случаи. Уравнение линии в пространстве. Геометрический смысл уравнений первого порядка относительно х,у на плоскости и х,у, z в пространстве. Вектор-функция скалярного и векторного аргумента: определение, предел, непрерывность. Дифференцирование вектор-функции Высшие производные Интеграл от вектор-функции по скалярному аргументу Понятие поля, поверхности уровня, линии уровня Производная по направлению, градиент. Геометрический и физический смыслы градиента. Касательная плоскость и нормаль к поверхности. Векторное уравнение кривой. Натуральный параметр

Код индикатора	Индикатор достижения компетенции	Оценочные средства
		14. Соприкасающаяся плоскость.15. Вычисление кривизны и кручения кривой
Владеть	Методологией, методикой и техникой проведения статистических и прикладных исследований	Владеть методами вычисления следующих характеристик: 1. Криволинейный интеграл первого рода: определение, геометрический смысл, физический смысл, свойства, вычисление. В т.ч. Понятие длины дуги кривой, вычисление. 2. Поверхностный интеграл первого рода: определение, физический смысл, свойства, вычисление. 3. Вычисление площадей поверхностей. 4. Приложения интегралов по фигуре в механике: координаты центра тяжести, применение таблицы формул для приложений.

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Студенты сдают по дисциплине в 5-м семестре зачёт.

Критерием успешного освоения программы дисциплины являются:

- умение интерпретировать понятия и утверждения, применять к решению задач изученную теорию;
- усвоение методов и приемов решения основных задач дисциплины; приобретение навыков работы с наиболее часто встречающимися объектами векторного и тензорного анализа.
- знание основных теоретических положений, формулировок и доказательств ряда теорем.

Показатели и критерии оценивания зачета (в соответствии с формируемыми компетенциями и планируемыми результатами обучения):

- на оценку «зачтено» студент должен показать знания на уровне воспроизведения и объяснения информации, интеллектуальные навыки решения простых задач;
- на оценку «**не зачтено**» студент не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.