МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Магнитогорский государственный технический университет им. Г.И.

«Магнитогорский государственный технический университет им. Г.И. Носова»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

АРХИТЕКТУРА КОМПЬЮТЕРОВ

Направление подготовки (специальность) 01.03.02 Прикладная математика и информатика

Направленность (профиль/специализация) программы Математическое и информационное обеспечение экономической деятельности

Уровень высшего образования - бакалавриат

Форма обучения очная

Институт/ факультет Институт естествознания и стандартизации Кафедра Прикладной математики и информатики

Курс 1 Семестр 1

> Магнитогорск 2020 год

Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 01.03.02 Прикладная математика и информатика (уровень бакалавриата) (приказ Минобрнауки России от 10.01.2018 г. № 9)

Рабочая программа рассмотрена и одобрена на заседании кафедры Прикладной математики и информатики

10.03.2020, протокол № 7

Зав. кафедрой Дах -

С.И. Кадченко

Рабочая программа одобрена методической комиссией ИЕиС

16.03.2020 г. протокол № 8

Председатель

И.Ю. Мезин

Рабочая программа составлена:

доцент кафедры ПМиИ, канд. пед. наук_

Е.Г.Трофимов

Рецеизеит:

доцент кафедры УМФ ЮУрГУ, канд. ф-м. наук

Г.А.Закирова

Лист актуализации рабочей программы				
		брена для реализации в 2021 - 2022		
учеоном году на заседані	ии кафедры Прикладной ма Протокол от Зав. кафедрой	20 г. № С.И. Кадченко		
	смотрена, обсуждена и одоб ии кафедры Прикладной ма	брена для реализации в 2022 - 2023 тематики и информатики		
	Протокол от Зав. кафедрой	20 г. № С.И. Кадченко		
	смотрена, обсуждена и одоб ии кафедры Прикладной ма	брена для реализации в 2023 - 2024 тематики и информатики		
	Протокол от Зав. кафедрой	20 г. № С.И. Кадченко		
Рабоцая плограмма пере	смотрена обсуждена и одоб	брена для реализации в 2024 - 2025		
	смотрена, оосуждена и одос ии кафедры Прикладной ма			
	Протокол от Зав. кафедрой	20 г. № С.И. Кадченко		

1 Цели освоения дисциплины (модуля)

Целями освоения дисциплины «Архитектура компьютеров» являются:

овладение студентами основами теоретических и практических знаний об архитектурных решениях и организации систем вычислительных комплексов;

исследование автоматизированных систем и средств обработки информации;

изучение элементов проектирования сверхбольших интегральных схем, моделирование и разработка математического обеспечения оптических или квантовых элементов для компьютеров нового поколения;

овладение методами разработки программного и информационного обеспечения ОС.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Архитектура компьютеров входит в часть учебного плана формируемую участниками образовательных отношений образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Для изучения дисциплины необходимы знания, сформированные в результате изучения дисциплин: «Основы информатики»

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Базы данных

Вычислительные машины, сети и телекоммуникации

Компьютерная графика

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Архитектура компьютеров» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции					
ПК-2 Способен выбирать средства реализации требований к программному обеспечению						
ПК-2.1	Оценивает основные методы измерения и оценки характеристик программного обеспечения					
ПК-2.2	Решает профессиональные задачи для написания программного кода процедур для проверки работоспособности программного обеспечения на выбранном языке программирования					
ПК-2.3	Осуществляет контроль за разработкой процедур проверки работоспособности и измерения характеристик программного обеспечения					

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 2 зачетных единиц 72 акад. часов, в том числе:

- контактная работа 37 акад. часов:
 - аудиторная 36 акад. часов;
 - внеаудиторная 1 акад. часов
- самостоятельная работа 35 акад. часов;

Форма аттестации - зачет

,	Сем	Аудиторная контактная работа (в акад. часах)		Само стоят ельна Вид самостоятельной	Форма текущего контроля успеваемости и	Код		
дисциплины	естр	Лек.	лаб. зан.	практ. зан.	работ а студе нта	работы	промежуточной аттестации	компетенции
1.								
1.1 Краткая история развития компьютеров, Уровни организации вычислительных систем		4	2		4	Подготовка к лабораторному занятию	Лабораторная работа	ПК-2.1, ПК- 2.2, ПК-2.3
1.2 Внешние устройства вычислительных систем		2			6	Самостоятельное изучение учебной и научной литературы	Проверка конспектов, устный опрос, обсуждение	ПК-2.1
1.3 Система прерываний современных компьютеров	1	2	4		5	Подготовка к лабораторному занятию	Лабораторная работа	ПК-2.1, ПК- 2.2, ПК-2.3
1.4 Проблемы, связанные с повышением производительности вычислительных систем.	1	2	4/2И		4	Подготовка к лабораторному заданию	Тестирование	ПК-2.1, ПК- 2.2, ПК-2.3
1.5 Модели памяти. Программирование памяти		2	4/4И		6	Подготовка к лабораторному занятию	Лабораторная работа	ПК-2.1, ПК- 2.2, ПК-2.3
1.6 Ассемблер как машинно-ориентированный язык программирования		4			6	Самостоятельное изучение учебной и научной литературы	Проверка конспектов, устный опрос, обсужден	ПК-2.1, ПК- 2.2, ПК-2.3

1.7 Программирование драйверов для работы с внешними устройствами	2	4	4	Подготовка к лабораторному занятию	Лабораторная работа	ПК-2.1, ПК- 2.2, ПК-2.3
Итого по разделу	18	18/6И	35			
Итого за семестр	18	18/6И	35		зачёт	
Итого по дисциплине	18	18/6И	35		зачет	

5 Образовательные технологии

Для реализации предусмотренных видов учебной работы в качестве образовательных технологий в преподавании дисциплины «Архитектура компьютеров» используются традиционная и модульно-компетентностная технологии.

Для формирования новых теоретических и фактических знаний используются лекции:

обзорные — для рассмотрения вопросов алгебры логики и история развития компьютерной техники, поколений ЭВМ, для систематизации и закрепления знаний;

информационные – для ознакомления с программированием на уровне физических устройств

проблемные - для развития исследовательских навыков и изучения способов решения практических заданий.

Для приобретения новых фактических знаний и практических умений используются лабораторные и практические заданий:

лабораторный практикум;

разбор результатов практических заданий, анализ ошибок, совместный поиск вариантов рационального решения учебной проблемы.

Для приобретения новых теоретических и фактических знаний, когнитивных и практических умений используется самостоятельная работа:

самостоятельное изучение учебной литературы, конспектов лекций;

подготовка к аудиторным тестовым заданиям;

выполнение индивидуальных практических заданий.

Для проведения занятий в интерактивной форме:

ориентация студентов на образовательные интернет-ресурсы.

работа в команде;

case-study: разбор результатов тематических практических заданий, анализ ошибок, совместный поиск вариантов рационального решения проблемы.

В ходе проведения занятий предусматривается использование средств вычислительной техники при выполнении индивидуальных практических заданий, тестовых заданий.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

- 1. Архитектура информационных систем: учебное пособие для вузов / М.В. Рыбальченко.- Москва: Юрайт, 2020.- 91 с. Режим доступа: https://urait.ru/viewer/arhitektura-informacionnyh-sistem-452886#page/2
- 2. Архитектура ЭВМ: учебное пособие для вузов / Ф.П.Толстобров.- Москва: Юрайт , 2020.- 154 с. Режим доступа: https://urait.ru/viewer/arhitektura-evm-447416#page/2

б) Дополнительная литература:

1. Новожилов О.П. Архитектура компьютерных систем .- Москва: Юрайт, 2020.- 276 с. Режим доступа: https://urait.ru/viewer/arhitektura-kompyuternyh-sistem-v-2-ch-chast-1-456521#page/2

в) Методические указания:

Учебно-методическое пособие по курсу "Вычислительные машины, сети". Лекционный Практические занятия. Тестовые задания [Текст].- Под ред. Трофимова Е. Г. Магнитогорск : МаГУ, 20 383 с. (50 штук)

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
7Zip	свободно распространяемое ПО	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Информационная система - Единое окно доступа к информационным ресурсам	URL: http://window.edu.ru/

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Материально-техническое обеспечение дисциплины включает:

Учебные аудитории для проведения занятий лекционного типа, оснащённые: ноутбук с пакетом MS Office, и др. ПО с выходом в Интернет и с доступом в электронную информационно-образовательную среду университета. Доска, мультимедийный проектор, экран. Мультимедийные презентации к лекциям, учебно-наглядные пособия.

Учебные аудитории для проведения лабораторных, практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащённые: персональные компьютеры с пакетом MS Office, и др. ПО с выходом в Интернет и с доступом в электронную информационно-образовательную среду университета. Комплекс лабораторных (практических) работ, тестовых заданий для проведения промежуточных и рубежных контролей.

Помещения для самостоятельной работы студентов, оснащённые: персональные компьютеры с пакетом MS Office, и др. ПО (если его используете на занятиях) с выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Помещение для хранения и профилактического обслуживания учебного оборудования, оснащённые: стеллажи для хранения учебно-наглядных пособий и учебно-методической документации.

приложение 1

6 Учебно-методическое обеспечение самостоятельной работы обучающихся

Аудиторная самостоятельная работа студентов на лабораторных занятиях осуществляется под контролем преподавателя при выполнении лабораторных работ, которые определяет преподаватель для студента.

Внеаудиторная самостоятельная работа студентов осуществляется в виде изучения литературы по соответствующим разделам с проработкой материала и выполнения домашних заданий с консультациями преподавателя.

6.1 Структура самостоятельной работы студентов

Раздел/ тема дисциплины	Вид самостоятельной работы	Кол-во часов	Формы контроля
Раздел 1. Архитектура компьютеров	1. Самостоятельное изучение учебной и дополнительной литературы 2. Подготовка к лабораторным занятиям 3. Подготовка к аудиторным тестам 4. Проработка конспектов лекций	192.	Лабораторные занятия. Практические задания 1-4
Итого по разделу		19.2	

Итого по	19.2	зачёт
дисциплине		

6.2 Примеры практических заданий

Практическое задание 1 Построить ЗУ с заданной организацией

Построить ОЗУ с организацией 8К*8 разрядов на БИС с организацией 1К*8 разрядов (рис. 1).

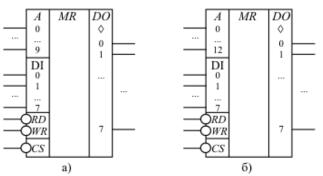


Рис. 1. Условно-графические обозначения запоминающих устройств с различной организацией: a) - 1K*8 разрядов; б) - 8K*8 разрядов

Решение.

В данном случае требуется построить модуль памяти, имеющий большее число слов, чем в составляющих его БИС. Модуль памяти будет состоять из восьми БИС. Для обращения к модулю памяти используется 13-разрядный адрес (A12 A0), поступающий по шине адреса (ША). Три старших разряда (A12-A10) определяют ту схему, которая в данный момент включается в работу, а каждая ячейка внутри любой БИС определяется 10-ю младшими разрядами адреса (A9-A0) (рис. 2).

Разря	нды адреса	
12 11 10	9 0	Выбранная БИС
выбор БИС	выбор ячейки в БИС	
	11	
1 1 1		БИС 7
	00	
	11	
110		БИС 6
	00	
	11	
0 0 1		БИС 1
	00	
	11	
000		EMC 0
	00	

Рис. 2. Организация модуля памяти

При единичном значении сигнала на входе выбора кристалла БИС (CS=1) выходные разряды данных находятся в третьем состоянии, то есть как бы отключены от шины (DO=Z). Таким образом, при любом значении кода на шине адреса всегда в работе находится одна и только одна из восьми БИС.

В реальных микросхемах шины данных записи и чтения (DI и DO) обычно представляют собой общую двунаправленную шину.

Сигналы на шине управления означают: MW - сигнал записи в память, MR - сигнал

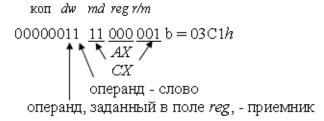
Практическое задание 2

Провести кодирование линейных команд

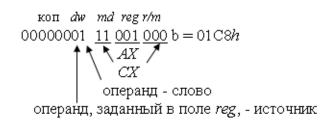
Операнды находятся в регистрах общего назначения: (AX)=a; (CX)=b. Для обращения к операндам используется прямая регистровая адресация.

Символическая запись команды:

ADD AX,CX


Решение.

Машинное представление этой команды имеет вид:


000000dw md reg r/m

По условию операнды занимают полноразрядные регистры длиной 1 слово, следовательно, необходимо установить w=1.

Так как оба операнда располагаются в регистрах общего назначения, то любой из них можно закодировать в поле reg. Поэтому команда может иметь два различных представления в машинном коде. При этом, если в поле reg закодирован номер регистра AX, то бит приемника результата d=1. Если в поле reg закодирован номер регистра CX, то бит приемника результата d=0.

или

Здесь и далее в записи команд в означает двоичное представление, h - 16-е.

После выполнения команды в АХ будет записана сумма содержимого регистров АХ и СХ, а указатель команды IP увеличится на длину выполненной команды (2 байта) и будет указывать на первый байт следующей команды.

Здесь и далее представление информации будем давать в 16-м виде, если другое не оговорено особо.

Если перед началом выполнения команды (AX)=0C34, (CX)=1020, (IP)=0012, то после ее выполнения (AX)=1C54, (CX)=1020, (IP)=0014.

Практическое задание 3 Провести кодирование команд переходов

По машинному представлению команды перехода определить, на какой адрес в сегменте команд будет передано управление.

Решение.

Так команда, имеющая машинный код EB4Ch и расположенная по адресу 0100h, осуществляет передачу управления на команду с адресом: (0100+2)+004C=014E, а команда с кодом EBC4h, расположенная по тому же адресу, осуществляет передачу управления по адресу (0100+2)+FFC4=00C6.

Для осуществления безусловного перехода по любому адресу в пределах данного командного сегмента необходимо задавать 16-разрядное смещение. Команда, имеющая такую величину смещения, называется командой близкого перехода и имеет префикс пеаг. Значение IP и 16-разрядное смещение суммируются как числа со знаком в дополнительном коде. При этом, как и в предыдущем случае, перенос из 16-го разряда игнорируется. Поэтому увеличение или уменьшение величины IP при выполнении этой команды зависит не от знака смещения, а от соотношения текущего значения IP и смещения.

Практическое задание 4

Оценить влияния структуры программы на время ее выполнения

Полагать, что частота синхронизации равна 100 МГц (длительность такта 10 нс).

ADD ES:[BX],DX

Решение.

Команда формата "память-регистр".

Базовое время: 16+ЕА.

Время вычисления ЕА (регистровая косвенная адресация): 5 тактов.

Обозначение "ES:" в символической записи команды показывает, что в процессе формирования физического адреса операнда происходит замена сегментного регистра. Вместо используемого по умолчанию при данном режиме адресации сегментного регистра DS используется регистр ES. Эта операция требует 2 тактов синхронизации.

Команда обрабатывает слово. Если слово имеет нечетный адрес, то T=16+5+2+2*4=31 (такт)=310 (нс) Если слово имеет четный адрес, то T=16+5+2=23 (такта)=230 (нс)

. 6.3 Примеры вопросов к тесту «Вычислительные машины, системы и сети»

- 1. Как называются конфликты в конвейере, возникающие при конвейеризации команд переходов?
 - структурные
 - по управлению
 - по данным
- 2. Какова длительность выполнения 15 команд в идеальном 5-ступенчатом конвейере при длительности такта 10 нс?
 - 150 нс
 - 190 HC
 - 750 нс
- 3. Представьте следующую команду в машинном виде минимальной длины (при ответе на этот вопрос можно пользоваться таблицами кодирования команд и режимов адресации):
 - ADD CL, 12h
 - 82C112h

- 80C112h
- 83E512h
- 4. Представьте следующую команду в машинном виде минимальной длины (при ответе на этот вопрос можно пользоваться таблицами кодирования команд и режимов адресации):
 - SUB [DI+12h],3456h
 - 816D563412h
 - 816D123456h
 - 816D125634h
 - 5. Чем определяется уровень привилегий сегмента персональной ЭВМ? значением поля привилегий в дескрипторе сегмента значением поля привилегий сегментного регистра кодом, устанавливаемым операционной системой в регистре состояния программы
 - 6. Каковы основные механизмы защиты памяти в персональной ЭВМ?
 - защита при управлении памятью
 - защита отдельных ячеек памяти
 - защита по привилегиям
- 7. Какое состояние имеет четырехразрядный суммирующий счетчик, предварительно сброшенный в "0", после поступления на его счетный вход 10-ти сигналов?
 - 10
 - 6
 - 0
 - 8. Какие типы триггеров можно использовать для построения регистра хранения?
 - D
 - RS
 - JK

триггер любого указанного типа

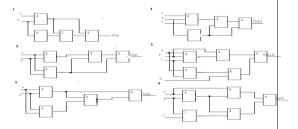
- 9. Какое состояние входов является запрещенным для запоминающей ячейки, реализованной на элементах "И-НЕ"?
 - S=0, R=0
 - S=0, R=1
 - S=1, R=0
 - \bullet S=1, R=1
- 10. При каком состоянии входов запоминающая ячейка, реализованная на элементах "И-НЕ", не изменит своего состояния?
 - S=0, R=0
 - S=0, R=1
 - S=1, R=0
 - S=1, R=1

- 11. Какие из сигналов на шине ISA используются при обмене информации в режиме прямого доступа к памяти?
 - DACKi
 - DRQi
 - IRQi
- 12. Как организуется параллельная во времени работа процессора над вычислительной частью программы и выполнение периферийными устройствами процедур ввода-вывода?
 - за счет использования прямого доступа к памяти
 - за счет использования контроллеров устройств ввода-вывода
 - за счет мультипрограммного режима работы ЭВМ
 - за счет конвейерной организации работы микропроцессора
- 13. Какое минимальное количество обращений к оперативной памяти выполняется в персональной ЭВМ при вычислении физического адреса в сегментно-страничном адресном пространстве без использования средств сокращения времени преобразования?
 - 1
 - 2
 - 3
- 14. Из каких частей состоит логический адрес, используемый для получения физического адреса в персональной ЭВМ?
 - из селектора и смещения в сегменте
 - из базового адреса сегмента и смещения в сегменте
 - из номера виртуальной страницы и смещения в странице
- 15. Какой из режимов работы ориентирован на обеспечение максимальной пропускной способности мультипрограммной ЭВМ?
 - пакетный
 - режим разделения времени
 - режим реального времени
- 16. При какой дисциплине распределения ресурсов вновь поступивший запрос с максимальным уровнем приоритета будет быстрее принят к обслуживанию?
 - в системе с относительными приоритетами запросов
 - в системе с абсолютными приоритетами запросов
 - в системе со статическим указанием приоритетов программ
- 17. Какие регистры можно использовать при базово-индексной адресации в 16-разрядном микропроцессоре?
 - SI
 - BX
 - CX
 - DX
 - BP
 - 18. Какова разрядность эффективного адреса 16-разрядного микропроцессора?

- 16 бит
- 32 бита
- 20 бит
- 19. Какова разрядность регистра множимого RGX (без учета знакового разряда) в АЛУ, выполняющем операцию умножения n-разрядных чисел, заданных в прямом коде, со старших разрядов множителя?
 - 2n разрядов
 - п разрядов
 - 2n+1 разрядов
 - 20. Откуда в арифметико-логическое устройство поступают управляющие сигналы?
 - из устройства управления
 - вырабатываются в самом АЛУ
 - из запоминающего устройства вместе с командой

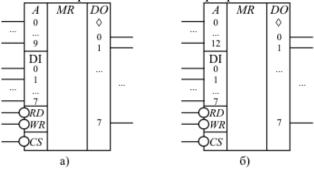
Методическая литература

1. Трофимов Е.Г.Учебно методическое пособие по курсу «Вычислительные машины, сети».- Учебное пособие [Текст]. – Магнитогорск: МаГУ, 2011.- 384 с. (50 шт.)


ПРИЛОЖЕНИЕ 2

Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

промежуточной аттестации:					
Код индикатора	Индикатор достижения	Оценочные средства			
ПК-2: Способен 1	компетенции выбирать средства реализаг	ции требований к программному обеспечению			
ПК-2.1	Оценивает основные методы измерения и оценки характеристик программного обеспечения	 Перечень теоретических вопросов к зачёту Основные понятия информатики: данные, информация. Принципы работы вычислительных машин и сетей, основные механизмы управления ресурсами вычислительной системы. Основные факторы, влияющие на различные характеристики вычислительных машин, и сетей классификацию, характеристики. Принципы организации вычислительных систем, процессами, вводом-выводом информации, файловых систем, памяти. Принципы создания локальных вычислительных сетей с заданной топологией. Основные требования к информационной безопасности 			


- Примерные практические задания для зачёта:
 - Оценить максимальный размера сети Ethernet
 - Осуществлять поиск и установку антивирусных программ
 - Определять характеристики запоминающих устройств: основные характеристики запоминающих устройств, классификация, ИХ иерархическое построение запоминающих устройств современных построение ЭВМ, 3У заданной организации на БИС ЗУ различного типа.
 - Постройте логические схемы, соответствующие логическим выражениям и таблицы истинности:

 Постройте логическое выражение и таблицы истинности по логической схеме:

Задания на решение задач из профессиональной области, комплексные задания:

- Поиск и установка поисковых систем
- Оценить эффективность работы вычислительных машин из числа найденных в интернете
- Настроить совместную работу компьютеров
- Построить *ОЗУ* с организацией 8К*8 разрядов на БИС с организацией 1К*8 разрядов.

ПК-2.2	Решает профессиональные	Перечень примерн	ых теоретических вопрос	06 K			
	задачи для написания	экзамену	-				
	программного кода процедур для проверки	Задание 1. Заполни	те таблицу «Основные				
	работоспособности	устройства ввода - вывода»					
	программного обеспечения	TT	Направление передачи				
	на выбранном языке	Название	данных	(Кб			
	программирования	Клавиатура					
		Мышь					
		Голосовой ввод					
		Сканер					
		Голосовой вывод					
		Струйный принтер					
		Лазерный принтер					
		Графический дисплей					
		Оптический диск					
		Магнитная лента					
		Магнитный диск					
		Примерные практ		ена			
		• С помощью одн	ой из поисковых систем				
		найдите информаци	ию о нескольких твёрдых				
		дисках и занесите е	е в таблицу				
		• Осуществите по	оиск драйвера для этого				
		устройства	1				
		• Предложите аль	тернативные варианты				
			анной ценовой категории с				
		лучшими параметра	-				
		-	ой из поисковых систем				
		найдите информаци	ию о внешних накопителях і	1			
			ие данных по категориям:				
		•	рвичная память, вторичная				
		память, резервное х	•				
			ие задач из профессиональ	ной			
		области, комплекс		-			
			уществить подключение	К			
		компьютеру перифо					
				оты			
		компьютера в локал					
			ь периферийное оборудова	ние			
		(принтер) из реестр					
		\ 1 / 1 I	цествить поиск и устано	вку			

	драйвера периферийного оборудования				
		5.Осуществить как сетевого устро	1 2	работы	

Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Архитектура компьютеров» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и лабораторные задания, выявляющие степень сформированности умений и владений, проводится в форме зачета (1 семестр).

Показатели и критерии оценивания зачета:

- для **сдачи зачёта** обучающийся показывает сформированность компетенций ПК-2 по разделу 1-го семестра, т.е. показывает соответствующие знания (по крайней мере, на уровне воспроизведения и объяснения информации) и интеллектуальные навыки решения предложенных в таблице приложения 2 задания;
- **зачет не сдан**, если результат обучения не достигнут, обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения задач.