

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ Директор ИММиМ А.С. Савинов

20.02.2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

СИСТЕМНЫЙ АНАЛИЗ ХИМИКО-ТЕХНОЛОГИЧЕСКИХ СИСТЕМ И РАСЧЕТ АППАРАТОВ ТЕХНОЛОГИИ ПРИРОДНЫХ ЭНЕРГОНОСИТЕЛЕЙ И УГЛЕРОДНЫХ МАТЕРИАЛОВ

Направление подготовки (специальность) 18.04.01 ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

Направленность (профиль/специализация) программы Химическая технология природных энергоносителей и углеродных материалов

Уровень высшего образования - магистратура Программа подготовки – прикладная магистратура

Форма обучения очно-заочная

Институт/ факультет

Институт металлургии, машиностроения и материалообработки

Кафедра

Металлургии и химических технологий

Курс

2

Семестр

3

Магнитогорск 2020 год Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 18.04.01 ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ (уровень магистратуры) (приказ Минобрнауки России от 21.11.2014 г. № 1494)

химич	Рабочая программа рассмотро веских технологий	ена и одобрена на зас	седании кафедрь	гуметаллургии и
	18.02.2020, протокол № 6	2 1 7	Janus	A C V
		Зав. кафедрой	-)	_ А.С. Харченко
	Рабочая программа одобрена	методической комисс	сией ИММиМ	
	20.02.2020 г. протокол № 5	3		
		Председатель_		А.С. Савинов
	Рабочая программа составлен	a:	CM	
	доцент кафедры МиХТ, канд.	техн. наук	1/18	
			I HE WEST WAS	Н.Ю. Свечникова
			3	
	Рецензент:		1	1. T. Konega
,	доцент кафедры Химии, ка	ing, TexH. Hayx		iri. rearry

Лист актуализации рабочей программы

	ена, обсуждена и одобрена для федры Металлургии и химиче	±
	Протокол от2 Зав. кафедрой	.0 г. № А.С. Харченко
1 1 1 1	ена, обсуждена и одобрена для федры Металлургии и химиче	•
	Протокол от 2 Зав. кафедрой	.0 г. № А.С. Харченко
	ена, обсуждена и одобрена для федры Металлургии и химиче	±
	Протокол от2 Зав. кафедрой2	.0 г. № А.С. Харченко

1 Цели освоения дисциплины (модуля)

приобретение студентами знаний относительно задач анализа и синтеза XTC, освоение методов анализа и синтеза XTC, использование их при анализе стадий химико-технологического процесса и создании оптимальных химико-технологических систем, формирование навыков практического использования полученных знаний для своей профессиональной деятельности,

формирование общекультурных, общепрофессиональных и профессиональных компетенций в соответствии с требованиями ФГОС ВО по направлению подготовки 18.04.01 Химическая технология

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Системный анализ химико-технологических систем и расчет аппаратов технологии природных энергоносителей и углеродных материалов входит в вариативную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Методология научных исследований

Оборудование и технология переработки твёрдого топлива

Процессы массопереноса в системах с участием твердой фазы

Численные методы в решении математических моделей

Анализ и синтез химико-технологических систем

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Системы управления химико-технологическими процессами

Моделирование процессов подготовки угля к коксованию

Переработка углеводородных газов

Производственная - преддипломная практика

Подготовка к защите и защита выпускной квалификационной работы

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Системный анализ химико-технологических систем и расчет аппаратов технологии природных энергоносителей и углеродных материалов» обучающийся должен обладать следующими компетенциями:

Структурный	Планируемые результаты обучения
элемент	
компетенции	
ОК-1 способн	остью к абстрактному мышлению, анализу, синтезу
Знать	 принципы моделирования, классификацию способов представления математических моделей; приемы, методы, способы формализации объектов, процессов, явлений и реализации их на компьютере;
Уметь	 составить модель по словесному описанию, настроить модель, представить модель в алгоритмическом и математическом виде (объекты и процессы); оперировать с элементами модели, оценить качество модели;

Ъ	1
Владеть	 навыками применения базовых принципов и методов системного анализа;
	 навыками применения основ программирования базовых
	моделей и систем из них, проектирования интерфейсов к
	моделям, основных методов формирования входных данных и
	обработки результатов;
	 навыками работы с современными информационными
	технологиями и программными продуктами для поддержки
	проектирования моделей и математического, имитационного,
ОПК-4 готовн	графического, информационного моделирования.
	остью к использованию методов математического моделирования
_	ологических процессов, к теоретическому анализу и экспериментальной
проверке теоретиче	
Знать	 уравнения материального и теплового балансов процессов, их анализ;
	- способы представления информации о моделируемых объектах
	и их свойствах в компьютере и методы манипулирования
	(преобразования) объектами и их свойствами;
Уметь	 использовать современные программные комплексы для
	математического моделирования и оптимизации технических
	систем;
	 творчески использовать инструменты подготовки и принятия
	решений для системного анализа, распространенные в практике
	промышленно развитых стран: компьютерное моделирование,
	оптимизация и экономическая оценка статических и
	динамических режимов химико-технологических систем на
	основе лицензионных программных комплексов.
Владеть	 знаниями о творческом использовании традиционных методов и
	инструментариев компьютерных технологий для оптимизации
	химико-технологических процессов и химико-технологических систем;
	 навыками компьютерного моделирования химико-
	технологических процессов и химико-технологических систем;
	 навыками компьютерного исследовании надежности химико-
	технологических систем;
	 навыками применения теоретических подходов, объясняющих
	закономерности системного анализа в химической технологии,
	системного подход к анализу и планированию эксперимента в
	химической технологии
	о и готовностью рассчитывать и оценивать условия и последствия (в том
числе экономическ	ие) принимаемых организационно-управленческих решений
Знать	 основные экономические особенности в коксохимической отрасли;
Уметь	 использовать информационные ресурсы Internet для поиска
	текущей экономической информации в коксохимической и
	металлургической отраслях;
Владеть	 навыками использования интегрированных комплексов
	управления качеством.
	Jupublicium Ru leetbom.

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц 108 акад. часов, в том числе:

- контактная работа 47,4 акад. часов:
- аудиторная 44 акад. часов;
- внеаудиторная 3,4 акад. часов
- самостоятельная работа 24,9 акад. часов;
- подготовка к экзамену 35,7 акад. часа

Форма аттестации - экзамен

Раздел/ тема дисциплины		Аудиторная контактная работа (в акад. часах)		Самостоятельная работа студента иончетельная работа студента интореф	Форма текущего контроля успеваемости и	Код компетенции		
		Лек.	лаб. зан.	практ. зан.	Самост работа	работы	промежуточной аттестации	компетенции
1. 1. Общие прині системного ана химико-технологических процессов и систем.	ципы ълиза							
1.1 . Понятие системы. Элемент системы -химико технологический процесс (ХТП).	3	0,5			0,5	Поиск дополнительной информации по заданной теме (работа с библиографичес ким материалами, справочниками, каталогами, словарями, энциклопедиями). Подготовка к практическому занятию, собеседованию	Собеседование Экзамен	ОК-1, ОПК-4
1.2 Модель структуры системы. Статические и динамические модели систем. Химико-технологические системы (ХТС).		0,5		2	0,5	Работа с электронными библиотеками Подготовка к практическому занятию, собеседованию	Собеседование Экзамен	ОК-1, ОПК-4
Итого по разделу		1		2	1			
2. 2. Системный анализ								
2.1 Химико-технологические системы (ХТС). Типовые элементы ХТС, их изображение на схемах. Системы химических реакций. Замкнутые и разомкнутые системы с точки зрения расчета.	3	0,5		2/1И	1	Самостоятельное изучение учебной и научной литературы. Подготовка к практическому занятию, собеседованию	Собеседование Экзамен	ОК-1, ОПК-4, ПК-8

2.2 Классификация параметров систем: структурные, конструктивные, технологи-ческие, параметры потоков. Оценки эффективности функционирования систем.		0,5	2/1И	1	Самостоятельное изучение учебной и научной литературы Подготовка к практическому занятию, собеседованию	Собеседование Экзамен	ОК-1, ОПК-4, ПК-8
2.3 Общая математическая модель систем. Модель топологии и модели элементов систем. Задачи поверочного расчета, проектного расчета, оптимизации, синте-за, управления XTC.		1	4/1И	2	Самостоятельное изучение учебной и научной литературы. Подготовка к практическому занятию, собеседованию	Собеседование Экзамен	ОК-1, ОПК-4, ПК-8
2.4 Компьютерные технологии для расчета XTC. Трудности использования инте-грального метода для больших систем.		2	4/1И	2	Подготовка к практическому занятию.	Контрольная работа Экзамен	ОК-1, ОПК-4, ПК-8
2.5 Декомпозиционный метод расчета систем. Структурный анализ необходимый этап декомпозиционного метода расчета. Формализация структуры систем с помощью матрицы смежности, таблиц связей, списка связей		2	4/1И	2	Подготовка к практическому занятию. Выполнение индивидуальног о задания	Индивидуальное задание Экзамен	ОК-1, ОПК-4, ПК-8
Итого по разделу		6	16/5И	8			
3. Промышленные химиче	еские			_			
реакторы.							
3.1 Общие замечания о расчете химических реакторов. Конструктивные элементы химических реакторов. Схемы и конструкции промышленных химических ре-акторов. Оптимизация химических процессов и реакторов.		1	2/1И	2	Самостоятельное изучение учебной и научной литературы. Подготовка к практическому занятию, собеседованию	Собеседование Экзамен	ОПК-4, ПК-8
3.2 Составление материального баланса для реактора. Определение объема газа и его компонентов на входе в реактор, на выходе и на каждой стадии процесса.		1	2/1И	3	Самостоятельное изучение учебной и научной литературы. Подготовка к практическому занятию, собеседованию	Собеседование. Расчетное задание Экзамен	ОПК-4, ПК-8

3.3 Определение основных размеров реактора: площади сечения внутреннего диаметра, высоты неподвижного слоя по данным материального баланса, по най-денным значениям рабочих скоростей газа, объема катализатора, оптимальных температур.	1		4/1И	3,9	Самостоятельное изучение учебной и научной литературы. Подготовка к практическому занятию, собеседованию	Собеседование. Расчетное задание Экзамен	ОПК-4, ПК-8
3.4 Составление теплового баланса реактора.	1		3/1И	3	Подготовка к практическому занятию, собеседованию	Собеседование. Контрольная работа Экзамен	ОПК-4, ПК-8
3.5 Определение гидродинамических параметров работы реактора. Определение гидравлического сопротивления слоев катализатора и реактора.			4/1И	4	Подготовка к практическому занятию, собеседованию	Собеседование. Контрольная работа Экзамен	ОПК-4, ПК-8, ОК-1
Итого по разделу	4		15/5И	15,9			
Итого за семестр	11	_	33/10И	24,9		экзамен	
Итого по дисциплине	11		33/10И	24,9		экзамен	ОК-1,ОПК- 4,ПК-8

5 Образовательные технологии

В процессе преподавания дисциплины «Системный анализ ХТС и расчет аппаратов технологии природных энергоносителей и углеродных материалов» применяются как традиционная, так и проблемная образовательные технологии.

В начале преподавания дисциплины до студентов доводится значение каждого вида занятий. Объясняется смысл, содержание и цель проведения практических занятий. Определяются сроки, содержание и количество баллов по каждому виду контроля.

Система организации учебного процесса ориентирована на индивидуальный подход к учащимся и содержит задания разного уровня сложности, разнообразного содержания.

Лекции проходят как в форме лекции-информации, так и в форме лекции-визуализации. Лекции проводятся с использованием интерактивного метода -«обучение на основе опыта» для создания аналогий между изучаемыми явлениями и знакомыми студентам жизненными ситуациями и более глубокого усваивания изучаемых вопросов. Данный метод используется и для решения задач исследовательского характера на практических занятиях. Студентам выдаются задания закрепляющие знания, полученные на лекциях и моделирующие технологические процессы на производстве. Высокая степень самостоятельности их выполнения студентами способствует развитию логического мышления и более глубокому освоению теоретических положений и их практического использования. По результатам, полученным при решении задач, происходит дискуссия и формулируется вывод об оптимальном режиме проведения технологического процесса. На практических занятиях применяются также следующие виды интерактивного обучения: контекстное обучение, междисциплинарное обучение, эвристическая беседа, позволяющие находить ответ на проблему, используя знания полученные и на других дисциплинах. Специально подобранные практические задания позволяют продемонстрировать обучающимся всю глубину, сложность и многогранность технических проблем в области природных энергоносителей и углеродных материалов.

Самостоятельная работа студентов стимулирует студентов к самостоятельной проработке тем в процессе подготовки к практическим занятиям и выполнении домашних заданий.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

- 8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:
- 1) Системный анализ процессов и аппаратов химической технологии : учебное пособие для вузов / Э. Д. Иванчина, Е. С. Чернякова, Н. С. Белинская, Е. Н. Ивашкина. 2-е изд. Москва : Издательство Юрайт, 2020. 114 с. (Высшее образование). ISBN 978-5-534-11830-8. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/457075
- 2) Кафаров, В. В. Системный анализ процессов химической технологии : основы стратегии : монография / В. В. Кафаров, И. Н. Дорохов ; ответственный редактор Н. М. Жаворонков. 2-е изд., перераб. и доп. Москва : Издательство Юрайт, 2020. 499 с. (Высшее образование). ISBN 978-5-534-06991-4. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/455509

б) Дополнительная литература:

- 1) Системный анализ процессов химической технологии: методы неравновес-ной термодинамики: монография / В. В. Кафаров, И. Н. Дорохов, Э. М. Кольцова; ответ-ственный редактор Н. М. Жаворонков. 2-е изд., перераб. и доп. Москва: Издатель-ство Юрайт, 2020. 367 с. (Высшее образование). ISBN 978-5-534-06997-6. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/455508
- 2) Системный анализ процессов химической технологии: массовая кристалли-зация : монография / В. В. Кафаров, И. Н. Дорохов, Э. М. Кольцова ; ответственный ре-дактор Н. М. Жаворонков. 2-е изд., перераб. и доп. Москва : Издательство Юрайт, 2020. 368 с. (Высшее образование). ISBN 978-5-534-06994-5. Текст : электрон-ный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/455507
- 3) Системный анализ процессов химической технологии: измельчение и сме-шение : монография / В. В. Кафаров, И. Н. Дорохов, С. Ю. Арутюнов ; ответственный ре-дактор Н. М. Жаворонков. 2-е изд., перераб. и доп. Москва : Издательство Юрайт, 2020. 440 с. (Высшее образование). ISBN 978-5-534-07043-9. Текст : электрон-ный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/455510
- 4) Системный анализ процессов химической технологии: метод нечетких мно-жеств : монография / В. В. Кафаров, И. Н. Дорохов, Е. П. Марков ; под общей редакцией Н. М. Жаворонкова. 2-е изд., перераб. и доп. Москва : Издательство Юрайт, 2020. 360 с. (Высшее образование). ISBN 978-5-534-06996-9. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/455506
- 5) Комиссаров, Ю. А. Процессы и аппараты химической технологии.. Часть 1: учебник для вузов / Ю. А. Комиссаров, Л. С. Гордеев, Д. П. Вент; под редакцией Ю. А. Комиссаров. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2020. 216 с. (Высшее образование). ISBN 978-5-534-09099-4. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/454366
- 6) Комиссаров, Ю. А. Процессы и аппараты химической технологии. В 5 ч. Часть 2 : учебник для вузов / Ю. А. Комиссаров, Л. С. Гордеев, Д. П. Вент ; под редакцией Ю. А. Комиссаров. 2-е изд., перераб. и доп. Москва : Издательство Юрайт, 2020. 227 с. (Высшее образование). ISBN 978-5-534-09101-4. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/454497
- 7) Комиссаров, Ю. А. Процессы и аппараты химической технологии.. Часть 3: учебник для вузов / Ю. А. Комиссаров, Л. С. Гордеев, Д. П. Вент; под редакцией Ю. А. Комиссаров. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2020. 246 с. (Высшее образование). ISBN 978-5-534-09102-1. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/454498

Периодические издания:

- 3. Журнал Известия высших учебных заведений. Химия и химическая технология.
- 4. Журнал Кокс и химия
- 5. Journal of chemical tecnology and metallurgy (журнал химической технологии и металлургии)

в) Методические указания:

1. Бочкарев, В. В. Оптимизация химико-технологических процессов : учебное пособие для вузов / В. В. Бочкарев. — Москва : Издательство Юрайт, 2020. — 263 с. — (Высшее образование). — ISBN 978-5-534-00378-9. — Текст : электрон-ный // ЭБС Юрайт [сайт]. — URL: https://urait.ru/bcode/451320

Курзаева, Л. В. Введение в теорию систем и системный анализ: учебное пособие / Л. В. Курзаева; МГТУ. - [2-е изд., подгот. по печ. изд. 2013 г.]. - Магнитогорск: МГТУ, 2015. - 1 электрон. опт. диск (CD-ROM). - Загл. с титул. экрана. - URL: https://magtu.informsystema.ru/uploader/fileUpload?name=31.pdf&show=dcatalogues/1/112391

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

_ <u> </u>	l l l l l l l l l l l l l l l l l l l	
Наименование ПО	№ договора	Срок действия лицензии
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
7Zip	свободно распространяемое ПО	бессрочно
FAR Manager	свободно распространяемое ПО	бессрочно
Виртуальный стенд системы автоматического управления технологическим параметром	свидетельство №2013612340	бессрочно
MS Office Project Prof 2010(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
MS Office Project Prof 2013(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
MS Office Access Prof 2007(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
MS Office Access Prof 2010(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
MS Office Access Prof 2013(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
Браузер Mozilla Firefox	свободно распространяемое ПО	бессрочно
MS Windows XP Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021

Профессиональные базы данных и информационные справочные системы

A	тформиционные сприво ньые спетемы
Название курса	Ссылка
Национальная информационно-аналитическая система — Российский индекс научного цитирования	
Поисковая система Академия Google (Google Scholar)	
Информационная система - Единое окно доступа к информационным ресурсам	URL: http://window.edu.ru/
Электронные ресурсы библиотеки МГТУ им. Г.И. Носова	nttp://magtu.ru:8085/marcweb2/Default.asp
Электронная база периодических изданий East View Information Services, OOO	https://dlib.eastview.com/
Университетская информационная система РОССИЯ	https://uisrussia.msu.ru
Международная наукометрическая реферативная и полнотекстовая база данных научных изданий «Web of science»	http://webofscience.com
Международная база полнотекстовых журналов Springer Journals	http://link.springer.com/

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Лекционная аудитория

Мультимедийные средства хранения, передачи и представления информации (компьютер, проектор, экран).

Учебная аудитория для проведения занятий лекционного типа, занятий

семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации

Мультимедийные средства хранения, передачи и представления информации

Компьютерный класс

Персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета

Помещения для самостоятельной работы

Персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета

Помещения для хранения и профилактического обслуживания учебного оборудования

Стеллажи для хранения оборудования

Методическая литература для учебных занятий

Инструменты для ремонта и профилактического обслуживания учебного оборудования

6 Учебно-методическое обеспечение самостоятельной работы обучающихся

По дисциплине «Системный анализ ХТС и расчет аппаратов технологии природных энергоносителей и углеродных материалов» предусмотрена аудиторная и внеаудиторная самостоятельная работа обучающихся.

Аудиторная самостоятельная работа студентов предполагает решение контрольных задач и ответов на вопросы на практических занятиях.

Примерные аудиторные контрольные работы (АКР):

АКР №1 «Общие принципы системного анализа химико-технологических процессов и систем»

Ответить на вопросы:

- 1.Какие гетерогенные процессы вы знаете?
- 2.В чём заключается многостадийность гетерогенного процесса?
- 3. Чем отличаются условия гетерогенного процесса и условия протекания в нём химической реакции?
- 4. Что такое наблюдаемая скорость превращения для гетерогенного процесса и от чего она зависит? Сопоставьте со скоростью химической реакции.
- 5. Что такое лимитирующая стадия гетерогенного процесса?
- 6.Почему определение «лимитирующая стадия есть самый медленный этап стационарного многостадийного процесса» является не корректным?
- 7.Как лимитирующая стадия определяет режим гетерогенного процесса?
- 8. Чем отличается модель «сжимающая сфера» от модели «сжимающееся ядро» для гетерогенного процесса «газ твёрдое»? Приведите примеры
- 9. Нарисуйте схему и объясните структуру процесса «газ твёрдое полностью реагирующее». Какие этапы процесса можно выделить?
- 10. Почему у процессов «газ твёрдое» и газ жидкое» одинаковая структура?
- 11. Постройте математическую модель «сжимающая сфера» процесса «газ твёрдое» и получите выражение для наблюдаемой скорости превращения и времени полного превращения.
- 12. Объясните как меняется размер твёрдой частицы и её степень превращения по мере протекания процесса «газ твёрдое полностью реагирующее»?

- 13. Объясните, почему размер частицы в процессе «газ твёрдое полностью реагирующее» уменьшается равномерно со временем и как при этом меняется её степень превращения?
- 14. От каких условий и как зависит наблюдаемая скорость превращения в процессе «газ твёрдое полностью реагирующее», в том числе в разных режимах?
- 15. Как интенсифицировать процесс «газ твёрдое полностью реагирующее» в разных режимах его протекания?
- 16. Нарисуйте схему и объясните структуру процесса «газ твёрдое не полностью реагирующее». Какие этапы процесса можно выделить?
- 17. Постройте математическую модель «сжимающее ядро» процесса «газ твёрдое» и получите выражение для наблюдаемой скорости превращения и времени полного превращения для разных режимов процесса.
- 18. Из системы уравнений модели «сжимающееся ядро» выведите выражение для наблюдаемой скорости превращения в общем виде и попытайтесь из него получить Wн для разных режимов процесса.
- 19. Как меняется скорость превращения, размер и степень превращения твёрдой частицы по мере протекания процесса «газ твёрдое не полностью реагирующее» в кинетическом, внутридиффузионном и внешендиффузионном режимах?
- 20. Почему во внутридиффузионном режиме в самом начале процесса Wн стремится к бесконечности?
- 21. От каких условий и как зависит наблюдаемая скорость превращения процесса «газ твёрдое не полностью реагирующее» в разных режимах?
- 22. Как интенсифицировать процесс «газ твёрдое не полностью реагирующее» в разных режимах его протекания?
- 23. Какое из условий процесса «газ твёрдое не полностью реагирующее» наиболее сильно влияет на наблюдаемую скорость превращения в каждом режиме?
- 24. Постройте математическую модель процесса «газ твёрдое» (каталитический процесс) на поверхности раздела фаз с учётом теплового эффекта реакции и покажите связь концентрации (степени превращения) и температуры поверхности.
- 25. Как можно графически определить температуру поверхности в гетерогенном процессе?
- 26. Нарисуйте схемы реакторов для гетерогенных процессов «газ (жидкость) твёрдое» и объясните их работу. Приведите примеры промышленных процессов, в которых применяются такие реакторы.
- 27. Почему в адсорбере для очистки газа не достигается полная отработка адсорбента (его полное насыщение примесями)?

- 28. Как можно организовать проток твёрдого реагента через реактор? Нарисуйте схемы аппаратов, объясните их работу.
- 29. Как можно увеличить скорость гетерогенного процесса «газ твёрдое» и как изменится организация процесса в реакторе? Схема.
- 30. Нарисуйте схемы реакторов для гетерогенно-каталитических процессов и объясните их работу. Приведите примеры промышленных процессов, в которых применяются такие реакторы.
- 31. Чем ограничено использование в промышленности адиабатического реактора?
- 32. Изобразите схему каталитического трубчатого реактора и объясните, почему такой тип реакторов наиболее распространён в промышленности.
- 33. С чем связана трудность контроля и управления процессом в трубчатом реакторе?
- 34. Как организовать процесс в псевдоожиженном слое катализатора и процесс в восходящем слое катализатора? Укажите их преимущества и недостатки
- 35. Сколько коксохимических предприятий работают в настоящее время в России?
- 36. Сколько коксохимических предприятий функционируют в составе вертикально-интегрированного металлургического предприятия? Перечислите данные металлургические предприятия.
- 37. Сколько коксохимических предприятий функционируют самостоятельно, не входя в состав вертикально-интегрированного металлургического предприятия? Перечислите данные коксохимические предприятия.
- 38. Какие требования предъявляются к качеству кокса на коксохимическом производстве, входящем в состав вертикально-интегрированного металлургического предприятия.
- 39. Каковы экономические особенности работы коксохимического предприятия, входящего в состав вертикально-интегрированного металлургического предприятия.
- 40. Каковы экономические особенности работы коксохимического предприятия, не входящего в состав вертикально-интегрированного металлургического предприятия.
- 41. Как изменилась сырьевая база коксования за последние 20 лет. Как это сказывается на качестве производимого кокса?
- 42. Каков средний возраст коксовых батарей, эксплуатируемых в России?
- 43. Перечислите и кратко охарактеризуйте существующие и перспективные технологии производства кокса, а также схематически начертите конструкции печей, используемых в данных технологиях.

АКР №2 «Системный анализ»

№ 1. Коксовый цех из 4-х батарей, в каждой из которых по 65 печей. Полезный объем камер коксования — 30 м3. Оборот печей 15 ч. После 18 дней работы баланс выявил невыполнение плана на 2% по валовому коксу. Определить необходимый оборот коксовых

печей для того, чтобы за оставшиеся 12 дней месяца выйти на месячное выполнение плана на 100,1%. Плотность насыпной массы шихты 0,733 m/м3. Выход валового кокса от шихты составляет 75%.

№ 2. В результате совершенствования схемы подготовки углей для коксования плотность насыпной массы возросла с 750 до 780 кг/м3. Ваши действия по регулировке обогрева коксовых печей?

Обогрев производится коксовым газом с теплотой сгорания Qi = 18500 кДж/м3. Расход газа на обогрев следующий:

- − машинная сторона − 5700 м3/ч;
- коксовая сторона 6200 м3/ч.

Напоминаем, что для поддержания степени готовности кокса на постоянном, установленном уровне необходимо обеспечивать стабильность количества тепла, передаваемого угольной загрузке.

- № 3. Рассчитать количество комплектов машин, обслуживающих коксовые батареи, если печей в блоке 260, время на обслуживание одной печи 12 мин, период коксования 14 ч 33 мин, время на текущий ремонт в пределах цикла 75 мин.
- № 4. Определить разность во времени готовности кокса двух печей, смежных с выдаваемой, при серийности выдачи кокса из печей 9–2, 5–2, 2–1 и обороте печей 15 ч. Оценить влияние серийности на сохранность кладки печей при равных прочих условиях их эксплуатации.
- № 5. На заводе находятся в эксплуатации два коксовых блока, каждый из которых состоит из двух батарей по 65 камер. Полезный объём камер первого блока $32,3 \text{ м}^3$, второго $-41,6 \text{ м}^3$. Период коксования принять равным $14 \text{ ч}\ 33 \text{ мин}$.

Сравнить годовую производительность коксовых батарей по валовому коксу и потребности в шихте.

Характеристика шихты, %: $W^p = 8.8$; $A^c = 8.26$; $V^c = 27.9$; $S^c_{obu} = 0.58$; X = 35 мм; Y = 15 мм.

АКР №3 «Промышленные химические реакторы»

- № 1. Продукты сгорания коксового газа имеют состав, %: CO_2 8,5; O_2 2,5; CO 0,2. Определить значение α .
- № 2. Плотность насыпной массы шихты уменьшилась с 775 до 760 кг/нм3 при неизменной влаге и других параметрах ее качества. Определить требуемые изменения расхода газа на обогрев батареи для сохранения постоянным уровня готовности кокса. Прежнее значение общего расхода 11220 м3/ч.

№ 3. В результате длительных дождей влажность шихты увеличилась на 2%. Марочный состав и технический анализ шихты остаются прежними. Как изменить расход отопительного газа и температуру в контрольных вертикалах, чтобы сохранить заданную готовность кокса.

Влажность шихты <math>-9%;

Pacxod отопительного газа — 11000 м3/4;

Температура в контрольных вертикалах:

- с машинной стороны − 1300 °C;
- с коксовой стороны − 1345 °C.

Удельный расход тепла на коксование влажной шихты qв.ш. = $2480 \, кДж/кг$. Напоминаем, что каждый процент влаги в шихте увеличивает фактический удельный расход тепла на коксование примерно на $33.5 \, кДж/кг$, а также требует увеличения температуры в простенках на $5-7 \, ^{\circ}$ C.

При решении задачи следует иметь ввиду, что относительное изменение удельного расхода тепла на коксование соответствует требуемым относительным изменениям расхода отопительного газа на обогрев.

№ 4. В целях повышения прочности кокса по сопротивлению истирающим воздействиям принято решение увеличить степень готовности кокса. Температуру в осевой плоскости коксового пирога требуется повысить с 1000 до 1050 °C. Удельный расход тепла на коксование при 1000 °C составляет qu=2520 кДж/кг. Определить необходимые для этого изменения температуры в обогревательных простенках и расход тепла на коксование в условиях постоянного периода коксования. Из практики обогрева коксовых печей известно, что для повышения температуры в осевой плоскости коксового пирога на 25-30 °C требуется температуру в контрольных вертикалах повысить на 10 °C, т. е. для повышения температуры на 1 °C в осевой плоскости надо в вертикалах ее увеличить на $10/25\div10/30=0,4\div0,~33$ °C. Для увеличения температуры в осевой плоскости на 50 °C в вертикалах надо ее поднять на 17-20 °C $(0,33\cdot50\approx17;~0,4\cdot50=20)$.

№ 5. Определить нормальную калориметрическую температуру (tн.к) обезводороженного коксового газа, состав которого приведен в таблице 4. Для этого газа Qi = 23100 кДж/м3, Vn.z. = 6,79 м3.

Примерные индивидуальные домашние задания (ИДЗ):

ИДЗ №1 «Системный анализ»

 $№ 1. Сравнить выход смолы при термической обработке каменного угля, содержащего 4,37 % водорода на сухую массу, при температурах 500, 600, 900 <math>^{0}$ C.

№ 2. Рассчитать приплату или скидку в % к оптовой цене 1 т металлургического кокса заводов центра (Московский и Новолипецкий) при отклонении содержания золы и серы от заданных $A_{\kappa}^{\ c} = 10,6\%$ и $S_{oбш}^{\ c} = 0,6\%$.

Характеристика шихт, %: 1) A^c =8,8; V^c =27,9; $S^c_{oбщ}$ =0,67. 2) A^c =7,9; V^c =25,2; $S^c_{oбщ}$ =0,58.

Принять размер приплат или скидок к оптовой цене $\pm 0.2\%$ при отклонении зольности на 0.1% и $\pm 0.5\%$ при отклонении содержания серы на 0.1%.

№ 3. Рассчитать допустимое количество печей в батарее, если время оборота печи 16,5 ч, суммарное время цикличности остановок за один оборот печей 1,5 ч. Время, необходимое на обработку одной печи коксовыми машинами, 12 мин.

ИДЗ №2 «Промышленные химические реакторы»

- № 1. Определить сопротивление регенератора на нисходящем потоке между точками 4, 5. Давление в подсводовом пространстве регенератора $P4 = -80 \, \Pi a$, в подовом канале $P5 = -110 \, \Pi a$, температура воздуха в туннеле $-15 \, ^{\circ}$ С, продуктов сгорания вверху регенератора $-1300 \, ^{\circ}$ С, в подовом канале $-290 \, ^{\circ}$ С; плотность продуктов сгорания $-1,4 \, \kappa г/м3$.
- № 2. Определить в общем виде сопротивление верхней части отопительной системы между «глазками» регенераторов восходящего и нисходящего потоков.
- № 3. При обогреве доменным газом изменение коэффициента избытка воздуха с 1,3 на 1,5 привело к увеличению количества продуктов горения на 1 нм3 газа с 1,85 до 2 м3. Температура продуктов горения 300 °C, их объемная теплоемкость составляет 1,47 кДж/(нм3·К). Определить дополнительный унос тепла.

Преподаватель, проверив работу, может возвратить ее для доработки вместе с письменными замечаниями. Студент должен устранить полученные замечания в установленный срок, после чего работа окончательно оценивается.

7 Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
ОК-1 способнос	тью к абстрактному мышлению, анализу, с	синтезу
Знать	 принципы моделирования, классификацию способов представления математических моделей; приемы, методы, способы формализации объектов, процессов, явлений и реализации их на компьютере; 	 Вопросы к экзамену Наблюдаемая скорость превращения для гетерогенного процесса, ее зависимость от различных факторов. Лимитирующая стадия гетерогенного процесса и режим гетерогенного процесса. Модели для гетерогенного процесса «газ − твёрдое»: «сжимающая сфера» и «сжимающееся ядро». Приведите примеры Описание структуры процесса «газ − твёрдое полностью реагирующее». Схема процесса. Какие этапы процесса можно выделить? Описание структуры процесса «газ − твёрдое не полностью реагирующее». Схема процесса. Какие этапы процесса можно выделить? Математическая модель «сжимающая сфера» процесса «газ − твёрдое». Выражение для наблюдаемой скорости превращения и времени полного превращения. Изменение размера твёрдой частицы и её степень превращения по мере протекания процесса «газ − твёрдое полностью реагирующее».

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
Уметь	 составить модель по словесному описанию, настроить модель, представить модель в алгоритмическом и математическом виде (объекты и процессы); оперировать с элементами модели, оценить качество модели; 	№ 1. В результате совершенствования схемы подготовки углей для коксования плотность насыпной массы возросла с 750 до 780 кг/м3. Ваши действия по регулировке обогрева коксовых печей? Обогрев производится коксовым газом с теплотой сгорания Qi =18500 кДж/м3. Расход газа на обогрев следующий: — машинная сторона — 5700 м3/ч; — коксовая сторона — 5700 м3/ч. Напоминаем, что для поддержания степени готовности кокса на постоянном, установленном уровне необходимо обеспечивать стабильность количества тепла, передаваемого угольной загрузке. № 2. Рассчитать количество комплектов машин, обслуживающих коксовые батареи, если печей в блоке — 260, время на обслуживание одной печи 12 мин, период коксования — 14 ч 33 мин, время на текущий ремонт в пределах цикла — 75 мин. № 3. На заводе находятся в эксплуатации два коксовых блока, каждый из которых состоит из двух батарей по 65 камер. Полезный объём камер первого блока 32,3 м³, второго — 41,6 м³. Период коксования принять равным 14 ч 33 мин. Сравнить годовую производительность коксовых батарей по валовому коксу и потребности в шихте. Характеристика шихты, %: W ^p =8,8; A ^c =8,26; V ^c =27,9; S ^c общ=0,58; X=35 мм; Y=15 мм.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
Владеть	 знаниями о базовых принципах и методах системного анализа; знаниями об основах программирования базовых моделей и систем из них, проектирования интерфейсов к моделям, основных методах формирования входных данных и обработки результатов; знаниями о навыках работы с современными информационными технологиями и программными продуктами для поддержки проектирования моделей и математического, имитационного, графического, информационного моделирования. 	Задание. Определить требуемые изменения расхода газа на обогрев батареи для сохранения постоянным уровня готовности кокса. Плотность насыпной массы шихты уменьшилась с 775 до 760 кг/нм3 при неизменной влаге и других параметрах ее качества. Прежнее значение общего расхода — 11220 мЗ/ч. № 2. В результате длительных дождей влажность шихты увеличилась на 2%. Марочный состав и технический анализ шихты остаются прежними. Как изменить расход отопительного газа и температуру в контрольных вертикалах, чтобы сохранить заданную готовность кокса. Влажность шихты — 9%; Расход отопительного газа — 11000 мЗ/ч; Температура в контрольных вертикалах: — с машинной стороны — 1300 °C; — с коксовой стороны — 1345 °C. Удельный расход тепла на коксование влажной шихты qв.ш. = 2480 кДж/кг. Напоминаем, что каждый процент влаги в шихте увеличивает фактический удельный расход тепла на коксование примерно на 33,5 кДж/кг, а также требует увеличения температуры в простенках на 5—7 °C. При решении задачи следует иметь ввиду, что относительное изменение удельного расхода тепла на коксование соответствует требуемым относительным изменениям

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства			
		расхода отопительного газа на обогрев.			
		№ 3. В целях повышения прочности кокса по сопротивлению истирающим воздействиям принято решение увеличить степень готовности кокса. Температуру в осевой плоскости коксового пирога требуется повысить с 1000 до 1050 °C. Удельный расход тепла на коксование при 1000 °C составляет qш = 2520 кДж/кг. Определить необходимые для этого изменения температуры в обогревательных простенках и расход тепла на коксование в условиях постоянного периода коксования. Из практики обогрева коксовых печей известно, что для повышения температуры в осевой плоскости коксового пирога на 25–30 °C требуется температуру в контрольных вертикалах повысить на 10 °C, т. е. для повышения температуры на 1 °C в осевой плоскости надо в вертикалах ее увеличить на 10/25÷10/30 = 0,4÷0, 33 °C. Для увеличения температуры в осевой плоскости на 50 °C в вертикалах надо ее поднять на 17–20 °C (0,33·50 ≈ 17; 0,4·50 = 20).			
		№ 5. Определить нормальную калориметрическую температуру (tн.к) обезводороженного коксового газа, состав которого приведен в таблице 4. Для этого газа Qi = 23100 кДж/м3 , Vп.г. = $6,79 \text{ м3}$.			
ОПК-4 готовностью к использованию методов математического моделирования материалов и технологических процессов, к теоретическому					
анализу и экспо	анализу и экспериментальной проверке теоретических гипотез				
Знать	 уравнения материального и теплового балансов процессов, их анализ; способы представления информации о моделируемых объектах и их свойствах в компьютере и методы манипулирования (преобразования) объектами и их 	 Экзаменационные вопросы Уравнения материального и теплового балансов для реакторов, работающих в режимах ИС-п, ИС-н, ИВ. Подобие и отличие. Условное время реакции и время пребывания в реакторе. Примеры Протекание обратимой реакции в реакторе ИС-п. Как изменится скорость превращения в начале процесса в результате увеличения температуры? Изменится ли 			

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
	свойствами;	предельное превращение, как и почему? — Протекание сложной последовательной реакции в реакторе ИВ. Какие рекомендации можно сделать, чтобы добиться: а) максимального выхода промежуточного продукта; б) максимально селективности по промежуточному продукту; в) максимального выхода конечного продукта? — Производительность реактора в режиме ИВ и режиме ИС при протекании простых реакций
Уметь	 использовать современные программные комплексы для математического моделирования и оптимизации технических систем; творчески использовать инструменты подготовки и принятия 	Рассчитать приплату или скидку в % к оптовой цене 1 т металлургического кокса заводов центра (Московский и Новолипецкий) при отклонении содержания золы и серы от заданных A_{κ}^{c} =10,6% и $S_{oбщ}^{c}$ =0,6%. Характеристика шихт, %: 1) A^{c} =8,8; V^{c} =27,9; $S_{oбщ}^{c}$ =0,67. 2) A^{c} =7,9; V^{c} =25,2; $S_{oбщ}^{c}$ =0,58.
	решений для системного анализа, распространенные в практике промышленно развитых стран:	Принять размер приплат или скидок к оптовой цене $\pm 0,2\%$ при отклонении зольности на $0,1\%$ и $\pm 0,5\%$ при отклонении содержания серы на $0,1\%$.
	компьютерное моделирование, оптимизация и экономическая оценка статических и динамических режимов химико-технологических систем на основе лицензионных программных комплексов.	№ 2. Рассчитать допустимое количество печей в батарее, если время оборота печи 16 суммарное время цикличности остановок за один оборот печей 1,5 ч. Время, необход на обработку одной печи коксовыми машинами, 12 мин.
Владеть	- знаниями о творческом использовании традиционных методов и инструментариев компьютерных технологий для оптимизации химико-технологических процессов и	Задание. Определить сопротивление регенератора на нисходящем потоке между точками $4, 5$. Давление в подсводовом пространстве регенератора $P4 = -80$ Па, в подовом канале $P5 = -110$ Па, температура воздуха в туннеле -15 °C, продуктов сгорания вверху регенератора -1300 °C, в подовом канале -290 °C; плотность продуктов сгорания $-1,4$

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
	химико-технологических систем; — знаниями об основах компьютерного моделирования химико-технологических процессов и химико-технологических систем; — знаниями о компьютерном исследовании надежности химико-технологических систем; — знаниями о применении теоретических подходов, объясняющих закономерности системного анализа в химической технологии, системный подход к анализу и планированию эксперимента в химической технологии. Встью и готовностью рассчитывать и оценивно-управленческих решений).	кг/м3. № 2. Определить в общем виде сопротивление верхней части отопительной системы между «глазками» регенераторов восходящего и нисходящего потоков. № 3. При обогреве доменным газом изменение коэффициента избытка воздуха с 1,3 на 1,5 привело к увеличению количества продуктов горения на 1 нм3 газа с 1,85 до 2 м3.
Знать	- основные экономические особенности в коксохимической отрасли;	 Экзаменационные вопросы: Сколько коксохимических предприятий работает в настоящее время в России? Сколько коксохимических предприятий функционируют в составе вертикально-интегрированного металлургического предприятия? Перечислите данные металлургические предприятия. Сколько коксохимических предприятий функционируют самостоятельно, не входя в состав вертикально-интегрированного металлургического предприятия? Перечислите данные коксохимические предприятия. Какие требования предъявляются к качеству кокса на коксохимическом производстве, входящем в состав вертикально-интегрированного металлургического предприятия. Каковы экономические особенности работы коксохимического предприятия,

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
Уметь	— использовать информационные ресурсы Internet для поиска текущей экономической информации в коксохимической и металлургической отраслях;	 входящего в состав вертикально-интегрированного металлургического предприятия. Каковы экономические особенности работы коксохимического предприятия, не входящего в состав вертикально-интегрированного металлургического предприятия. Как изменилась сырьевая база коксования за последние 20 лет. Как это сказывается на качестве производимого кокса? Каков средний возраст коксовых батарей, эксплуатируемых в России? Перечислите и кратко охарактеризуйте существующие и перспективные технологии производства кокса, а также схематически начертите конструкции печей, используемых в данных технологиях. Рассчитать количество комплектов машин, обслуживающих коксовые батареи, если печей в блоке – 260, время на обслуживание одной печи 12 мин, период коксования – 14 ч 33 мин, время на текущий ремонт в пределах цикла – 75 мин. № 2. Определить разность во времени готовности кокса двух печей, смежных с выдаваемой, при серийности выдачи кокса из печей 9–2, 5–2, 2–1 и обороте печей 15 ч. Оценить влияние серийности на сохранность кладки печей при равных прочих условиях их эксплуатации. № 3. На заводе находятся в эксплуатации два коксовых блока, каждый из которых состоит из двух батарей по 65 камер. Полезный объём камер первого блока 32,3 м³, второго – 41,6 м³. Период коксования принять равным 14 ч 33 мин. Сравнить годовую производительность коксовых батарей по валовому коксу и потребности в шихте. Характеристика шихты, %: W^p=8,8; A^c=8,26; V^c=27,9; S^cобщ=0,58; X=35 мм; Y=15 мм.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
Владеть	— знаниями об использовании интегрированных комплексов управления качеством.	Задание. Коксовый цех из 4-х батарей, в каждой из которых по 65 печей. Полезный объем камер коксования — 30 м3. Оборот печей 15 ч. После 18 дней работы баланс выявил невыполнение плана на 2% по валовому коксу. Определить необходимый оборот коксовых печей для того, чтобы за оставшиеся 12 дней месяца выйти на месячное выполнение плана на 100,1%. Плотность насыпной массы шихты 0,733 т/м3. Выход валового кокса от шихты составляет 75%. № 2. Сравнить выход смолы при термической обработке каменного угля, содержащего 4,37 % водорода на сухую массу, при температурах 500, 600, 900 °C. № 3. Продукты сгорания коксового газа имеют состав, %: CO ₂ 8,5; O ₂ 2,5; CO 0,2. Определить значение α.

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Системный анализ ХТС и расчет аппаратов технологии природных энергоносителей и углеродных материалов» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме экзамена.

Экзамен по данной дисциплине проводится в устной форме по экзаменационным билетам, каждый из которых включает 2 теоретических вопроса и одно практическое задание.

Показатели и критерии оценивания экзамена:

- на оценку «отлично» (5 баллов) обучающийся демонстрирует высокий уровень освоения компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку «хорошо» (4 балла) обучающийся демонстрирует средний уровень освоения компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку «удовлетворительно» (3 балла) обучающийся демонстрирует пороговый уровень освоений компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку «неудовлетворительно» (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку «неудовлетворительно» (1 балл) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.