МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИММиМ А.С. Савинов

20.02.2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

АНАЛИЗ И СИНТЕЗ ХИМИКО-ТЕХНОЛОГИЧЕСКИХ СИСТЕМ

Направление подготовки (специальность) 18.04.01 ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

Направленность (профиль/специализация) программы Химическая технология природных энергоносителей и углеродных материалов

> Уровень высшего образования - магистратура Программа подготовки - прикладной магистратура

> > Форма обучения очно-заочная

Институт/ факультет Институт металлургии, машиностроения и материалообработки

Кафедра Металлургии и химических технологий

Kype 1

Семестр 1

Магнитогорск 2020 год Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 18.04.01 ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ (уровень магистратуры) (приказ Минобрнауки России от 21.11.2014 г. № 1494)

хими	Рабочая программа рассмотрена ческих технологий	и одобрена на заседани	и кафедры Металлургии и
2/17	18.02.2020, протокол № 6	6	
		Зав. кафедрой	А.С. Харченко
	Рабочая программа одобрена ме 20.02.2020 г. протокол № 5	тодической комиссией И	ІММиМ
		Председатель	А.С. Савинов
	Рабочая программа составлена:		
	доцент кафедры МиХТ, канд. х	им. наук	С.А. Крылова
	Рецензент:		
	ведущий специалист НТЦ ГАД		і, наук
	Wallell TE	Н. Степанов	

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2021 - 2022 учебном году на заседании кафедры Металлургии и химических технологий						
Протокол от	20 г. №					
Зав. кафедрой	А.С. Харченко					
Рабочая программа пересмотрена, обсужден учебном году на заседании кафедры Метал	* *					
Протокол от	20 г. №					
Зав. кафедрой	А.С. Харченко					
Рабочая программа пересмотрена, обсужден учебном году на заседании кафедры Метал	<u> </u>					
Протокол от	20 г. №					
Зав. кафедрой	А.С. Харченко					

1 Цели освоения дисциплины (модуля)

приобретение студентами знаний относительно задач анализа и синтеза XTC, освое-ние методов анализа и синтеза XTC, использование их при анализе стадий химико-технологического процесса и создании оптимальных химико-технологических систем, формирование навыков практического использования полученных знаний для своей профессиональной деятельности,

формирование общекультурных, общепрофессиональных и профессиональных ком-петенций в соответствии с требованиями ФГОС ВО по направлению подготовки 18.04.01 Химическая технология

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Анализ и синтез химико-технологических систем входит в вариативную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Физика

Математика

Общая и неорганическая химия

История химии и химической технологии

Введение в направление

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Новые технологии в переработке топлива

Современные физико-химические методы исследования и анализа

Системы управления химико-технологическими процессами

Подготовка к защите и защита выпускной квалификационной работы

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Анализ и синтез химико-технологических систем» обучающийся должен обладать следующими компетенциями:

Структурный	Планируемые результаты обучения				
элемент					
компетенции					
ОК-1 способн	остью к абстрактному мышлению, анализу, синтезу				
Знать	 □ иерархию явлений и их соподчиненность в изучении процессов в XTC, □ роль и значение анализа и оптимального синтеза XTC □ задачи анализа и синтеза XTC □ основные понятия и методы системных исследований применительно к задачам химической технологии; □ основные принципы синтеза химико-технологических систем 				

Уметь	□ осуществлять поиск, анализ, структурирование информации,
	обозна-чать и освещать элементы передовых технологий
	□ проводить логическое расчленение XTC с целью исследования
	свойств и оптимизации
	□ выполнить анализ условий функционирования системы - ее
	устойчи-вость и надежность, безопасность, наличие побочных
	продуктов и от-ходов, условия работы и т.п.
	□ проводить анализ различных вариантов технологического процесса,
	прогнозировать последствия
Владеть	□ профессиональным языком предметной области знания;
	□ основными методами решения задач в области анализа и синтеза
	XTC
	□ способами демонстрации умения анализировать предложенный
	вариант ХТС.
ОПК-4 готовн	остью к использованию методов математического моделирования
	ологических процессов, к теоретическому анализу и экспериментальной
проверке теоретиче	
Знать	□ общие принципы разработки ХТС;
	□ основы функционирования и методики расчета XTC
	□ методологические основы и прикладной математический аппарат,
	по-зволяющий выполнять анализ различных XTC
	□ основные принципы разработки энерго - и ресурсосберегающих XTC
	r , r , r , r , r , r , r , r , r , r ,
Уметь	□ составлять химические модели, изучать химические превращения в
	условиях промышленного производства;
	□ составлять базовые математические модели процессов,
	протекающих в химических реакторах, проводить их анализ
	□ составлять графические модели XTC,
	□ проводить структурный (топологический) и функциональный анализ
	элементов XTC;
	□ формулировать научно-исследовательские задачи в области
	реализа-ции энерго- и ресурсосбережения и определять пути их
	решения
Владеть	правыками выделения уровней, элементов и взаимосвязей между
	ними на основе фундаментальных знаний,
	□ навыками выделения отдельных этапов в решении общих задач
	ана-лиза и синтеза XTC установления взаимосвязей между ними и
	после-довательности их выполнения;
	правыками определения комплекса свойств физико-химических
	систем, положенных в основу химического производства,
	 навыками обработки и анализа данных, полученных при
	теоретиче-ских и экспериментальных исследованиях, интерпретации
	получен-ных результатов
	получен-ных результатов
ПК-7 способностью	о оценивать эффективность новых технологий и внедрять их в
производство	2 04000000 04 4 00000000000000000000000
1 ' '	

Знать	□ закономерности протекания химико-технологических процессов, □ основные принципы организации химического производства, его иерархической структуры, □ критерии эффективности функционирования химических предприятий, □ концепции создания эффективных ХТС □ методы организации эффективных химических производств □ методы усовершенствования элементов или подсистем ХТС с учётом требований экономической эффективности и безопасности
Уметь	 □ строить иерархии сложных систем, выявлять связи между отдельными элементами систем □ определять цели деятельности предприятия, выявлять резервы и пути повышения эффективности ХТС □ разрабатывать различные варианты технологического процесса, □ выполнять анализ различных способов преобразования сырья в про-дукт, а также выбирать наилучшую технологию производства; □ составлять материальные и тепловые балансы типовых процессов хи-мической технологии □ определять параметры потоков элементов ХТС заданной структуры и заданного состояния ее элементов на основе расчетов материальных и тепловых балансов.
Владеть	 □ навыками изображения графических моделей ХТС (функциональной, □ структурной, операторной, технологической схемы с описанием) □ навыками установления технологических и конструкционных пара -метров ХТС, технологических параметров режима и потоков □ методами расчета технологических показателей деятельности пред-приятий и навыками оценки эффективности использования ресурсов □ навыками определения причин, вызвавших нарушение технологиче-ского режима производства

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц 108 акад. часов, в том числе:

- контактная работа 72 акад. часов:
- аудиторная 68 акад. часов;
- внеаудиторная 4 акад. часов
- самостоятельная работа 0,3 акад. часов;
- подготовка к экзамену 35,7 акад. часа

Форма аттестации - экзамен

Раздел/ тема	Семестр	Аудиторная контактная работа (в акад. часах)		Самостоятельная работа студента	Вид самостоятельной	Форма текущего контроля успеваемости и	Код компетенции	
дисциплины		Лек.	лаб. зан.	практ. зан.	Самост работа	работы	промежуточной аттестации	компетенции
1. 1. Химико-технологиче система	еская							
1.1 Химическое производство как ХТС. Показатели эффективности функционирования. Состав и структура ХТС.		2		4		Самостоятельное изучение учебной и научной литературы Подготовка к практическому занятию, собеседованию, выполнение домашнего задания	Собеседование Домашнее задание Экзамен	ОК-1, ОПК-4, ПК-7
1.2 Примеры химических производств	1	3		6		Самостоятельное изучение учебной и научной литературы Подготовка к практическому занятию, собеседованию, выполнение домашнего задания	Собеседование Домашнее задание Экзамен	ОК-1, ОПК-4, ПК-7
1.3 Основные этапы разработки ХТС. Модели ХТС.		2		2		Самостоятельное изучение учебной и научной литературы Подготовка к практическому занятию, собеседованию, выполнение домашнего задания	Собеседование Домашнее задание Экзамен	ОК-1, ОПК-4, ПК-7

1.4 Свойства ХТС как системы		2	2		Самостоятельное изучение учебной и научной литературы Подготовка к практическому занятию, собеседованию, выполнение домашнего задания	Собеседование Домашнее задание Экзамен	ОК-1, ОПК-4, ПК-7
1.5 Состояние и расчет XTC.		1	8/4И	0,3	Самостоятельное изучение учебной и научной литературы Подготовка к практическому занятию, собеседованию, выполнение домашнего задания	Собеседование Домашнее задание Экзамен	ОК-1, ОПК-4, ПК-7
Итого по разделу		10	22/4И	0,3			
2. 2. Анализ ХТС.							
2.1 Задачи анализа. Эффективность ис-пользования материальных ресурсов		1	4/1И		Самостоятельное изучение учебной и научной литературы Подготовка к практическому занятию, собеседованию, выполнение домашнего задания	Собеседование Домашнее задание Экзамен	ОК-1, ОПК-4, ПК-7
2.2 Энергетическая и эксергетическая эф-фективность ХТС	1	2	4/3И		Самостоятельное изучение учебной и научной литературы Подготовка к практическому занятию, собеседованию, выполнение домашнего задания	Собеседование Домашнее задание Экзамен	ОК-1, ОПК-4, ПК-7
2.3 Эффективность организации процесса в XTC.		1	2		Самостоятельное изучение учебной и научной литературы Подготовка к практическому занятию, собеседованию, выполнение домашнего задания	Собеседование Домашнее задание Экзамен	ОК-1, ОПК-4, ПК-7
Итого по разделу	_	4	10/4И				
3. 3. Синтез ХТС.							

3.1 Задачи и методы синтеза ХТС.		1	4/1И		Самостоятельное изучение учебной и научной литературы Подготовка к практическому занятию, собеседованию, выполнение домашнего задания	Собеседование Домашнее задание Экзамен	ОК-1, ОПК-4, ПК-7
3.2 Технологические концепции создания ХТС.	1	1	13/5И		Самостоятельное изучение учебной и научной литературы Подготовка к практическому занятию, собеседованию, выполнение домашнего задания	Собеседование Домашнее задание Экзамен	ОК-1, ОПК-4, ПК-7
3.3 Совмещенные процессы. Перестраи-ваемые ХТС.		1	2		Самостоятельное изучение учебной и научной литературы Подготовка к практическому занятию, собеседованию, выполнение домашнего задания	Собеседование Домашнее задание Экзамен	ОК-1, ОПК-4, ПК-7
Итого по разделу		3	19/6И				
Итого за семестр		17	51/14И	0,3		экзамен	
Итого по дисциплине		17	51/14И	0,3		экзамен	ОК-1,ОПК- 4,ПК-7

5 Образовательные технологии

Проектирование обучения строится на основе следующих принципов:

- Обучение на основе интеграции с наукой и производством.
- Профессионально-творческая направленность обучения.
- Ориентированность обучения на личность.
- Ориентированность обучения на развитие опыта самообразовательной деятельно-сти будущего специалиста.

Для достижения планируемых результатов обучения, в дисциплине «Анализ и синтез XTC» используются образовательные технологии:

- 1. Традиционные образовательные технологии: информационная лекция, практическое занятие, семинар.
- 2. Технологии проблемного обучения: практическое занятие в форме семинара и домашнее задание, направленное на решение комплексной учебно-познавательной задачи, требую-щей от студента применения как научно-теоретических знаний, так и практических навы-ков.
- 3. Интерактивные технологии: семинар-дискуссия коллективное обсуждение какого-либо спорного вопроса, проблемы, выявление мнений в группе. Изложение проблем и их совместное решение.
- 4. Информационно-коммуникационные образовательные технологии: лекция-визуализация. Практическое занятие в форме презентации представление результатов с использованием специализированных программных сред.
 - **6 Учебно-методическое обеспечение самостоятельной работы обучающихся** Представлено в приложении 1.
 - **7** Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.
 - 8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:
- 1. Крылова С. А. Введение в анализ и синтез химико-технологических систем [Элек-тронный ресурс] : учебное пособие / С. А. Крылова ; МГТУ. Магнитогорск : МГТУ, 2016. 1 электрон. опт. диск (CD-ROM). Режим доступа: https://magtu.informsystema.ru/uploader/fileUpload?name=25.pdf&show=dcatalogues/1/113146 4/25.pdf&view=true . Макрообъект.
- 2. Основы проектирования процессов переработки природных энергоносителей: Учебное пособие / Кравцов А.В., Самборская М.А., Вольф А.В., 2-е изд. Томск:Изд-во Томского политех. университета, 2015. 166 с. / Издательство « ИНФРА-М» Электронно-библиотечная система. https://znanium.com/read?id=268307

б) Дополнительная литература:

- 1. Рябов, В. Д. Химия нефти и газа: учеб. пособие / В.Д. Рябов. 2-е изд., испр. и доп. Москва: ИД «ФОРУМ»: ИНФРА-М, 2019. 335 с. (Высшее образование: Бакалавриат). ISBN 978-5-8199-0847-1. Текст: электронный. URL: https://znanium.com/read?id=327748 (дата обращения: 26.09.2020). Режим доступа: по подписке.
 - 2. Фундаментальные основы комплексной переработки углей КАТЭКа для

- получения энергии, синтез-газа и новых материалов с заданными свойствами: Монография / Шабанов В.Ф., Кузнецов Б.Н., Щипко М.Л. Новосибирск :CO PAH, 2005. 219 с. ISBN 5-7692-0759-0. Текст : электронный. URL: https://znanium.com/read?id=112773 (дата обращения: 26.09.2020). Режим доступа: по подписке.
- 3. Комиссаров, Ю. А. Химическая технология: многокомпонентная ректификация: учебное пособие для вузов / Ю. А. Комиссаров, К. Ш. Дам. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2020. 255 с. (Высшее образование). ISBN 978-5-534-05626-6. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/viewer/himicheskaya-tehnologiya-mnogokomponentnaya-rektifikaciya-454367#p аде/1 (дата обращения: 26.09.2020).
- 4. Перевалов, В. П. Тонкий органический синтез: проектирование и оборудование производств: учебное пособие для вузов / В. П. Перевалов, Г. И. Колдобский. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2020. 312 с. (Высшее образование). ISBN 978-5-534-11860-5. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/viewer/tonkiy-organicheskiy-sintez-proektirovanie-i-oborudovanie-proizvodstv-4 46284#page/1 (дата обращения: 26.09.2020).
- 5.Смирнов А. Н. Гетерогенные химические процессы [Электронный ресурс] : учебное пособие / А. Н. Смирнов, С. А. Крылова, В. И. Сысоев ; МГТУ. Магнитогорск : МГТУ, 2016. 1 электрон. опт. диск (CD-ROM). Режим доступа: https://magtu.informsystema.ru/uploader/fileUpload?name=67.pdf&show=dcatalogues/1/1130046/67.pdf&view=true . Макрообъект.
- 6. Смирнов А. Н. Химические реакторы. Гомогенный изотермический процесс [Элек-тронный ресурс] : учебное пособие / А. Н. Смирнов, С. А. Крылова, В. И. Сысоев ; МГТУ. Магнитогорск : МГТУ, 2016. 1 электрон. опт. диск (CD-ROM). Режим дос-тупа: https://magtu.informsystema.ru/uploader/fileUpload?name=70.pdf&show=dcatalogues/1/113034 5/70.pdf&view=true . Макрообъект.

в) Методические указания:

Смирнов А. Н. Химические процессы в реакторах [Электронный ресурс] : учебное по-собие / А. Н. Смирнов, С. А. Крылова, В. И. Сысоев ; МГТУ. - [2-е изд., подгот. по печ. изд. 2016 г.]. - Магнитогорск : МГТУ, 2017. - 1 электрон. опт. диск (CD-ROM). - Режим доступа:

https://magtu.informsystema.ru/uploader/fileUpload?name=69.pdf&show=dcatalogues/1/113909 1/69.pdf&view=true .- Μακροοδъεκτ.

Смирнов А. Н. Теоретические основы химико-технологических процессов [Электронный ресурс] : учебное пособие / А. Н. Смирнов, С. А. Крылова, В. И. Сысоев ; МГТУ. - Магнитогорск : МГТУ, 2018. - 1 электрон. опт. диск (CD-ROM). - Режим доступа: https://magtu.informsystema.ru/uploader/fileUpload?name=3515.pdf&show=dcatalogues/1/1514 321/3515.pdf&view=true . - Макрообъект. - ISBN 978-5-9967-1095-9.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
MS Windows 7 Professional (для классов)	Д-757-17 от 27.06.2017	27.07.2018
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
7Zip	свободно	бессрочно
FAR Manager	свободно	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Национальная	
информационно-аналитическая система -	URL: https://elibrary.ru/project_risc.asp
Российский индекс научного цитирования	
Поисковая система Академия Google	URL: https://scholar.google.ru/
Информационная система - Единое окно	URL: http://window.edu.ru/
доступа к информационным ресурсам	01.2. <u>1110 11 1100 11 10 00 110 1</u>
Электронные ресурсы библиотеки МГТУ	http://magtu.ru:8085/marcweb2/Default.asp
им. Г.И. Носова	intep.// inagta.ra.oooo/inarowooz/Dorant.asp
Электронная база периодических изданий	https://dlib.eastview.com/
Электронная база периодических изданий East View Information Services, OOO	ittps://difo.custview.com/
университетская информационная система	httnc://ujeruscja meu ru
РОССИЯ	ittps://uisiussia.iiisu.iu
Международная наукометрическая	
реферативная и полнотекстовая база	http://webofscience.com
данных научных изданий «Web of science»	
Международная база полнотекстовых	http://link.springer.com/
журналов Springer Journals	nttp://mix.springer.com/

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает: Учебные аудитории для проведения занятий лекционного типа Мультимедийные средства хранения, передачи и представления информации.

Учебная аудитория для проведения практических занятий, занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации Доска, учебные столы, стулья

Учебные аудитории для самостоятельной работы обучающихся Персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета

Помещения для хранения и профилактического обслуживания учебного оборудования Стеллажи для хранения оборудования

Методическая литература для учебных занят

Инструменты для ремонта и профилактического обслуживания учебного оборудования

Учебно-методическое обеспечение самостоятельной работы обучающихся

Примеры расчетных заданий:

- 1. Для реакции A = C + 2 D рассчитайте состав реакционной смеси, если начальное количество реагента A 30 моль, а степень его превращения -0.8.
- 2. Для реакции $C_2H_4 + H_2O \Leftrightarrow C_2H_5OH$ определите возможность протекания в прямом направлении и константу равновесия при стандартных условиях и при температуре 700 К (воспользовавшись уравнением Темкина-Шварцмана).
- 3. При синтезе аммиака газ, выходящий из колонны, имеет состав (об.%): NH_3 -17,0; N_2 11,0; H_2 72,0. Рассчитать соотношение N_2 : H_2 в исходной смеси.
- 4. Некоторая химическая реакция протекающая без катализатора имеет энергию активации $E_1 = 5 \cdot 10^4$ кДж/моль и константу скорости k_1 при температуре 500 0 C. В присутствии катализатора при этой же температуре энергия активации составила $E_2 = 3.5 \cdot 10^4$ кДж/моль, а константа скорости k_2 . Определите:
- а) во сколько раз увеличится скорость каталитической реакции по сравнению с некаталитической при тех же условиях?
- б) при какой температуре каталитическая реакция будет протекать с такой же скоростью, что и некаталитическая при $500\,^{0}$ C.

Составление материального баланса

Составить материальный баланс окисления аммиака (на $\,^1$ т азотной кислоты). Степень окисления $\,^{NH}_{3}\,$ до $\,^{NO}$ - 0,97; до $\,^{N}_{2}$ - 0,03; $\,^{NO}$ до $\,^{NO}_{2}$ - 1,00. Степень абсорбции 0,92. Содержание аммиака в сухой аммиачно — воздушной смеси 7,13% (масс.). Воздух насыщен парами воды при 30°C. Относительная влажность 80%.

Составление теплового баланса

Составить тепловой баланс реактора для получения водорода каталитической конверсией метана. Состав исходной газовой смеси (${\rm M}^3$): CH_4 - 97,8; H_2O - 250,0. Потери теплоты составляют 4% от прихода. Температура смеси на входе в реактор - 380°C, на выходе 800°C.

Внеаудиторная самостоятельная работа обучающихся осуществляется в виде изучения литературы по соответствующему разделу с проработкой материала; выполнения домашних заданий.

Домашнее задание включает в себя:

• Подготовку и оформление материалов по анализу и синтезу различных систем химического производства (по заданию преподавателя или выбору студента, согласованного с преподавателем).

Примеры индивидуальных домашних заданий (ИДЗ):

- **ИДЗ №1** Провести анализ работы бензольного отделения в условиях АО «Уральская Сталь» с целью увеличения степени извлечения бензольных углеводородов из коксового газа, стабилизации работы и улучшения технико-экономических показателей ХТС производства сырого бензола.
- *ИДЗ №2* Провести анализ подсистемы термохимической очистки печного агрегата линии АНГЦ-3 ПАО «ММК» и сформулировать рекомендации по улучшению качества очистки и подготовки поверхности полосы.
- **ИДЗ** №3 Провести анализ эффективности работы искрового спектрометра марки «SpectroMAXx-2», используемого в лаборатории аналитической химии ПАО «ММК» на участке ПМП и ЛПЦ-8. Сформулировать рекомендации по устранению недостатков в его работе и повышения точности результатов анализа.

Методические указания к выполнению домашнего индивидуального задания

Рекомендуемое название разделов в пояснительной записке

- 1. Содержание.
- 2. Задание.
- 3. Введение.
- 4. Синтез XTC.
- 4.1. Обоснование создания эффективной XTC;
- 4.2. Определение технологической топологии XTC;
- 4.3. Установление технологических и конструкционных параметов XTC, технологических параметров режима и потоков;
- 4.4. Изображение графических моделей XTC (функциональной, структурной, операторной, технологической схемы с описанием).
 - 5. Анализ ХТС.
 - Представление изучаемого объекта в виде иерархической структуры XTC;
- 5.2. Построение математической модели XTC; (при возможности или внести этот раздел после изучения других соответствующих дисциплин)
 - 5.3. Изучение свойств и эффективности функционирования ХТС
 - 6. Заключение.
 - 7. Список использованной литературы.

Раздел «Задание». В нем должен быть указан конкретный тип производственного процесса, для которого будет проводиться синтез и анализ ХТС. Здесь же приводится задача, которую следует решать для изучения свойств и эффективности функционирования ХТС.

Во введении (ориентировочно 1-3 стр.) в краткой и четкой форме должны быть сформулированы и обоснованы основные пути развития рассматриваемого производства, сформулирована цель работы, оценена актуальность выбранной темы и пути решения поставленной задачи.

Раздел 4. Синтез ХТС представляет одну из главных составных частей расчетно-пояснительной записки. Любой рассматриваемый химико-технологический процесс или химико-технологическое производство следует представлять как сложную ХТС, состоящую из большого числа аппаратов и связей между ними. Конечная цель синтеза (разработки) ХТС — создание высокоэффективного химического производства, т.е. производства, позволяющего получать продукцию не только в заданном объеме и требуемого качества, но и экономически целесообразным путем.

Раздел 4.1. Обоснование создания высокоэффективных ХТС. Проводится на основе литературных данных. В кратком обзоре литературы (ориентировочно 5-10 страниц) должен содержаться критический анализ данных о рассматриваемом производстве, имеющихся в учебниках, монографиях, периодической и патентной литературе. В обзоре должны быть обозначены наиболее прогрессивные технологические схемы и оборудование, предложена такая схема технологического процесса, которая позволит выпускать продукцию высокого качества с наименьшими затратами материальных и энергетических ресурсов и одновременно обеспечит требования, предъявляемые к защите окружающей среды. При этом в литературном обзоре должны быть названы пути создания эффективной технологической схемы (введение циклических потоков, схем замкнутого водооборота, замена оборудования более прогрессивным, введение изменений в технологический процесс и т.д.).

Раздел 4.2. Определение технологической топологии ХТС. Технологической топологией ХТС называют характер и порядок соединения отдельных аппаратов в технологической схеме. С учетом литературной проработки на отдельной странице студент должен выбрать аппараты схемы, определить характер связей между аппаратами, установить оптимальный порядок соединения отдельных элементов в технологическую схему.

Раздел 4.3. Установление технологических и конструкционных параметров XTC, технологических параметров режима и потоков.

В этом разделе расчетно-пояснительной записки следует на отдельной странице (можно в виде таблицы) указать значения входных переменных, т.е. физические параметры входных потоков сырья (температуры, давления и др.), технологических параметров ХТС (степень превращения сырья, степень разделения химических компонентов, констант скоростей реакций, коэффициентов массо- и теплопередачи и т.п.), конструкционных параметров ХТС (геометрических характеристик аппаратурного оформления — объема химического реактора, основного сечения аппарата, высоты слоя насадки и т.п.), параметров технологического режима в

аппаратах (элементах XTC) — температуры, давления, активности применяемого катализатора, условий гидродинамики потоков компонентов; параметров технологических потоков (массовый расход, температура, давление, концентрация веществ в потоке и т.п.).

Раздел 4.4. Изображение графических моделей XTC.

Качественные (обобщенные) модели существуют двух видов: операционно-описательные и иконографические.

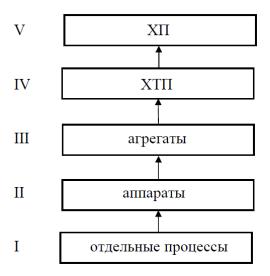
Иконографические модели связаны с наглядным графическим изображением, чертежом. Это различные виды схем химико-технологического процесса, выполненных в виде чертежей: функциональная, структурная, операторная, технологическая.

Функциональная схема дает общее представление о процессе функционирования XTC. По ней можно определить, какие операции совершаются в производстве и в какой последовательности. Сведений о типах отдельных элементов функциональная схема не дает.

Структурная схема дает изображение всех элементов XTC в виде блоков и технологических связей между ними.

Операторная схема дает наглядное представление о физико-химической сущности технологических процессов системы.

Технологическая схема дает наиболее качественное представление о процессе. Каждый элемент процесса показан в виде условного общепринятого стандартного изображения. По схеме можно судить о типах и способах соединения элементов, о последовательности отдельных технологических процессов.


Все модели рассматриваемой XTC представляются полно, каждая на отдельном листе. Вначале приводится химическая схема XTC в стехиометрической форме, далее последовательно функциональная, структурная, операторная, технологическая.

Изображение технологической схемы сопровождается описанием технологического процесса.

Описание технологического процесса проводится с учётом последовательности основных технологических операций в соответствии с выбранной технологической схемой производства и её аппаратурным оформлением. В описании указываются назначение отдельных стадий, физико-химическая сущность процессов, номера позиций с технологической схемы. Приводится краткое описание работы основного оборудования.

Раздел 5. Анализ XTC – т.е. получение сведений о функционировании XTC в зависимости от выбранной химической схемы, структуры технологических связей между элементами и подсистемами, а также от конструкционных и технологических параметров, исходя из заданных свойств и показателей функционирования, имеющих оптимальное значение.

Раздел 5.1. Иерархическая структура XTC представляет собой возрастающую по масштабам последовательность:

Иерархическая структура XTC показывает наличие отношений соподчиненности между уровнями (подсистемами) и существование взаимосвязи между подсистемами одного и того же уровня.

Раздел 5.2. Сущность математического моделирования, являющегося математическим методом химической кибернетики, заключается в том, что детальное изучение процесса производится на математической модели при помощи ЭВМ.

Математическое моделирование осуществляется в три взаимосвязанные стадии:

- 1) формализация изучаемого процесса построение математической модели (составление математического описания);
- 2) программирование решения задачи (алгоритмизация), обеспечивающее нахождение численных значений определяемых параметров;
 - 3) установление соответствия (адекватности) модели изучаемому процессу.

Математическое моделирование начинается с составления собственно математической модели. Эта модель, отражающая соответствующий физический или химический процесс, представляется в виде определенной математической записи, объединяет опытные факты и устанавливает взаимосвязь между параметрами исследуемого процесса; при этом используются теоретические методы и необходимые экспериментальные данные.

Конечной целью разработки математических моделей является прогноз результатов проведения процесса и выработка рекомендаций по возможным воздействием на его ход.

При отсутствии достаточной информации об описываемом процессе, его изучение начинается с построения простейших моделей, но без нарушения основной качественной специфики исследуемого процесса.

При выполнении домашнего задания студентам предлагается установить основные закономерности протекания исследуемого процесса и составить математические уравнения используя литературные данные об описываемом процессе и опираясь на базовые законы химии — закон действия масс, принцип Ле-Шателье и др.

Математическая модель может быть двух уровней:

$$y_k = f(x_k, z_k, u_k)$$

- *описание элемента XTC*

где Xk – параметр состояния потока на входе в k-тый аппарат (элемент);

Zk - конструкционный параметр элемента;

Uk – управляющий параметр;

Yk – параметр потока на выходе из k-того аппарата.

- описание технологических связей между аппаратами

$$X_k = \alpha_{L-k} * y_L,$$

где α_{L-K} - для потока, выходящего из L-го аппарата и входящего в k-тыйаппарат;

 \mathcal{Y}_{L} - параметр состояния потока, выходящего из L-ого аппарата.

ПРИМЕР:

Создать математическую модель и выявить пути повышения эффективности процесса синтеза аммиака.

Химическая схема процесса

$$N2 + 3H2 \rightarrow 2NH3$$

Скорость прямой реакции выражается уравнением

$$v = k[N_2] * [H_2]^3$$

Принимая, что [N] = const, можно записать:

$$y=k_1*x_1^3$$

где у - скорость прямой реакции

k1 - коэффициент пропорциональности

х1 - концентрация водорода [Н].

Принимая, что температурный коэффициент скорости данной химической реакции равен 2.7, можно записать, что

$$y = k_1 \cdot x_1^3 \cdot 2, 7^{\frac{x_2}{10}}$$

где x^2 – изменение температуры химической реакции ΔT .

Поскольку процесс синтеза происходит в газовой фазе, можно количественно оценить влияние давления в системе на скорость химического процесса. Так, при увеличении давления в системе, эквивалентного уменьшению объема системы в 2 раза (при этом во столько же раз происходит повышение концентраций реагирующих веществ), скорость прямой реакции возрастает в 16 раз. Таким образом правомерно записать

$$y = k_1 \cdot x_1^3 \cdot 2,7^{\frac{x_2}{10}} \cdot 4^{x_3}$$

где x3 – изменение давления, соответствующее уменьшению объема системы в 2 раза.

Анализируя полученную математическую зависимость можно сделать вывод о характере влияния основных технологических параметров (концентрации исходных реагентов, температуры и давления) на скорость прямой химической реакции.

Раздел 5.3. Изучение свойств и эффективности функционирования XTC. Производится путем выполнения технологических расчетов для XTC, которые (по заданию) могут включать:

- определение теоретических расходных коэффициентов рассматриваемого производства;
- определение фактических расходных коэффициентов рассматриваемого производства;
- определение технического состава продукта;
- составление материального баланса отдельного узла, химического реактора или процесса;
- составление теплового баланса отдельного узла, химического реактора или процесса.

Расчет теоретических расходных коэффициентов производится в соответствии со стехиометрическими уравнениями химической реакции, протекающей в рассматриваемой XTC.

Расчет фактических расходных коэффициентов производится с учетом возможного меняющегося технического состава продуктов при их хранении и транспортировке, а также с учетом потерь сырья и возвратных (или безвозвратных отходов).

Материальный баланс рассматриваемой XTC или её подсистемы строится на основе закона сохранения массы с учетом стехиометрических балансовый соотношений и может быть представлен таблицей, диаграммой и т.д. Тепловой баланс рассматриваемой XTC или её подсистемы строится на основе закона сохранения энергии с учетом термохимических, термодинамических балансовых соотношений.

Кроме расчетных характеристик для оценки эффективности функционирования XTC можно использовать экологические рекомендации, которые носили бы описательный характер или конкретную информацию по охране окружающей среды.

В этом разделе курсовой работы могут приводится схемы обезвреживания, химизмы процессов, протекающих с целью обезвреживания отходящих газов или стоков, особенности аппаратурного оформления этих процессов, характеристика применяемых для обезвреживания веществ, материалов и др.

Раздел «Заключение» (ориентировочный объем 1 страница). Формулируются краткие выводы, вытекающие из выполненной работы. В них характеризуются техническое решение выбранной технологической схемы, дается оценка рекомендуемого процесса, его технико-экономической эффективности, решения вопросов охраны окружающей среды.

Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Структурный элемент компетенции способностью к	Планируемые результаты обучения абстрактному мышлению, анализу, синтезу (Оценочные средства (OK-1)
Знать	 иерархию явлений и их соподчиненность в изучении процессов в ХТС, роль и значение анализа и оптимального синтеза ХТС задачи анализа и синтеза ХТС основные понятия и методы системных исследований применительно к задачам химической технологии; основные принципы синтеза химико-технологических систем 	 Понятие химико-технологической системы. Элементы ХТС. Функциональные и масштабные подсистемы ХТС. Основные понятия системного анализа. Структура ХТС. Свойства ХТС как системы: зависимость режима одного элемента от режима других оптимальные режимы работы одного элемента и элемента в технологической
Уметь	 осуществлять поиск, анализ, структурирование информации, обозначать и освещать элементы передовых технологий проводить логическое расчленение ХТС с целью исследования свойств и оптимизации выполнить анализ условий 	 Сделать обзор информации по заданной теме, пользуясь литературными источниками, Интернет-ресурсами и др. Провести логическое расчленение ХТС производства аммиака, определить критерии эффективности выделенных элементов ХТС Объяснить, в чем заключается улучшение организации ХТС производства <i>HNO</i>₃ по

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
	функционирования системы - ее устойчивость и надежность, безопасность, наличие побочных продуктов и отходов, условия работы и т.п. — проводить анализ различных вариантов технологического процесса, прогнозировать последствия	а H ₂ O 11
Владеть	 профессиональным языком предметной области знания; основными методами решения задач в области анализа и синтеза ХТС способами демонстрации умения анализировать предложенный вариант ХТС. 	На примере XTC производства аммиака - Провести логическое расчленение XTC, определить критерии эффективности выделенных элементов XTC - Провести анализ условий функционирования выделенных элементов XTC, их взаимосвязи и влияния на выбранные критерии эффективности. - Рассмотреть несколько вариантов функционирования, указать их достоинства и

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		недостатки.
	спользованию методов математического моде ной проверке теоретических гипотез (ОПК-4)	лирования материалов и технологических процессов, к теоретическому анализу и
Знать	 общие принципы разработки ХТС; основы функционирования и методики расчета ХТС методологические основы и прикладной математический аппарат, позволяющий выполнять анализ различных ХТС основные принципы разработки энерго и ресурсосберегающих ХТС 	 Химическое производство. Показатели химического производства и химико-технологического процесса. Элементы ХТС. Их назначение и примеры в производстве. Классификация моделей ХТС и их основные особенности. Приведите примеры различных схем какого-либо производства. Состояние ХТС. Параметры потоков. Состояние элементов. Расчет ХТС. Принципы расчета. Базовые уравнения. Эффективность использования материальных ресурсов. Расходные коэффициенты. Степень использования сырья. Энергетическая эффективность ХТС. Тепловой КПД. Противоречивость его определения при оценке эффективности использования тепловой энергии в производстве. Полная энергия технологического потока. Ее составляющие. КПД полной энергии. Эксергетическая эффективность ХТС. Эксергетический КПД. Определение эффективности организации процесса в ХТС по результатам балансового расчета ХТС.
Уметь	 составлять химические модели, изучать химические превращения в условиях промышленного производства; составлять базовые математические модели процессов, протекающих в химических реакторах, проводить их 	участвующих в реакции, протекающей по схеме $A + B \xrightarrow{k_i} P + C$

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
	анализ - составлять графические модели ХТС, - проводить структурный (топологический) и функциональный анализ элементов ХТС; - формулировать	2. Вывести уравнения, описывающие режим (модель) идеального вытеснения (ИВ) в химическом реакторе. Привести схему реактора.
	научно-исследовательские задачи в области реализации энерго- и ресурсосбережения и определять пути их решения	3. Составьте химическую модель, функциональную и операторную схему процесса получения водорода конверсией метана. Выделите подсистему (на выбор), определите критерии ее эффективности.
		4. Производство аммиака из природного газа можно представить химической схемой: $CH_4 + 2H_2O = CO_2 + 4H_2$ $3H_2 + N_2 = 2NH_3$
		или суммарным уравнением $3CH_4 + 6H_2O + 4N_2 = 3CO_2 + 8NH_3$. Теоретически на производство 1т NH_3 необходимо затратить 494 м³ природного газа (метана). Реальный расходный коэффициент составляет более 1000 м³/1т NH_3 . Назовите возможные причины дополнительного расхода природного газа.
		5. Какое комбинированное производство может соответствовать представленной схеме? Опишите его.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		СО ₂ Очистка от СО ₂ NH ₃ $N_2 + 3H_2 = 2NH_3$ NH ₃ $N_2 + 3H_2 = 2NH_3 = CO(NH_2)_2 + H_2O$ $CO(NH_2)_2$
Владеть	 навыками выделения уровней, элементов и взаимосвязей между ними на основе фундаментальных знаний, навыками выделения отдельных этапов в решении общих задач анализа и синтеза XTC установления взаимосвязей между ними и последовательности их выполнения; навыками определения комплекса свойств физико-химических систем, положенных в основу химического производства, навыками обработки и анализа данных, полученных при теоретических и экспериментальных исследованиях, 	 Изобразите иерархическую структуру ХТС. Какой принцип лежит в ее основе? Как используются такие структуры в решении общих задач анализа и синтеза ХТС? При получении аммиака из азото-водородной смеси (АВС), очистка АВС от остатков СО осуществляется в реакторе метанирования по реакции СО+ H₂ = CH₄ + H₂O. Какие последствия могут возникнуть в подсистеме синтеза аммиака при уменьшении степени гидрирования СО? Определите, как влияет давление на сажеобразование в реакции СО + H₂ = C_{тв} +

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
	интерпретации полученных результатов	H_2O ? 4. Назовите способы увеличения равновесного превращения реагентов при протекании реакций $CO + H_2O = CO_2 + H_2 + Q_p$; $C_4H_{10} = C_4H_8 + H_2 - Q_p$. Напишите выражение для константы равновесия. 5. Процесс осуществляется с протеканием простой обратимой реакции первого $A \stackrel{k_1}{\Longrightarrow} R$ порядка $A \stackrel{k_2}{\Longrightarrow} R$ Зависимость степени превращения $X(\tau)$ при температурах T_1 и $T_2 > T_1$ для эндотермической и экзотермической реакций в реакторе ИВ (или ИС-п) представлена на рис.
		0 τ

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
способностью ог	денивать эффективность новых технологий и	штриховыми линиями показаны равновесные степени превращения x_p для тех же условий Какой температурный режим будет оптимальным для обеспечения максимальной интенсивности процесса с экзотермической и эндотермической реакцией? внедрять их в производство (ПК-7)
Знать	 закономерности протекания химико-технологических процессов, основные принципы организации химического производства, его иерархической структуры, критерии эффективности функционирования химических предприятий, концепции создания эффективных ХТС методы организации эффективных химических производств методы усовершенствования элементов или подсистем ХТС с учётом требований экономической эффективности и безопасности 	 Химическое производство. Показатели химического производства и химико-технологического процесса. Понятие химико-технологической системы. Элементы ХТС. Функциональные и масштабные подсистемы ХТС. Элементы ХТС. Их назначение и примеры в производстве. Состояние ХТС. Параметры потоков. Состояние элементов. Расчет ХТС. Принципы расчета. Базовые уравнения. Неоднозначность режимов и их устойчивость Причины ограничений области существования некоторых режимов. Эффективность использования материальных ресурсов. Расходные коэффициенты. Степень использования сырья. Энергетическая эффективность ХТС. Тепловой КПД. Противоречивость его определения при оценке эффективности использования тепловой энергии в производстве. Полная энергия технологического потока. Ее составляющие. КПД полной энергии. Эксергетическая эффективность ХТС. Эксергетический КПД. Определение эффективности организации процесса в ХТС по результатам балансового расчета ХТС. Технологические концепции создания ХТС. Концепция полного использования сырьевых ресурсов. Пути увеличения более

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		 полного использования сырья. 15. Физико-химические факторы, способствующие увеличению выхода продукта. 16. Преимущества противоточного движения взаимодействующих фаз по сравнению с прямоточным. Приведите примеры. 17. Целесообразность применения рециклов. Приведите примеры. 18. Способы увеличения более полного использования сырья при невозможности увеличения выхода продукта. 19. Комбинированные и сбалансированные ХТП, комплексное использование сырья. 20. Концепция полного использования энергетических ресурсов. Способы уменьшения энергозатрат в химическом производстве. Приведите примеры. 21. Вторичные энергетические ресурсы. Приведите примеры их использования. 22. Энерготехнологическая система. Приведите примеры. 23. Концепция минимизации отходов. Приемы ее реализации. 24. Концепция эффективного использования оборудования. Приемы ее реализации. 25. Совмещенные процессы. Виды совмещения. 26. Перестраиваемые ХТС. В каких случаях целесообразно их применение.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
Уметь	 строить иерархии сложных систем, выявлять связи между отдельными элементами систем определять цели деятельности предприятия, выявлять резервы и пути повышения эффективности ХТС разрабатывать различные варианты технологического процесса, выполнять анализ различных способов преобразования сырья в продукт, а также выбирать наилучшую технологию производства; составлять материальные и тепловые балансы типовых процессов химической технологии определять параметры потоков элементов ХТС заданной структуры и заданного состояния ее элементов на основе расчетов материальных и тепловых балансов. 	 Выполнить анализ модели изотермических процессов <i>ИС-п и ИВ-н с протеканием</i> простых необратимых реакций <i>А</i>→<i>В</i> разного порядка: вид зависимости <i>С(т) и х(т)</i>. Как влияет концентрация исходного вещества и температура на изменение функции <i>х(т)</i>. Рассчитайте массу и объем сухого воздуха, теоретически необходимого для полного сгорания 1 кг угля с массовой долей: С -0,862, H₂ − 0,046, N₂− 0,012, влаги -0,010, золы − 0,070. Составить материальный и тепловой балансы процесса сжигания 1 т серосодержащего сырья кислородом воздуха. Сырье содержит, (мас. доли): <i>S</i> - 0,99, <i>H</i>₂<i>O</i> - 0,06, зола − 0,04.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства	
		Тепловым расчетом определить температуру, до которой необходимо н аммиачно-воздушную смесь, чтобы процесс окисления аммиака протек Данные для расчета:	-
		Степень превращения NH_3 в NO ,%	96,0
		Степень абсорбции, %	96,5
		Содержание аммиака в сухой аммиачно – воздушной смеси, % (масс.).	10,0
		Температура конверсии, ⁰ C:	800
		Теплопотери в окружающую среду, % от прихода теплоты	5
		7. Какие преимущества имеет схема производства азотной кислоты при (рис.) по сравнению со схемой при едином давлении?	двух давлениях

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		Воздух I H_2O $P = 0,45 \text{ МПа}$ $P = 0,45 \text{ МПа}$ $P = 1,2 \text{ МПа}$
Владеть	 навыками изображения графических моделей XTC (функциональной, структурной, операторной, технологической схемы с описанием) навыками установления технологических и конструкционных параметров XTC, технологических параметров режима и потоков методами расчета технологических показателей деятельности предприятий и навыками оценки эффективности использования ресурсов навыками определения причин, вызвавших нарушение технологического режима производства 	 Проанализируйте основные закономерности реакционно-массообменных процессов на примере системы, в которой осуществляется горение твердых частиц в потоке воздуха. Обоснуйте выбор схемы и условий процесса конверсии метана (давление, температура, состав реакционной смеси). Составьте химическую и функциональную схемы производства разбавленной азотной кислоты. Определите условия синтеза. Составьте химическую и функциональную схемы производства аммиачной селитры. Как используется теплота нейтрализации в процессе? Энтальпия реакции нейтрализации аммиака 52,5%-ной азотной кислотой ΔH = -106,09 кДж/моль. Определите, сколько воды может испариться за счет теплоты реакции

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		нейтрализации 212,5кг аммиака. Энтальпия парообразования воды $\Delta H = -2684$ кДж/кг. 6. С хлорного электролизера диафрагменного типа нагрузкой 40 кА за сутки получен щелок объемом 10,6 м³, содержащий 130 кг/м³ едкого натра. Определите выход щелочи по току. 7. В схеме реактора с выносным теплообменником имеется обратная связь по теплу между входящим и выходящим потоками с температурами $T_{\rm въх}$ соответственно. К каким последствиям может привести кратковременное повышение (понижение) температуры на выходе из реактора $T_{\rm k}$? Как это будет связано с чувствительностью системы?

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Анализ и синтез химико-технологических систем» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме экзамена.

Экзамен по данной дисциплине проводится в устной форме по экзаменационным билетам, каждый из которых включает 2 теоретических вопроса и одно практическое задание.

Показатели и критерии оценивания экзамена:

- на оценку **«отлично»** (5 баллов) обучающийся демонстрирует высокий уровень сформированности компетенций, высокий уровень знаний не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач:
 - дается комплексная оценка предложенной ситуации;
 - демонстрируются глубокие знания теоретического материала и умение их применять;
 - последовательное, правильное выполнение всех практических заданий;
 - умение обоснованно излагать свои мысли, делать необходимые выводы.
- на оценку **«хорошо»** (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций:
 - дается комплексная оценка предложенной ситуации;
 - демонстрируются достаточные знания теоретического материала и умение их применять; но допускаются незначительные ошибки, неточности
 - выполнение всех практических заданий; возможны единичные ошибки, исправляемые самим студентом после замечания преподавателя;
 - затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку **«удовлетворительно»** (3 балла) обучающийся демонстрирует пороговый уровень сформированности компетенций:
 - затруднения с комплексной оценкой предложенной ситуации;
 - неполное теоретическое обоснование, требующее наводящих вопросов преподавателя;
 - выполнение заданий при подсказке преподавателя;
 - затруднения в формулировке выводов.
- на оценку **«неудовлетворительно»** (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.

– на оценку **«неудовлетворительно»** (1 балл) – обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.