МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ

Директор института металлургии, машиностроения и материалообработки

> А.С. Савинов 2 октября 2018 года

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ИСТОЧНИКИ ПИТАНИЯ ДЛЯ СВАРКИ

Направление подготовки (специальность) 15.03.01 Машиностроение

Направленность (профиль) программы Оборудование и технология сварочного производства

> Уровень высшего образования Бакалавриат

Программа подготовки Академический бакалавриат

> Форма обучения Заочная

Институт Кафалра металлургии, машиностроения и материалообработки

Кафедра

машин и технологии обработки давлением и машиностроения

Курс

4

Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 15.03.01 «Машиностроение», утвержденного приказом МОиН РФ от 03.09.2015 № 957.

Рабочая программа рассмотрена и одобрена на заседании кафедры МиТОДиМ «31» августа 2018 г., протокол №1.

Зав. кафедрой / С.И. Платов / (и.О. Фамилия)

Рабочая программа одобрена методической комиссией Института металлургии, машиностроения и материалообработки «02» октября 2018 г., протокол № 2.

Председатель _____/А.С.Савинов / (подпись) (И.О. Фамилия)

Рабочая программа составлена:

ст. преподавателем каф. МиТОДиМ (должность, ученая степень, ученое звание)

dan o

одпись) (И.О. Фамилия)

Рецензент:

доцент каф. механики ФГБОУ ВО «МГТУ им. Г.И. Носова», к.т.н.

(подпись) /М.В. Харченко/ (подпись) (И.О. Фамилия) Лист регистрации изменений

№ п/п	****	изменения/дополнения	протокола заседания кафедры	Подпись зав. кафедрой
1.	Раздел 8	Актуализация учебно- методического и информационного обеспечения	. №2	# ===
2.	Раздел 9	Актуализация материально- технического обеспечения	09.10.2019r . №2	*
3.	Раздел 8	Актуализация учебно- методического и информационного обеспечения	09.09.2020r . №1	18

1 Цели освоения дисциплины (модуля)

Целями освоения дисциплины (модуля) «Источники питания для сварки» являются: приобретение студентами знаний в области принципов работы, устройства и особенностей эксплуатации источников питания, использующихся в процессах дуговой сварки и в родственных электротехнологических процессах.

Основными задачами дисциплины являются:

- приобретение студентами знаний по связи характеристик источников питания с характеристиками их воздействия на свариваемое изделие, с устойчивостью системы "источник питания дуга свариваемое изделие";
- изучение способов регулирования параметров сварочной дуги при действии различных возмущений, способов формирования вольтамперной характеристики источника питания.
- формирование умения определять назначение источника по его аббревиатуре и выбирать для конкретного технологического процесса наиболее подходящий источник питания;
- изучение типов и конструкций различных источников питания: трансформаторов, выпрямителей, генераторов, инверторных источников питания.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Источники питания для сварки входит в вариативную часть учебного плана образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Физика

Математика

Введение в направление

Теория сварочных процессов

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Подготовка к сдаче и сдача государственного экзамена

Подготовка к защите и защита выпускной квалификационной работы

Автоматические системы управления в сварочном производстве

Автоматизация сварочных процессов

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Источники питания для сварки» обучающийся должен обладать следующими компетенциями:

Структурный	Планируемые результаты обучения
элемент	
компетенции	
ПК-13 способность	ью обеспечивать техническое оснащение рабочих мест с размещением
технологического с	оборудования; умением осваивать вводимое оборудование
Знать	- основные научно – технические проблемы питания сварочной дуги и
	управление сварочной дугой, как источником энергии для сварочных
	процессов; принципы получения вольт – амперных характеристик
	сварочных источников питания; особенности конструктивного
	выполнения сварочных трансформаторов, выпрямителей, генераторов,
	типы сварочных источников питания, выпускаемых в России и за
	рубежом; особенности использования сварочных источников питания в
	реальных технологических процессах

Уметь	- правильно выбирать источник питания для конкретного технологического процесса; собирать сварочную цепь с использованием выбранного источника питания; налаживать правильную работу источника, регулировать сварочные источники и устранять неисправности в их работе			
Владеть	-навыками расчета и проектирования электрических элементов для источников питания			
	оверять техническое состояние и остаточный ресурс технологического низовывать профилактический осмотр и текущий ремонт оборудования			
Знать	критерии оценки технического состояния оборудования			
Уметь	-проверять техническое состояние и остаточный ресурс элементов электрических схем			
Владеть	-навыками испытаний электрических схем			

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 зачетных единиц 108 акад. часов, в том числе:

- контактная работа 6,7 акад. часов:
- аудиторная 6 акад. часов;
- внеаудиторная 0,7 акад. часов
- самостоятельная работа 97,4 акад. часов;

сварочных источников питания, выпускаемых в России и за рубежом;

подготовка к зачёту – 3,9 акад. часа
 Форма аттестации - зачет

Раздел/ тема дисциплины	Kypc	конт	худиторі актная і акад. ча лаб.	работа сах) практ.	Самостоятельная работа студента	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код компетенции
			зан.	зан.	S g			
1. Основные научно – техн	ичес	кие пр	облемы	питания	сваро	чной дуги и управл	ение сварочной дуго	ой, как
источником энергии для с					· · · · · · ·	, , , , , , , , , , , , , , , , , , ,		- ,
1.1 Основные научно — технические проблемы питания сварочной дуги и управление сварочной дугой, как источником энергии для сварочных процессов;	4	1			22,4	Самостоятельное изучение учебной литературы.	Зачет.	ПК-13, ПК-15
Итого по разделу		1			22,4			
2. Принципы получения во)льт -	- ампер	оных ха	рактерис	тик св	арочных источнико	в питания;	
2.1 Принципы получения вольт — амперных характеристик сварочных источников питания;	4	1/1И			25	Самостоятельное изучение учебной литературы.	зачет.	ПК-13, ПК-15
2.2 Лабораторная работа: Построение BAX источников питания			1			Подготовка к ЛР, оформление ЛР.	Защита ЛР №1.	ПК-13, ПК-15
Итого по разделу	1/1И	1		25				
3. Особенности конструктивного выполнения сварочных трансформаторов, выпрямителей, генераторов, типы								

3.1 Особенности конструктивного выполнения сварочных трансформаторов, выпрямителей, генераторов, типы сварочных источников питания, выпускаемых в России и за рубежом;	4	1	1		25	Самостоятельное изучение учебной литературы. Подготовка к ЛР, оформление ЛР.	Зачет. Защита ЛР №2.	ПК-13, ПК-15
Итого по разделу		1	1		25			
4. Особенности использова	ния	свароч	ных ист	очников	питан	ия в реальных техн	ологических процес	ecax
4.1 Особенности использования сварочных источников питания в реальных технологических процессах	4	1/1И			25	Самостоятельное изучение учебной литературы. Выполнение расчетного задания.	Зачет. Сдача расчетного задания.	ПК-13, ПК-15
Итого по разделу		1/1И			25			
5. Зачет								
5.1 Зачет	4							ПК-13,ПК-15
Итого по разделу								
Итого за семестр	4/2И	2		97,4		зачёт		
Итого по дисциплине	4/2И	2		97,4		зачет	ПК-13,ПК-15	

5 Образовательные технологии

1. Традиционные образовательные технологии ориентируются на организацию образовательного процесса, предполагающую прямую трансляцию знаний от преподавателя к студенту (преимущественно на основе объяснительно-иллюстративных методов обучения). Учебная деятельность студента носит в таких условиях, как правило, репродуктивный характер.

Формы учебных занятий с использованием традиционных технологий:

Информационная лекция — последовательное изложение материала в дисциплинарной логике, осуществляемое преимущественно вербальными средствами (монолог преподавателя).

Лабораторная работа – организация учебной работы с реальными материальными и информационными объектами, экспериментальная работа с аналоговыми моделями реальных объектов.

2. Интерактивные технологии – организация образовательного процесса, которая предполагает активное и нелинейное взаимодействие всех участников, достижение на этой основе личностно- значимого для них образовательного результата. Наряду со принцип специализированными технологиями такого рода интерактивности прослеживается образовательных большинстве современных технологий. Интерактивность подразумевает субъект-субъектные отношения в ходе образовательного процесса и, как следствие, формирование саморазвивающейся информационно-ресурсной среды.

Семинар-дискуссия – коллективное обсуждение какого-либо спорного вопроса, проблемы, выявление мнений в группе (меж-групповой диалог, дискуссия как спор-диалог).

3. Информационно-коммуникационные образовательные технологии – организация образовательного процесса, основанная на применении специализированных программных сред и технических средств работы с информацией.

Формы учебных занятий с использованием информационно-коммуникационных технологий:

Лекция-визуализация — изложение содержания сопровождается презентацией (демонстрацией учебных материалов, представленных в различных знаковых системах, в т.ч. иллюстративных, графических, аудио и видеоматериалов).

6 Учебно-методическое обеспечение самостоятельной работы обучающихся По дисциплине «Источники питания для сварки» предусмотрена аудиторная и внеаудиторная самостоятельная работа обучающихся.

Аудиторная самостоятельная работа студентов предполагает выполнение лабораторных работ.

Лабораторная работа №1 «Методика снятия вольт-амперной характеристики инверторных источников питания с использованием различных приборов».

Цель работы: Построение BAX источников питания. Приобрести знания и умения при построении BAX источников питания

Ход выполнения работы:

1. Ознакомление с теоретическими сведениями

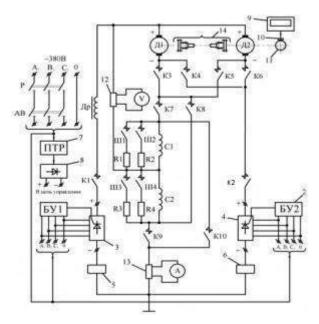
- 2. Изучить и начертить основные типы внешних характеристик источников питания для дуговой сварки: крутопадающую, пологопадающую, жесткую, возрастающую.
- 3. Изучить и начертить вольтамперные характеристики сварочной дуги.
- 4. Ответить на контрольные вопросы

Контрольные вопросы к защите ЛР №1:

- 1. Как называют источники переменного и постоянного сварочного тока?
- 2. Какую дугу называют сварочной?
- 3. Что характеризует внешняя характеристика источника сварочного тока?
- 4. Что характеризует статическая вольтамперная характеристика сварочной дуги?
- 5. Какова внешняя вольтамперная характеристика сварочного трансформатора?
- 6. Какова статическая вольтамперная характеристика сварочной дуги?
- 7. Как регулируют ток в сварочных трансформаторов, генераторов, выпрямителей?
- 8. Каково напряжение холостого хода сварочных трансформатора и генератора?
- 9. Каково напряжение горения дуги и короткого замыкания при ручной сварке?
- 10. Чем характеризуется режим работы источника питания сварочной дуги?
- 11. Что такое прямая и обратная полярность сварочного тока?
- 12. Назначение балластного реостата?
- 13. Для каких целей предназначены осцилляторы?
- 14. Особенности инверторного источника питания сварочной дуги.

Лабораторная работа №2: «Тестирование сварочных трансформаторов на стенде.»

Цель аботы: научится производить различные виды испытаний на стенде для сварочных трансформаторов.


Этапы проведения работы:

- 1. Измерение сопротивления изоляции обмоток относительно корпуса и между обмотками;
- 2. Испытание электрической прочности изоляции обмоток относительно корпуса и между обмотками;
- 3. Опыт холостого хода;
- 4. Проверка пределов регулирования сварочного тока;

- 5. Проверка механической прочности трансформатора (опыт многократного короткого замыкания);
- 6. Проверка электрической прочности межвитковой изоляции;
- 7. Подготовка выводов по работе;
- 8. Оформление отчета по работе.

Контрольные вопросы к защите ЛР №2:

1. По схеме стенда объясните принцип работы стенда при различных видах испытаний. Укажите на схеме элементы.

- 2.Чем отличаются конструкции сварочных трансформаторов от конструкций обычных трансформаторов?
- 3. Как регулируют ток в сварочных трансформаторах, генераторах, выпрямителях?
- 4. Как устроен сварочный трансформатор с отдельным регулятором?
- 5. Как устроен сварочный трансформатор с встроенным регулятором?
- 6. Как устроен сварочный трансформатор с подвижной обмоткой?
- 7. Как устроен сварочный трансформатор с магнитным шунтом?

Примеры индивидуальных домашних заданий

Расчётное задание №1: Пример расчёта трансформатора

Исходные данные расчёта

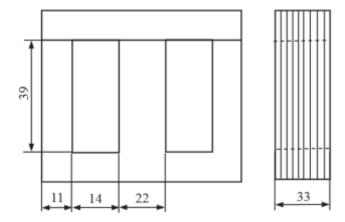
Напряжение первичной обмотки В 220

Напряжения вторичных обмоток В300/18

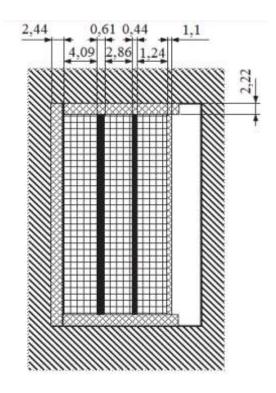
Частота тока/, Гц 400

Полные мощности вторичных обмоток, ВА 120/50

Коэффициенты мощности $\cos \varphi_2 / \cos \varphi_3$ 0,65/0,9


Температура окружающей среды, °С 30

Расчётное условие минимум стоимости


Расчётная мощность трансформатора Sp, BA: $Sp=S_2+S_3$, Sp=120+50=170.

Для рассчитываемого трансформатора мощностью выше 100~B~A при условии минимума стоимости целесообразно использовать броневой пластинчатый магнитопровод. Для частоты сети $400~\Gamma$ ц и при условии минимума стоимости выбираем горячекатаную сталь марки 1521 толщиной 0,2~мм.

.....

Броневой пластинчатый магнитопровод трансформатора с размерами в миллиметрах

Катушка трансформатора

.....

Сводные данные расчёта трансформатора

Масса стали сердечника, кг 0,722

Удельный расход стали, кг/кВА 4,25

Масса меди обмоток, кг 0,163

Удельный расход меди, кг/кВА 0,959

Отношение массы стали к массе меди 4,43

Потери в стали сердечника, Вт 3,97

Потери в меди обмоток, Вт 5,2

Отношение потерь в меди к потерям в стали 1,31

КПД при номинальной нагрузке 0,931

Максимальное превышение температуры обмотки трансформатора над температурой окружающей среды, °C 50,7

Относительный ток холостого хода 0,206

Относительные изменения напряжения при номинальной нагрузке: на второй обмотке 0,0269

на третьей обмотке 0,0107

Расчётное задание №2: Пример расчета плавких предохранителей.

Произвести расчет и выбрать плавкие предохранители для защиты электроприемников, изображенных на однолинейной электрической схеме сети

Исходные данные:

- напряжение сети 380/220 В (линейное напряжение U_n =380 В, фазное напряжение U =220 В);
- электроприемник 1: трехфазный асинхронный электродвигатель с короткозамкнутым ротором и техническими характеристиками: P = 20 kBt;

$$K_{nl}$$
 = 6,0; $cosj_l$ = 0,9; h_l = 0,885; условия пуска – легкие;

- электроприемник 2: двухфазная нагревательная печь мощности $P_2 = 7$ кВт; $cosj_2 = 1$;
- электроприемник 3: однофазная осветительная установка общей мощностью P_3 =1 кВт; $cosj_3$ = 1.

.....

Таблица- Результаты расчета и выбора плавких вставок предохранителей

Наименов ание электропр иемника	Номинальны й ток электроприе мника, <i>I_н</i> , A	Пусковой ток электроприем ника, І _{пуск} , А	Требуемо е значение номиналь ного тока плавкой вставки, $I_{\mathbb{R}^{3}}^{\mathbb{R}^{3}}$, A	Тип предохра нителя
Электродв игатель Нагревател ьная печь Осветитель ная установка	38,2 18,4 4,5	229,5	91,7 18, 4 4,5	ПН2-100 НПН 60М Н ПИ 15
Групповой предохран итель	ПН2-250			

Вопросы для подготовки к зачету:

- 1. Как называют источники переменного и постоянного сварочного тока?
- 2. Особенности сварочной дуги переменного тока. Требования к источникам переменного тока.
- 3. Технические требования к источникам питания для автоматической сварки и сварки неплавящимся электродом в среде защитных газов.
- 4. Правила подключения, эксплуатация, обслуживания и ремонта источников питания. Заземление и зануление источников. Техника безопасности при дуговой сварке.
- 5. Требования к источникам питания сварочной дуги на основе анализа статической и динамической вольт-амперной характеристики сварочной дуги.
- 7. Электромагнитная схема трансформатора. Трансформаторы с нормальным рассеиванием. Обеспечение падающих ВАХ.
- 8. Как устроен сварочный преобразователь?
- 9. Как устроен сварочный агрегат?
- 10. Назначение балластного реостата?
- 11. Для каких целей предназначены осцилляторы?
- 12. Особенности инверторного источника питания сварочной дуги.
- 10. Назначение и основные типы источников питания для дуговой сварки.
- 11. Трансформаторы с повышенным магнитным рассеиванием. Устройство, принцип работы, способ регулирования параметров.
- 13. Физические процессы в сварочной дуге. Строение сварочной дуги.
- 14. Трансформаторы с подмагничиваемым шунтом. Преимущество в сравнении с другими моделями.
- 16. Распределение потенциала по длине дуги. Строение сварочной дуги.
- 17. Трансформаторы с подвижными обмотками. Трансформаторы с подвижным магнитным шунтом. Принципы работы, преимущества и недостатки.
- 19. Классификация сварочных дуг. Процессы переноса электродного металла в дуге.
- 20.Перспективы развития источников питания в XX1 веке. Проблема снижения энергоемкости источников питания.
- 21. Расчет режимов при выполнении автоматической сварки под флюсом с использованием сварочного трактора

- 22. Понятие динамических процессов в сварочной дуге. Динамическая вольт-амперная характеристика дуги.
- 23. Трансформаторы с подвижными обмотками. Трансформаторы с подвижным магнитным шунтом. Принципы работы, преимущества и недостатки.
- 24. Классификация сварочных дуг. Процессы переноса электродного металла в дуге.
- 25.Перспективы развития источников питания в XX1 веке. Проблема снижения энергоемкости источников питания.
- 26. Источники питания плазменной дуги. УПС плазменная сварка. УПР плазменная резка.
- 27. Источники питания электрическое устройство для питания дуги электрическим током.
- 28. Понятие динамических процессов в сварочной дуге. Динамическая вольт-амперная характеристика дуги.
- 31. Электромагнитная схема трансформатора. Трансформаторы с нормальным рассеиванием. Обеспечение падающих ВАХ.
- 32. Оценка дополнительных функций инверторных источников питания
- 33. Оценка эффективности средств защиты органов зрения и органов дыхания при различных сварочных процессах

Задания к зачету

- 1. Источник питания ВДУ-506. Характеристика и область применения.
- 2. Устройство РБ-302. Характеристика, область применения.
- 3. УПР-1210. Характеристика, область применения.
- 4. Источники питания ТДМ-209. Характеристика, область применения.
- 5. Источники питания ВДУ-505. Характеристика, область применения.
- 6. Источники питания ВД-306. Характеристика, область применения.
- 7. Источники питания типа УПС. Характеристика и область применения.
- 8. Инверторный источник MOS. Характеристика, область применения.
- 9. УДГУ. Характеристика, область применения.

7 Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Структурны й элемент компетенц ии	Планируемые результаты обучения	Оценочные средства
		ать техническое оснащение рабочих мест с размещением технологического оборудования; умением осваивать вводимое
оборудован	ие	
Знать	- основные	Вопросы для подготовки к зачету:
	научно –	
	технические	1. Как называют источники переменного и постоянного сварочного тока?
	проблемы питания	2. Особенности сварочной дуги переменного тока. Требования к источникам переменного тока.
	сварочной дуги	2. Осоосниости сварочной дуги переменного тока. Треоования к источникам переменного тока.
	и управление	3. Технические требования к источникам питания для автоматической сварки и сварки неплавящимся электродом в
	сварочной	среде защитных газов.
	дугой, как	
	источником	4. Правила подключения, эксплуатация, обслуживания и ремонта источников питания. Заземление и зануление
	энергии для	источников. Техника безопасности при дуговой сварке.
	сварочных	
	процессов;	5. Требования к источникам питания сварочной дуги на основе анализа статической и динамической
	_	вольт-амперной характеристики сварочной дуги.
	получения вольт –	7. Электромагнитная схема трансформатора. Трансформаторы с нормальным рассеиванием. Обеспечение
	амперных	падающих ВАХ.
	характеристик	
	сварочных	8. Как устроен сварочный преобразователь?
	источников	

9. Как устроен сварочный агрегат?	Структурны й элемент компетенц ии	Планируемые результаты обучения	Оценочные средства
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		особенности конструктивног о выполнения сварочных трансформатор ов, выпрямителей, генераторов, типы сварочных источников питания, выпускаемых в России и за рубежом; - особенности использования сварочных источников питания в реальных технологически	 10. Назначение балластного реостата? 11. Для каких целей предназначены осцилляторы? 12. Особенности инверторного источника питания сварочной дуги. 10. Назначение и основные типы источников питания для дуговой сварки. 11. Трансформаторы с повышенным магнитным рассеиванием. Устройство, принцип работы, способ регулирования параметров. 13.Физические процессы в сварочной дуге. Строение сварочной дуги. 14. Трансформаторы с подмагничиваемым шунтом. Преимущество в сравнении с другими моделями. 16. Распределение потенциала по длине дуги. Строение сварочной дуги. 17. Трансформаторы с подвижными обмотками. Трансформаторы с подвижным магнитным шунтом. Принципы работы, преимущества и недостатки. 19. Классификация сварочных дуг. Процессы переноса электродного металла в дуге. 20.Перспективы развития источников питания в XX1 веке. Проблема снижения энергоемкости источников

Структурны й элемент компетенц ии	Планируемые результаты обучения	Оценочные средства
		 Понятие динамических процессов в сварочной дуге. Динамическая вольт-амперная характеристика дуги. Трансформаторы с подвижными обмотками. Трансформаторы с подвижным магнитным шунтом. Принципы работы, преимущества и недостатки. Классификация сварочных дуг. Процессы переноса электродного металла в дуге. Перспективы развития источников питания в XX1 веке. Проблема снижения энергоемкости источников питания. Источники питания плазменной дуги. УПС - плазменная сварка. УПР - плазменная резка. Источники питания — электрическое устройство для питания дуги электрическим током. Понятие динамических процессов в сварочной дуге. Динамическая вольт-амперная характеристика дуги. Электромагнитная схема трансформатора. Трансформаторы с нормальным рассеиванием. Обеспечение падающих ВАХ. Оценка дополнительных функций инверторных источников питания Оценка эффективности средств защиты органов зрения и органов дыхания при различных сварочных процессах
Уметь	- правильно выбирать источник	Лабораторная работа №1 «Методика снятия вольт-амперной характеристики инверторных источников питания с использованием различных приборов».

Структурны й элемент компетенц ии	Планируемые результаты обучения	Оценочные средства
	питания для конкретного технологическо го процесса; - собирать сварочную цепь с использование м выбранного источника питания; - налаживать правильную работу источника, регулировать сварочные источники и устранять неисправности в их работе	 Цель работы: Построение ВАХ источников питания. Приобрести знания и умения при построении ВАХ источников питания Ход выполнения работы: 1. Ознакомление с теоретическими сведениями 2. Изучить и начертить основные типы внешних характеристик источников питания для дуговой сварки: крутопадающую, пологопадающую, жесткую, возрастающую. 3. Изучить и начертить вольтамперные характеристики сварочной дуги. 4. Ответить на контрольные вопросы Контрольные вопросы к защите ЛР №1: 1. Как называют источники переменного и постоянного сварочного тока? 2. Какую дугу называют сварочной? 3. Что характеризует внешняя характеристика источника сварочного тока? 4. Что характеризует статическая вольтамперная характеристика сварочной дуги?
		The state of the s

Структурны й элемент компетенц ии	Планируемые результаты обучения	Оценочные средства
		5. Какова внешняя вольтамперная характеристика сварочного трансформатора?
		6. Какова статическая вольтамперная характеристика сварочной дуги?
		7. Как регулируют ток в сварочных трансформаторов, генераторов, выпрямителей?
		8. Каково напряжение холостого хода сварочных трансформатора и генератора?
		9. Каково напряжение горения дуги и короткого замыкания при ручной сварке?
		10. Чем характеризуется режим работы источника питания сварочной дуги?
		11. Что такое – прямая и обратная полярность сварочного тока?
		12. Назначение балластного реостата?
		13. Для каких целей предназначены осцилляторы?
		14. Особенности инверторного источника питания сварочной дуги.
Владеть	-навыками	Примеры индивидуальных домашних заданий
	расчета и проектирования	Расчётное задание №1: Пример расчёта трансформатора
	электрических элементов для	Исходные данные расчёта
	источников питания	Напряжение первичной обмотки В 220

Структурны й элемент компетенц ии	Планируемые результаты обучения	Оценочные средства
		Напряжения вторичных обмоток В300/18
		Частота тока/, Гц 400
		Полные мощности вторичных обмоток, ВА 120/50
		Коэффициенты мощности $\cos \varphi_2 / \cos \varphi_3 = 0,65/0,9$
		Температура окружающей среды, °С 30
		Расчётное условие минимум стоимости
		Расчётная мощность трансформатора Sp, BA: Sp= S_2+S_3 , Sp = $120 + 50 = 170$.
		Для рассчитываемого трансформатора мощностью выше 100 В А при условии минимума стоимости целесообразно использовать броневой пластинчатый магнитопровод. Для частоты сети 400 Гц и при условии минимума стоимости выбираем горячекатаную сталь марки 1521 толщиной 0,2 мм.

Структурны й элемент компетенц ии	Планируемые результаты обучения	Оценочные средства	
		Броневой пластинчатый магнитопровод трансформатора с размерами в миллиметрах	

Структурны й элемент компетенц ии	оценочные средства
	Катушка трансформатора Сводные данные расчёта трансформатора Масса стали сердечника, кг 0,722

Структурны й элемент компетенц ии	Планируемые результаты обучения	Оценочные средства	
		Удельный расход стали, кг/кВА 4,25 Масса меди обмоток, кг 0,163 Удельный расход меди, кг/кВА 0,959 Отношение массы стали к массе меди 4,43 Потери в стали сердечника, Вт 3,97 Потери в меди обмоток, Вт 5,2 Отношение потерь в меди к потерям в стали 1,31 КПД при номинальной нагрузке 0,931 Максимальное превышение температуры обмотки трансформатора над температурой окружающей среды, °C 50,7 Относительный ток холостого хода 0,206 Относительные изменения напряжения при номинальной нагрузке: на второй обмотке 0,0269 на третьей обмотке 0,0107 Расчётное задание №2: Пример расчета плавких предохранителей.	

Структурны й элемент компетенц ии	Планируемые результаты обучения	Оценочные средства		
		Произвести расчет и выбрать плавкие предохранители для защиты электроприемников, изображенных на однолинейной электрической схеме сети		
		Исходные данные:		
		- напряжение сети $380/220$ В (линейное напряжение U_n =380 В, фазное напряжение U =220 В);		
		- электроприемник 1: трехфазный асинхронный электродвигатель с короткозамкнутым ротором и техническими характеристиками: $P = 20$ кВт;		
		$K_{nI} = 6.0$; $cosj_I = 0.9$; $h_I = 0.885$; условия пуска – легкие;		
		- электроприемник 2: двухфазная нагревательная печь мощности $P_2 = 7$ кВт; $cosj_2 = 1$;		
		- электроприемник 3: однофазная осветительная установка общей мощностью P_3 =1 кВт; $cosj_3$ = 1.		
		Таблица— Результаты расчета и выбора плавких вставок предохранителей		
		Наименование электроприемник а, $I_{nyc\kappa}$, A $I_{nyc\kappa}$, A $I_{nyc\kappa}$, $I_{$		

Структурны й элемент компетенц ии	Планируемые результаты обучения	Оценочные средства				
					плавкой вставки, ^{Тида} , А	
		Электродвигате ль Нагревательная печь Осветительная установка	38,2 18,4 4,5	229,5	91,7 18,4 4,5	ПН2-100 Н ПН 60М НПИ 15
		Групповой предохранител ь	ПН2-250			
	тем проверять техн понт оборудования		аточный ресурс технологи	ческого оборудования,	организовывать профила	ктический осмотр и
Знать	- критерии оценки	Задания к зачету				
	технического	1. Источник питания ВДУ-506. Характеристика и область применения.				

Структурны й элемент компетенц ии	Планируемые результаты обучения	Оценочные средства	
	состояния оборудования	 Устройство РБ-302. Характеристика, область применения. УПР-1210. Характеристика, область применения. Источники питания ТДМ-209. Характеристика, область применения. Источники питания ВДУ-505. Характеристика, область применения. Источники питания ВД-306. Характеристика, область применения. Источники питания типа УПС. Характеристика и область применения. Инверторный источник МОS. Характеристика, область применения. УДГУ. Характеристика, область применения. 	
Уметь	-проверять техническое состояние и остаточный ресурс элементов электрических схем	 Лабораторная работа №2: «Тестирование сварочных трансформаторов на стенде.» Цель аботы: научится производить различные виды испытаний на стенде для сварочных трансформаторов. Этапы проведения работы: 1. Измерение сопротивления изоляции обмоток относительно корпуса и между обмотками; 2. Испытание электрической прочности изоляции обмоток относительно корпуса и между обмотками; 3. Опыт холостого хода; 4. Проверка пределов регулирования сварочного тока; 	

Структурны й элемент компетенц ии	Планируемые результаты обучения	Оценочные средства		
		 Проверка механической прочности трансформатора (опыт многократного короткого замыкания); Проверка электрической прочности межвитковой изоляции; Подготовка выводов по работе; Оформление отчета по работе. 		
Владеть	-навыками испытаний электрических схем	 Контрольные вопросы к защите ЛР №2: По схеме стенда объясните принцип работы стенда при различных видах испытаний. Укажите на схеме элементы. 		

Структурны й элемент компетенц ии	Планируемые результаты обучения	Оценочные средства
		 2.Чем отличаются конструкции сварочных трансформаторов от конструкций обычных трансформаторов? 3. Как регулируют ток в сварочных трансформаторах, генераторах, выпрямителях? 4. Как устроен сварочный трансформатор с отдельным регулятором? 5. Как устроен сварочный трансформатор с встроенным регулятором? 6. Как устроен сварочный трансформатор с подвижной обмоткой? 7. Как устроен сварочный трансформатор с магнитным шунтом?

б) Порядок проведения промежуточной аттестации, показатели и критерии опенивания:

Промежуточная аттестация по дисциплине «Источники питания для сварки» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме зачета.

- на оценку *«зачтено»* обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку *«не зачтено»* обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля)

а) Основная литература:

- 1. Овчинников, В. В. Источники питания для сварки : учебник / В. В. Овчинников. Москва ; Вологда : Инфра-Инженерия, 2020. 244 с. : ил., табл. ISBN 978-5-9729-0446-4. Текст : электронный. URL: https://znanium.com/catalog/product/1167729 (дата обращения: 03.11.2020). Режим доступа: по подписке.
- 2. Сварочные процессы и оборудование : учебное пособие / В. А. Ленивкин, Д. В. Киселев, В. А. Софьяников [и др.] ; под ред. В. А. Ленивкина. Москва : Вологда : Инфра-Инженерия, 2020. 308 с. ISBN 978-5-9729-0401-3. Текст : электронный. URL: https://znanium.com/catalog/product/1168559 (дата обращения: 03.11.2020). Режим доступа: по подписке.
- 3. Мейстер, Р. А. Сварочные свойства однофазных выпрямителей [Электронный ресурс] : Монография / Р. А. Мейстер, А. Р. Мейстер. Красноярск : Сиб. федер. ун-т, 2011. 170 с. ISBN 978-5-7638-2145-1. Текст : электронный. URL: https://znanium.com/catalog/product/441334 (дата обращения: 03.11.2020). Режим доступа: по подписке.
- 4. Поляков, А. Ю. Снижение энергоемкости процессов контактной рельефной сварки : монография / А. Ю. Поляков. 2-е изд., доп. Москва ; Вологда : Инфра-Инженерия, 2020. 216 с. ISBN 978-5-9729-0459-4. Текст : электронный. URL: https://znanium.com/catalog/product/1168569 (дата обращения: 03.11.2020). Режим доступа: по подписке.
- 5. Овчинников, В. В. Технология и оборудование для контактной сварки: учебник / В. В. Овчинников, М. А. Гуреева. Москва; Вологда: Инфра-Инженерия, 2020. 272 с. ISBN 978-5-9729-0452-5. Текст: электронный. URL: https://znanium.com/catalog/product/1168618 (дата обращения: 03.11.2020). Режим доступа: по подписке.
- 6. Черемушкин, А. А. Источники питания для сварки: учебное пособие / А. А. Черемушкин. Кемерово: КузГТУ имени Т.Ф. Горбачева, 2017. 97 с. ISBN 978-5-906969-42-2. Текст: электронный // Лань: электронно-библиотечная система. —

- URL: https://e.lanbook.com/book/105422 (дата обращения: 03.11.2020). Режим доступа: для авториз. пользователей.
- 7. Семенов, Б.Ю Силовая электроника: профессиональные решения / Б.Ю. Семенов. М.: СОЛОН-Пр., 2017. 416 с. (Компоненты и технологии). ISBN 978-5-91359-224-8. Текст: электронный. URL: https://znanium.com/catalog/product/1015057 (дата обращения: 18.09.2020). Режим доступа: по подписке.

б) Дополнительная литература:

- 1. Клевцов, А. В. Основы рационального потребления электроэнергии : учебное пособие / А. В. Клевцов. 2-е изд., испр. и доп. Москва : Вологда : Инфра-Инженерия, 2020. 232 с. ISBN 978-5-9729-0406-8. Текст : электронный. URL: https://znanium.com/catalog/product/1168510 (дата обращения: 26.10.2020). Режим доступа: по подписке.
- 2. Грунтович, Н. В. Монтаж, наладка и эксплуатация электрооборудования : учебное пособие / Н.В. Грунтович. Минск : Новое знание ; Москва : ИНФРА-М, 2020. 271 с. (Среднее профессиональное образование). ISBN 978-5-16-015611-8. Текст : электронный. URL: https://znanium.com/catalog/product/1124348 (дата обращения: 26.10.2020). Режим доступа: по подписке.
- 3. Семенов, Б.Ю Силовая электроника: профессиональные решения / Б.Ю. Семенов. М. : СОЛОН-Пр., 2017. 416 с. (Компоненты и технологии). ISBN 978-5-91359-224-8. Текст : электронный. URL: https://znanium.com/catalog/product/1015057 (дата обращения: 26.10.2020). Режим доступа: по подписке.
- 4. Муравьев, В.М. Задание и методические указания по выполнению самостоятельной работы по электрооборудованию [Электронный ресурс] / В.М. Муравьев. Москва : Альтаир-МГАВТ, 2010. 32 с. Текст : электронный. URL: https://znanium.com/catalog/product/522783 (дата обращения: 03.11.2020). Режим доступа: по подписке.

в) Методические указания:

- 1. Тимофеев, И. А. Основы электротехники, электроники и автоматики. Лабораторный практикум: учебное пособие / И. А. Тимофеев. Санкт-Петербург: Лань, 2016. 196 с. ISBN 978-5-8114-2264-7. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/87595 (дата обращения: 01.06.2020). Режим доступа: для авториз. пользователей.
- 2. Марченко, А. Л. Электротехника и электроника: курсовые работы с методическими указаниями и примерами / А. Л. Марченко, Ю.Ф. Опадчий. Москва: НИЦ ИНФРА-М, 2015. 126 с. (Высшее образование: Бакалавриат (МАТИ)). ISBN 978-5-16-103340-1 (online). Текст : электронный. URL: https://znanium.com/catalog/product/516228 (дата обращения: 03.11.2020). Режим доступа: по подписке.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
MS Windows 7 Professional (для классов)	Д-757-17 от 27.06.2017	27.07.2018
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
7Zip	свободно распространяемое ПО	бессрочно
Autodesk AutoCAD Electrical 2018 Product Design	учебная версия	бессрочно
Autodesk AutoCAD Electrical 2019	учебная версия	бессрочно
Autodesk AutoCAD Electrical 2020	учебная версия	бессрочно
FAR Manager	свободно распространяемое ПО	бессрочно

Профессиональные базы данных и информационные справочные системы

Порожима импор		
Название курса	Ссылка	
Электронная база периодических изданий East View Information Services OOO «ИВИС»	https://dlib.eastview.com/	
East View Information Services, ООО «ИВИС»	https://difo.edstview.com/	
Национальная		
информационно-аналитическая система -	URL: https://elibrary.ru/project_risc.asp	
Российский индекс научного цитирования		
Поисковая система Академия Google (Google		
Scholar)	URL: https://scholar.google.ru/	
Информационная система - Единое окно	IIDI . http://www.dow.odw.ms/	
доступа к информационным ресурсам	URL: http://window.edu.ru/	
Федеральное государственное бюджетное		
	URL: http://www1.fips.ru/	
промышленной собственности»		
Российская Государственная библиотека.	https://www.rsl.ru/ru/4readers/catalogues/	
Каталоги	nttps://www.rsi.ru/ru/4readers/catalogues/	
Электронные ресурсы библиотеки МГТУ им.	1.44//	
Г.И. Носова	http://magtu.ru:8085/marcweb2/Default.asp	
Федеральный образовательный портал -	1,,, // 1 //	
Экономика. Социология. Менеджмент	http://ecsocman.hse.ru/	
Университетская информационная система	1 // .	
РОССИЯ	https://uisrussia.msu.ru	
Международная наукометрическая		
реферативная и полнотекстовая база данных		
научных изданий «Web of science»		
Международная база научных материалов в	1 // /	
области физических наук и инжиниринга	iniin'//maieriais shringer com/	

9 Материально-техническое обеспечение дисциплины (модуля) Материально-техническое обеспечение дисциплины включает:

Тип и название аудитории	Оснащение аудитории
322	Видеопроектор, экран настенный, компьютер; тестовые задания
Лекционная аудитория	для текущего контроля успеваемости
Лаборатория сварки (лабораторный корпус с лабораторией резания)	Комплект печатных и электронных версий методических рекомендаций, учебное пособия, плакаты по темам «Источники питания для сварки. Электрооборудование в сварочном производстве». Сварочные аппараты. Испытательный стенд.
031a Лабораторный класс по сварочным дисциплинам	Комплект методических рекомендаций, учебное пособия, плакаты по темам «Источники питания для сварки. Электрооборудование в сварочном производстве».
Компьютерные классы университета	Рабочие места студентов, оснащенные компьютерами с доступом в Интернет, предназначенные для работы в электронной образовательной среде
Помещение для хранения и профилактического обслуживания учебного оборудования	Стеллажи, инструменты для ремонта лабораторного оборудования.