МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный тех нический университет им. Г.И. Но-сова»

> УТВЕРЖДАЮ Директор ИММиМ А.С. Савинов 20.02.2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ПОДГОТОВКИ УГЛЯ К КОКСОВАНИЮ

Направление подготовки (специальность) 18.04.01 ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

Направленность (профиль/специализация) программы Химическая технология природных энергоносителей и углеродных материалов

> Уровень высшего образования - магистратура Программа подготовки - прикладной магистратура

> > Форма обучения очно-заочная

Институт/ факультет Институт металлургии, машиностроения и материалообработки

Кафедра Металлургии и хими ческих технологий

Курс

Семестр 4

Магни тогорск 2020 год Рабочая программа составлена на основе ФГОС по напаравлению подготовки 18.04.01. ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ (уровень магистратуры) (приказ Минобрнауки России от 21.11.2014 г. №1494)

,	Рабочая программа рассмотрена и одоорена на заседании кац кимических технологий 18.02.2020, протокол № 6 Зав. кафедрой	А.С. Харченко
	Рабочая программа одобрена методической комиссией ИММи 20,02,2020 г. протокол № 5	А.С. Савинов
	Рабочая программа составлена: доцент кафедры МиХТ, канд. техн. наук	Н.Ю.Свечникова
	Рецензент: зав. кафедрой ПЭиБЖД, канд. техн. наук	А.Ю.Перятинский

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2021 - 2022 учебном году на заседании кафедры Металлургии и химических технологий					
	Протокол от	20 г. № А.С. Харченко			
1 1 1	смотрена, обсуждена и одоб ии кафедры Металлургии в	брена для реализации в 2022 - 2023 и химических технологий			
	Протокол от	20 г. № А.С. Харченко			
1 1 1	смотрена, обсуждена и одоб ии кафедры Металлургии в	брена для реализации в 2023 - 2024 и химических технологий			
	Протокол от	20 г. № А.С. Харченко			

1 Цели освоения дисциплины (модуля)

подготовка выпускников к междисциплинарному созданию теоретических моделей технологических процессов, позволяющих прогнозировать технологические параметры, ха-рактеристики аппаратуры и свойства получаемых веществ, материалов и изделий, а также к разработке программ и выполнение научных исследований, обработка и анализ их ре-зультатов, формулирование выводов и рекомендаций.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Моделирование процессов подготовки угля к коксованию входит в вариативную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Численные методы в решении математических моделей

Методология научных исследований

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Подготовка к защите и защита выпускной квалификационной работы

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Моделирование процессов подготовки угля к коксованию» обучающийся должен обладать следующими компетенциями:

компетенциями:					
Планируемые результаты обучения					
остью находить творческие решения социальных и профессиональных					
остью находить творческие решения социальных и профессиональных в принятию нестандартных решений					
основы моделирования химико-технологических процессов;					
сформулировать задачу для моделирования химико- технологических процессов;					
математическим аппаратом моделирования;					
остью с помощью информационных технологий к самостоятельному					
спользованию в практической деятельности новых знаний и умений, в					
ях знаний, непосредственно не связанных со сферой деятельности					
современные методы моделирования химико-технологических					
процессов;					
сформулировать задачу для моделирования процесса подготовки угля коксованию;					
методами моделирования процесса подготовки угля к коксованию;					
к совершенствованию технологического процесса - разработке					
мплексному использованию сырья, по замене дефицитных материалов и					
ов утилизации отходов производства, к исследованию причин брака в					
производстве и разработке предложений по его предупреждению и устранению					
основы математического и квантово-химического моделирования;					
выбрать метод для квантово-химического моделирования процесса					
подготовки угля к коксованию;					
навыками квантово-химического моделирования процессов					
подготовки угля к коксованию					

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц 108 акад. часов, в том числе:

- контактная работа 34,1 акад. часов:
- аудиторная 34 акад. часов;
- внеаудиторная 0,1 акад. часов
- самостоятельная работа 73,9 акад. часов;

Форма аттестации - зачет

Раздел/ тема	Семестр	Аудиторная контактная работа (в акад. часах)		Самостоятельная работа студента	Вид самостоятельной	Форма текущего контроля успеваемости и	Код	
дисциплины	Лек лаб. практ		практ. зан.	Самост работа	работы	промежуточной аттестации	компетенции	
1.								
1.1Методы математической статистики				7/2И	10	Самостоятельное изучение учебной и научной литературы.	Устный опрос (собеседование).	ОК-8, ОК-9, ПК-5
1.2 Моделирование с помощью факторного эксперимента	4			10/3И	20	Самостоятельное изучение учебной и научной литературы. Выполнение практических работ предусмотренны х рабочей программой дисциплины. Работа с компьютерными обучающими программами, электронными учебниками	Устный опрос (собеседование). Консультации. Проверка индивидуальных заданий.	ОК-8, ОК-9, ПК-5
1.3 Квантово-химические методы моделирования				7/2И	20	Самостоятельное изучение учебной и научной литературы.	Устный опрос (собеседование). Консультации.	ОК-8, ОК-9, ПК-5

1.4 Квантово-химическое моделирование процессов подготовки угля к коксованию		10/3И	23,9	Самостоятельное изучение учебной и научной литературы. Выполнение практических работ предусмотренны х рабочей программой дисциплины. Работа с компьютерными обучающими программами, электронными учебниками.	Устный опрос (собеседование). Консультации. Проверка индивидуальных заданий.	ОК-8, ОК-9, ПК-5
Итого по разделу		34/10И	73,9			
Итого за семестр		34/10И	73,9		зачёт	
Итого по дисциплине		34/10И	73,9		зачет	ОК-8,ОК- 9,ПК-5

5 Образовательные технологии

При изучении дисциплины используются следующие образовательные и информационные технологии:

1. Традиционные образовательные технологии ориентируются на организацию образовательного процесса, предполагающую прямую трансляцию знаний от преподавателя к студенту (преимущественно на основе объяснительно-иллюстративных методов обучения). Учебная деятельность студента носит в таких условиях, как правило, репродуктивный характер.

Формы учебных занятий с использованием традиционных технологий:

Семинар — беседа преподавателя и студентов, обсуждение заранее подготовленных сообщений по каждому вопросу плана занятия с единым для всех перечнем рекомендуемой обязательной и дополнительной литературы.

Практическое занятие, посвященное освоению конкретных умений и навыков по предложенному алгоритму.

2. Интерактивные технологии – организация образовательного процесса, которая предполагает активное и нелинейное взаимодействие всех участников, достижение на этой образовательного результата. основе личностно значимого для них Наряду со принцип интерактивности специализированными технологиями такого рода прослеживается большинстве современных образовательных технологий. Интерактивность подразумевает субъект-субъектные отношения в ходе образовательного процесса и, как следствие, формирование саморазвивающейся информационно-ресурсной среды.

Формы учебных занятий с использованием специализированных интерактивных технологий:

Практическое занятие в форме презентации – представление результатов с использованием специализированных программных сред.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

1. Ефремов, Г. И. Моделирование химико-технологических процессов [Электронный ресурс]: учебник / Ефремов Г. И. - М.: НИЦ ИНФРА-М, 2016. - 255 с.: 60х90 1/16. - (Переплёт). - Режим доступа: http://znanium.com/bookread2.php?book=510221. - Загл. с экрана. - ISBN 978-5-16-011030-1.

б) Дополнительная литература:

1. Петухов, В. Н. Основы теории и практика применения флотационных реагентов при обогащении углей для коксования [Электронный ресурс] : монография / МГТУ. - Магнитогорск : МГТУ, 2018. - 1 электрон. опт. диск (CD-ROM). - Режим доступа: https://magtu.informsystema.ru/uploader/fileUpload?name=3596.pdf&show=dcatalogues/1/1524369/3596.pdf&view=true. - Макрообъект.

2. Николаев, А. А. Физико-химические методы исследований флотационных систем [Электронный ресурс] : учеб. пособие — Электрон. дан. — М. : МИСИС, 2013. — 73 с. — Режим доступа: http://e.lanbook.com/book/47432. — Загл. с экрана.

в) Методические указания:

1. Кальченко, А. А. Планирование эксперимента и обработка результатов с использованием ЭВМ [Электронный ресурс]: учебное пособие / А. А. Кальченко, К. Г. Пащенко; МГТУ. - Магнитогорск: МГТУ, 2017. - 1 электрон. опт. диск (CD-ROM). - Режим доступа:

https://magtu.informsystema.ru/uploader/fileUpload?name=3044.pdf&show=dcatalogues/1/1135 031/3044.pdf&view=true. - Макрообъект.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

F · F · · · · ·				
Наименование ПО	№ договора	Срок действия лицензии		
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021		
MS Windows 7 Professional (для классов)	Д-757-17 от 27.06.2017	27.07.2018		
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно		
7Zip	свободно	бессрочно		
STATISTICA B.6	К-139-08 от 22.12.2008	бессрочно		
Chemcraft Windows	Д-933-14 от 17.07.2014	бессрочно		
FAR Manager	свободно	бессрочно		

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка	
Электронная база периодических изданий East	https://dlib.eastview.com/	
View Information Services, OOO «ИВИС»	<u>nttps://dno.eastview.com/</u>	
Национальная информационно-аналитическая		
система - Российский индекс научного	URL: https://elibrary.ru/project_risc.asp	
цитирования (РИНЦ)		
Поисковая система Академия Google (Google	URL: https://scholar.google.ru/	
Scholar)	ore. https://senoidi.google.ru/	
Информационная система - Единое окно	URL: http://window.edu.ru/	
доступа к информационным ресурсам	OKE. http://window.cdu.ru/	

1 1	URL: http://www1.fips.ru/
промышленной собственности» Российская Государственная библиотека.	
Каталоги	https://www.rsl.ru/ru/4readers/catalogues/
Электронные ресурсы библиотеки МГТУ им. Г.И. Носова	http://magtu.ru:8085/marcweb2/Default.asp
Федеральный образовательный портал – Экономика. Социология. Менеджмент	http://ecsocman.hse.ru/
Университетская информационная система РОССИЯ	https://uisrussia.msu.ru
Международная наукометрическая реферативная и полнотекстовая база данных научных изданий «Web of science»	
Международная реферативная и полнотекстовая справочная база данных	http://scopus.com
Международная база полнотекстовых журналов Springer Journals	http://link.springer.com/
Международная коллекция научных протоколов по различным отраслям знаний	http://www.springerprotocols.com/
Международная база научных материалов в области физических наук и инжиниринга	http://materials.springer.com/
Международная база справочных изданий по всем отраслям знаний SpringerReference	http://www.springer.com/references
Международная реферативная и полнотекстовая справочная база данных научных изданий «Springer Nature»	https://www.nature.com/siteindex
Архив научных журналов «Национальный	https://archive.neicon.ru/xmlui/
Международная реферативная база данных по чистой и прикладной математике zbMATH	http://zbmath.org/

- **9** Материально-техническое обеспечение дисциплины (модуля) Материально-техническое обеспечение дисциплины включает:
 - 1. Учебная аудитория для проведения практических занятий оснащена:
- техническими средствами обучения, служащими для представления учебной информации большой аудитории: мультимедийными средства хранения, передачи и представления учебной информации;
 - специализированной мебелью.
- 2.Учебная аудитория для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации оснащена:
- компьютерной техникой с пакетом MS Office, с подключением к сети «Интернет» и с доступом в электронную информационно-образовательную среду университета;
 - специализированной мебелью.
 - 3. Помещение для самостоятельной работы оснащено:
- компьютерной техникой с пакетом MS Office, с подключением к сети «Интернет» и с доступом в электронную информационно-образовательную среду университета;
 - специализированной мебелью.
- 4. Помещение для хранения и профилактического обслуживания учебного оборудования оснащено:
 - специализированной мебелью: стеллажами для хранения учебного оборудования;
 - -инструментами для ремонта учебного оборудования;
 - дикафами ппа упаннами модениа метопинеской посументании и материа под

6 Учебно-методическое обеспечение самостоятельной работы обучающихся

По дисциплине «Моделирование процессов подготовки угля к коксованию» предусмотрена аудиторная и внеаудиторная самостоятельная работа обучающихся.

Зачет по данной дисциплине проводится в устной форме по вопросам к зачету.

Вопросы к зачету

Современные методы моделирования.

Математические методы моделирования.

Статистические методы моделирования.

Факторный эксперимент при моделировании процессов подготовки углей к коксованию.

Моделирование процессов подготовки угля к коксованию.

Моделирование флотационного процесса.

Моделирование технологических параметров процесса флотации:

- гранулометрического состава питания флотации,
- -зольности питания флотации,
- -плотности исходного питания,
- -реагентного режима,
- расхода воздуха.

Квантово-химическое моделирование процессов подготовки углей к коксованию.

Основы квантово-химического моделирования взаимодействия флотационных реагентов с угольной поверхностью.

Построение водородных связей между угольной поверхностью и углеводородами.

Расчет взаимодействия модельных соединений угольной поверхности с углеводородами.

Аудиторная самостоятельная работа студентов предполагает практические занятия.

Пример практического задания

Рассчитать геометрические структуры следующих молекул моделирующих органическую массу угля:

- -фенол;
- -бензальдегид;
- -бензойная кислота;
- -хинон;
- -бензотиол;
- -пиридин.

Внеаудиторная самостоятельная работа обучающихся в виде выполнения индивидуального задания.

Пример индивидуального задания по дисциплине

Освоить работу программы обработки данных в ЕХЕL:

- составить таблицу исходных данных флотации угля;
- получить уравнения регрессии;
- выявить наиболее значимые факторы;
- найти оптимальные параметры.

Таблица – Показатели флотации угля при использовании различных реагентов-собирателей

Реагентный ре (расход реагент		Суммарные показатели, %		
собиратель	вспениватель	выход	зольность	
ТПД (2)	КОБС (0,15)	85	23,61	
ТПД (0,5)	КОБС (0,15)	86,25	16,73	
ТПД (2)	КОБС (0,15)	93,2	20,79	
ТПД (0,5)	КОБС (0,15)	93,2	15,78	
ТПД (2)	КОБС (0,05)	84,37	16,51	
ТПД (0,5)	КОБС (0,05)	87,12	17,81	
ТПД (2)	КОБС (0,05)	97,8	23,28	
ТПД (0,5)	КОБС (0,05)	98,6	16,25	
ТПД (2)	КОБС (0,15)	86,87	19,51	
ТПД (0,5)	КОБС(0,15)	79,87	20,26	

7 Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства		
ОК-8 способн	остью находить творческие решения социальных и профессиона.	альных задач, готовностью к принятию нестандартных решений		
Знать	- основы моделирования химико-технологических процессов;	Вопросы к зачету Современные методы моделирования. Математические методы моделирования. Статистические методы моделирования.		
Уметь	 сформулировать задачу для моделирования химико-технологических процессов; 	Сформулировать задачу для моделирования химико-технологических процессов;		
Владеть	 математическим аппаратом моделирования; 	Пример индивидуального задания по дисциплине Освоить работу программы обработки данных в EXEL: - составить таблицу исходных данных флотации угля; - получить уравнения регрессии; - выявить наиболее значимые факторы; - найти оптимальные параметры. Таблица — Показатели флотации угля при использовании различных реагентов-собирателей		

Структурны элемент компетенци	Планируемые результаты обучения	Оценочные средства				
			Реагентный режим (расход реагента, кг/т)		Суммарные показатели, %	
		соби	иратель	вспениватель	выход	зольность
		ТПД	Į (2)	КОБС (0,15)	85	23,61
		ТПД	Į (0,5)	КОБС (0,15)	86,25	16,73
		ТПД	Į (2)	КОБ (0,15)	93,2	20,79
		ТПД	Į (0,5)	КОБС (0,15)	93,2	15,78
		ТПД	Į (2)	КОБС (0,05)	84 37	16,51
		ТПД	Į (0,5)	КОБС (0,05)	87,12	17,81
		ТПД	Į (2)	КОБС (0,05)	97,8	23,28
		ТПД	Į (0,5)	КОБС (0,05)	98,6	16,25
		ТПД	Į (2)	КОБС (0,15)	86,87	19,51
		ТПД	Į (0,5)	КОБС(0,15)	79,87	20,26
	оностью с помощью информационных технологий к самостоятельным новых знаний и умений, в том числе в областях знаний, непосред				_	
— современные методы моделирования химико-технологических процессов; Вопросы к зачету Факторный эксперимент при моделиро подготовки углей к коксованию.			лированиі	и процессов		
		Модел	ирование	процессов подгото	овки угля	к коксованию.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		Моделирование флотационного процесса. Моделирование технологических параметров процесса флотации: гранулометрического состава питания флотации, зольности питания флотации, плотности исходного питания, реагентного режима, расхода воздуха).
Уметь	 сформулировать задачу для моделирования процесса подготовки угля к коксованию; 	Задание на умение применять методы математического анализа и моделирования: Освоить работу программы обработки данных в EXEL: составить таблицу исходных данных флотации угля.
Владеть	 методами моделирования процесса подготовки угля к коксованию;; 	Пример индивидуального задания по дисциплине Освоить факторный эксперимент при моделировании процессов подготовки углей к коксованию.
ПК-5 готовно	 остью к совершенствованию технологического процесса - разрабо	тке мероприятий по комплексному использованию сырья
Знать	 основы математического и квантово-химического моделирования. 	Вопросы к зачету Квантово-химическое моделирование процессов подготовки углей к коксованию. Основы квантово-химического моделирования взаимодействия флотационных реагентов с угольной поверхностью.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		Построение водородных связей между угольной поверхностью и углеводородами. Расчет взаимодействия модельных соединений угольной поверхности с углеводородами.
Уметь	процесса подготовки угля к коксованию	Пример практического задания Выбрать метод квантово-химическим методом геометрических структур молекул моделирующих ОМУ.
Владеть	подготовки угля к коксованию;	Пример практического задания Рассчитать методом квантово-химического моделирования геометрические структуры молекул моделирующих ОМУфенол; -бензальдегид; -бензойная кислота; -хинон; -бензотиол;

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Современные физико-химические методы исследования и анализа» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, выявляющие степень сформированности умений и владений, проводится в форме зачета.

Показатели и критерии оценивания зачета:

- оценку «зачтено» студент получает, если может показать знания на уровне воспроизведения и объяснения информации, интеллектуальные навыки решения простых задач, может дать оценку предложенной ситуации.
- оценку **«незачтено»** студент получает, если не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач, дать оценку предложенной ситуации.