МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Магнитогорский государственный технический университет им. Г.И. Носова» Филиал в г. Белорецке

УТВЕРЖДАЮ:

Директор филиала

«31» фи10кал

ФГБОУ ВО «МГТУ» в г. Белорецке

П.Р. Хамзина

2018г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.ДВ.04.01 СИСТЕМЫ УПРАВЛЕНИЯ ЭЛЕКТРОПРИВОДОВ

Направление подготовки 13.03.02 Электроэнергетика и электротехника

> Направленность программы Электропривод и автоматика

Уровень высшего образования - бакалавриат

Программа подготовки - прикдадной бакалавриат

Форма обучения - заочная

Филиал МГТУ в г. Белорецке Кафедра металлургии и стандартизации

Kypc: 4,5

Белорецк 2018г. Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 13.03.02 Электроэнергетика и электротехника, утвержденного приказом Министерства образования и науки Российской Федерации от 3 сентября 2015 г. № 955.

	рограмма рассмотрена и одобрена на и филиала ФГБОУ ВО «МГТУ» в г.Б. 2018г., протокол №2		rassiypinii ii ciaii
/	Зав.кафедрой	0	/ С.М.Головизнин
Рабочая п г.Белорец «31» 10	рограмма одобрена методич <mark>е</mark> ской ком <u>ке</u> 2018г., протокол <u>№1</u> Председатель	иссией <u>филиала ФГБС</u>	ОУ ВО «МГТУ» в
Рабочая п	рограмма составлена: доцентом, к.т.н	i. Coj	/ О.А. Сарапулов /
Рецензент	г: начальник лаборатории автоматизац	ции ОАО БМК	
		1	/Ю.И. Кузнецов/

Лист регистрации изменений и дополнений

Раздел РПД (модуля)	Краткое содержание изменения /дополнения	Дата, № протокола заседания кафедры	Подпись зав. кафедрой
8. Учебно- методическое и информационное обеспечение дисциплины (модуля)	Актуализация учебно- методического и информационного обеспечения дисциплины	3.09.2019 №1	6
8. Учебно- методическое и информационное обеспечение дисциплины (модуля)	Актуализация учебно- методического и информационного обеспечения дисциплины	3.09.2020 №1	6
	(модуля) 8. Учебно- методическое и информационное обеспечение дисциплины (модуля) 8. Учебно- методическое и информационное обеспечение дисциплины	(модуля) содержание изменения /дополнения 8. Учебно-методическое и информационное обеспечение дисциплины (модуля) 8. Учебно-методическое и информационное обеспечение дисциплины информационное обеспечение дисциплины дисциплины	(модуля) содержание изменения /дополнения № протокола заседания кафедры 8. Учебно-методическое и информационное обеспечение дисциплины (модуля) Актуализация учебно-методического и информационного обеспечения дисциплины №1 8. Учебно-методическое и информационного обеспечение дисциплины Актуализация учебно-методического и информационного обеспечения дисциплины 3.09.2020

1 Цели освоения дисциплины

Целями освоения дисциплины «Системы управления электроприводов» являются развитие у студентов личностных качеств, а также формирование профессиональных компетенций в соответствии с требованиями ФГОС ВО по направлению 13.03.02 «Электроэнергетика и электротехника»/ профиль «Электропривод и автоматика».

Задачами дисциплины являются:

- овладение студентами комплексом знаний и умений в области теории, принципов построения и способов реализации систем управления электроприводов постоянного и переменного тока, включая оптимальные, обеспечивающих требуемые законы изменения координат электропривода средствами аналоговой и цифровой техники;
- приобретение навыков проектирования, расчета и исследования таких систем с учетом характеристик и свойств объектов управления и особенностей применяемых технических средств, включая современные комплектные электроприводы;
- изучение методов теоретического и экспериментального исследования, расчета и проектирования систем управления;
- выработка умения применять полученные знания в будущей самостоятельной профессиональной деятельности.

2 Место дисциплины в структуре образовательной программы подготовки бакалавра

Дисциплина Б1.В.ДВ.04.01 «Системы управления электроприводов» входит в вариативную часть блока 1 образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения основных положений следующих дисциплин:

- Б1.Б.17 Теоретические основы электротехники;
- Б1.Б.18 Электрические машины;
- Б1.В.04.- Теория электропривода;
- Б1.В.08 Теория автоматического управления;
- Б1.В.12 Электрический привод.

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы при выполнении и защите выпускной квалификационной работы.

3 Компетенции обучающегося, формируемые в результате освоения дисциплины и планируемые результаты обучения

В результате освоения дисциплины «Системы управления электроприводов» обучающийся должен обладать следующими компетенциями:

Структурный								
элемент	Планируемые результаты обучения							
компетенции								
Код и содержание компетенции: ПК-2 способностью обрабатывать результаты								
экспериментов								
Знать	- Нормативные документы по монтажу, наладке и ремонту вводимого							

Структурный элемент компетенции	Планируемые результаты обучения
	в эксплуатацию электроэнергетического и электротехнического обору-
	дования;
	- Технические характеристики элементов, входящих в систему управ-
	ления вводимого в эксплуатацию электроэнергетического и электро-
	технического оборудования;
	- Нормативные документы по монтажу, наладке и ремонту и техниче-
	ские характеристики элементов, входящих в систему управления вво-
	димого в эксплуатацию электроэнергетического и электротехнического
37	оборудования
Уметь	– Рассчитывать параметры объектов регулирования и выполнять
	настройку контуров регулирования вводимого в эксплуатацию электро-
	энергетического и электротехнического оборудования;
	– Аргументированно обосновывать применение структур регуляторов
	и контуров регулирования для обеспечения требуемого качества статических и динамических показателей системы управления вводимого в
	эксплуатацию электроэнергетического и электротехнического оборудо-
	вания;
	 Применять полученные знания в профессиональной деятельности;
Владеть	 Основными методиками расчета и настройки систем регулирования
Владеть	вводимого в эксплуатацию электроэнергетического и электротехниче-
	ского оборудования;
	 Основными методами решения задач анализа и синтеза систем
	управления с заданными характеристиками;
	 Способами совершенствования профессиональных знаний и умений
	путем использования информационной среды;

4 Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 10 зачетных единиц 360 акад. часов: 4 курс - 4 зачетные единицы, в том числе:

- контактная работа 14,7 акад. часа;
- аудиторная работа 14 акад. часа;
 - лекции 4 акад. часов;
 - лабораторные работы 6 акад. часа;
 - -практические занятия –4 акад. часа;
- внеаудиторная -0.7 акад. часа;
- самостоятельная работа 125,4 акад. часа;
- подготовка к зачету 3,9 акад. часов

5курс 6 зачетных единиц, в том числе:

- контактная работа 18,4 акад. часа;
- аудиторная работа 14 акад. часа;
 - лекции 4 акад. часов;
 - лабораторные работы 6 акад. часов;
 - -практические занятия –4 акад. часа;
- внеаудиторная 4,4 акад. часа;
- самостоятельная работа 188,9 акад. часа;
- подготовка к экзамену, $K\Pi 8.7$ акад. часов

и место автоматизи- пекции троль посеща- зун	:-2-
и место автоматизи- пекции троль посеща- зун	
· · · · · · · · · · · · · · · · · · ·	3
рованных электро-	
приводов в техноло- рочный опрос	
гических процессах;	
классификация си-	
стем управления;	
краткий обзор раз-	
матического управ-	
водов (СУЭП)	
	<u>-2-</u>
контакторные схемы лекции троль посеща- зув	
управления элек-	
троприводами. За-	
щиты в схемах элек-	
тропривода. Блоки-	
ровки и сигнализа-	
ция в схемах элек-	
тропривода	
1.3. Системы управ- 4 Подготовка к Текущий кон- ПК	<u>-2-</u>
ления электропри- лекции троль посеща- зув	3
водов с параллель-	
ными обратными 1 5 рочный опрос	
связями (СУЭП с	
обратными связями	
по напряжению, то-	
ку, скорости)	
	-2-
ления с подчинен-	3
ным регулировани-	
ем координат рочный опрос 1.5. Системы управ- 4 Подготовка к Текуший кон- ПК	
	<u>-2-</u>
ления электропри- пекции троль посеща- зун водов по системе емости, выбо-	•
ТП-Д с подчинен-	
ным регулировани-	
ем координат.	
Настройка контура	
регулирования тока	
якоря.	

Раздел/ тема дисциплины	Kypc	К	удитор онтакт работ кад. ча	ная a acax)	Самостоятельная работа (в акад. часах)	Вид самостоя- тельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код и структурный элемент компетенции
		лекі	лаборат занятия	практич занятия	Само бота			
1.6. Настройка контура регулирования скорости вращения электропривода.	4				5	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-2- зув
1.7. Настройка контура регулирования скорости в двукратно-интегрирующей системы управления электропривода.	4				5	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-2- зув
1.8.Позиционная система управления электроприводом	4				5	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-2- зув
1.9. Двухзонная система управления электропниводом	4				5	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-2- зув
2. Лабораторные рабо	оты	ı						•
2.1. Разомкнутая система ТП-Д			1/1		5			
2.2. «СУЭП с отрицательной обратной связью по напряжению»	4		1/1		5	Подготовка к лабораторной работе, оформ-ление	Прием лабора- торных работ	ПК-2- зув
2.3. "Исследование замкнутой системы регулирования электропривода с отрицательной обратной связью по скорости"	4		1/1		5	Подготовка к лабораторной работе, оформление	Прием лабора- торных работ	ПК-2- зув
2.4. «СУЭП с обратными связями по току»	4		1/1		5	Подготовка к лабораторной работе, оформ-ление	Прием лабора- торных работ	ПК-2- зув
2.5. «СУЭП с внешним контуром скорости»	4		1/1		5	Подготовка к лабораторной работе, оформ-ление	Прием лабора- торных работ	ПК-2- зув
2.6. «СУЭП двух- зонного регулирова- ния»	4		1/1		5	Подготовка к лабораторной работе, оформ-ление	Прием лабора- торных работ	ПК-2- зув

Раздел/ тема	Kypc	Аудиторная контактная работа (в акад. часа		ная а	Самостоятельная ра- бота (в акад. часах)	Вид самостоя-	Форма текуще- го контроля успеваемости и	Код и структурный элемент компетенции
дисциплины	У	индин	лаборат. занятия	практич. занятия	Самостоя: бота (в ак	работы	промежуточной аттестации	Код и стр эле: компе
2.7. «Исследование позиционной СУ-ЭП»	4		10/4		5	Подготовка к лабораторной работе, оформ-ление	Прием лабора- торных работ	ПК-2- зув
3. Практические заня	тия							
3.1. Роль и место автоматизированных электроприводов в	4						Проверка хода курсового аро- ектирования	ПК-2- зув
технологических процессах; классификация систем управления; краткий					5			
обзор развития систем автоматического управления электроприводов (СУ-ЭП)								
3.2. Релейно- контакторные схемы управления элек- троприводами. За- щиты в схемах элек- тропривода. Блоки- ровки и сигнализа- ция в схемах элек- тропривода	4		1		5	Работа над кур- совым проектом	Проверка хода курсового аро- ектирования	ПК-2- зув
3.3. Системы управления электроприводов с параллельными обратными связями (СУЭП с обратными связями по напряжению, току, скорости)	4		1	1	5	Работа над кур- совым проектом	Проверка хода курсового аро- ектирования	ПК-2- зув
3.4. Системы управления с подчиненным регулированием координат	4			1	5		Проверка хода курсового аро- ектирования	ПК-2- зув
3.5. Системы управления электроприводов по системе ТП-Д с подчиненным регулировани-	4		1	1/1	5	Работа над кур- совым проектом	Проверка хода курсового аро- ектирования	ПК-2- зув

Раздел/ тема	Kypc	Аудиторная контактная работа (в акад. часах)		Самостоятельная ра- бота (в акад. часах)	Вид самостоя-	Форма текуще- го контроля успеваемости и	Код и структурный элемент компетенции	
дисциплины	У	лекции	лаборат. занятия	практич. занятия	Самостоят бота (в ак	работы	промежуточной аттестации	Код и стр элел компе
ем координат. Настройка контура регулирования тока якоря.								
3.6. Настройка контура регулирования скорости вращения электропривода.	4				5	Работа над кур- совым проектом	Проверка хода курсового аро- ектирования	ПК-2- зув
3.7. Настройка контура регулирования скорости в двукратно-интегрирующей системы управления электропривода.	4				3	Работа над кур- совым проектом	Проверка хода курсового аро- ектирования	ПК-2- зув
3.8.Позиционная система управления электроприводом					3	Работа над кур- совым проектом	Проверка хода курсового аро- ектирования	ПК-2- зув
3.9. Двухзонная система управления электропниводом				1/1	5,5	Работа над кур- совым проектом	Проверка хода курсового аро- ектирования	ПК-2- зув
Подготовка к зачету					3,9	144		
Итого по курсу 1. Лекции 5 курс	4	4	6/6	4/2	125,4	144	зачет	
		l I				п	T. V	HII. 3
1.1. Система преобразователь частоты — асинхронный двигатель (ПЧ-АД). Общие принципы частотного регулирования координат асинхронного двигателя.	5	0,5			13	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-2- зув
1.2. Разомкнутые и замкнутые системы скалярного управления асинхронным электроприводом.	5	0,5		1	13	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-2- зув
1.3. Векторная модель АД. Системы векторного управления ПЧ – АД.	5	0,5		1	13	Подготовка к лекции	Текущий кон- троль посеща- емости, выбо- рочный опрос	ПК-2- зув

Раздел/ тема дисциплины	Kypc	(в а	удитор онтакт: работ кад. ча	ная a acax)	Самостоятельная работа (в акад. часах)	Вид самостоя- тельной работы	Форма текущего контроля успеваемости и промежуточной	Код и структурный элемент компетенции
		лекции	лаборат занятия	практич занятия	Самосто бота (в	pwccizi	аттестации	Код и с ээ ком:
1.4. Расчет параметров АД по паспортным данным	5	0,5			13	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-2- зув
1.5. Расчет параметров схемы замещения ПЧ-АД	5	0,5		1/1	13	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-2- зув
1.6. Расчет пара- метров регуляторов системы векторного управления ПЧ-АД	5	0,5		1/1	13	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-2- зув
1.7. Системы управления синхронным электроприводом	5	0,5			13	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-2- зув
1.8. Системы управления электроприводом с вентильным двигателем		0,5			14	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-2- зув
2. Лабораторные раб	боті	ы 5	курс					
2.1. «Исследование скалярной системы регулирования ПЧ-АД»			1/1		14	Подготовка к лабораторной работе, оформ-ление	Прием лабора- торных работ	ПК-2- зув
2.2. «Исследование скалярной системы регулирования ПЧ-АД с регулятором скорости»			1/1		14	Подготовка к лабораторной работе, оформление	Прием лабора- торных работ	ПК-2- зув
2.3. «Исследование скалярной системы регулирования ПЧ-АД для текстильной промышленности»			1/1		14	Подготовка к лабораторной работе, оформ-ление	Прием лабора- торных работ	ПК-2- зув
2.4. «Исследование систем векторного управления ПЧ-АД»			1/1		14	Подготовка к лабораторной работе, оформ-ление	Прием лабора- торных работ	ПК-2- зув
2.5. «Исследование бездатчиковой системы векторного управления ПЧ-АД»			1/1		14	Подготовка к лабораторной работе, оформ-ление	Прием лабора- торных работ	ПК-2- зув

Подготовка к экзамену Итого по курсу Итого по дисци-	5 5	4	6/6	4/2	8,7 188,9			
2.6. «Исследование системы векторного управления моментом ПЧ-АД»			1/1		5,2	Подготовка к лабораторной работе, оформ-ление	Прием лабора- торных работ	ПК-2- зув
Раздел/ тема дисциплины	Kypc	K	удитор онтакт работ акад. ча занятия	ная а	Самостоятельная ра- бота (в акад. часах)	Вид самостоя- тельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код и структурный элемент компетенции

5 Образовательные и информационные технологии

Для достижения планируемых результатов в обучении дисциплине «Системы управления электроприводов» используются следующие образовательные технологии:

1. **Традиционные образовательные технологии** ориентируются на организацию образовательного процесса, предполагающую прямую трансляцию знаний от преподавателя к студенту (преимущественно на основе объяснительно-иллюстративных методов обучения).

Формы учебных занятий с использованием традиционных технологий:

Информационная лекция – последовательное изложение материала в дисциплинарной логике, осуществляемое преимущественно вербальными средствами (монолог преподавателя).

Семинар – беседа преподавателя и студентов, обсуждение заранее подготовленных сообщений по каждому вопросу плана занятия с единым для всех перечнем рекомендуемой обязательной и дополнительной литературы.

Практическое занятие, посвященное освоению конкретных умений и навыков по предложенному алгоритму.

2. **Технологии проблемного обучения** — организация образовательного процесса, которая предполагает постановку проблемных вопросов, создание учебных проблемных ситуаций для стимулирования активной познавательной деятельности студентов.

Формы учебных занятий с использованием технологий проблемного обучения:

Проблемная лекция — изложение материала, предполагающее постановку проблемных и дискуссионных вопросов, освещение различных научных подходов, авторские комментарии, связанные с различными моделями интерпретации изучаемого материала.

Практическое занятие в форме практикума – организация учебной работы, направленная на решение комплексной учебно-познавательной задачи, требующей от студента применения как научно-теоретических знаний, так и практических навыков.

Практическое занятие на основе кейс-метода — обучение в контексте моделируемой ситуации, воспроизводящей реальные условия научной, производственной, общественной деятельности. Обучающиеся должны проанализировать ситуацию, разобраться в сути проблем, предложить возможные решения и выбрать лучшее из них. Кейсы базируются на реальном фактическом материале или же приближены к реальной ситуации.

3. **Игровые технологии** — организация образовательного процесса, основанная на реконструкции моделей поведения в рамках предложенных сценарных условий.

Формы учебных занятий с использованием игровых технологий:

Учебная игра — форма воссоздания предметного и социального содержания будущей профессиональной деятельности специалиста, моделирования таких систем отношений, которые характерны для этой деятельности как целого.

Деловая игра — моделирование различных ситуаций, связанных с выработкой и принятием совместных решений, обсуждением вопросов в режиме «мозгового штурма», реконструкцией функционального взаимодействия в коллективе и т.п.

Ролевая игра — имитация или реконструкция моделей ролевого поведения в предложенных сценарных условиях.

4. **Технологии проектного обучения** — организация образовательного процесса в соответствии с алгоритмом поэтапного решения проблемной задачи или выполнения учебного задания. Проект предполагает совместную учебно-познавательную деятельность группы студентов, направленную на выработку концепции, установление целей и задач, формулировку ожидаемых результатов, определение принципов и методик решения поставленных задач, планирование хода работы, поиск доступных и оптимальных ресурсов, поэтапную реализацию плана работы, презентацию результатов работы, их осмысление и рефлксию.

Основные типы проектов:

Исследовательский проект – структура приближена к формату научного исследования (доказательство актуальности темы, определение научной проблемы, предмета и объекта исследования, целей и задач, методов, источников, выдвижение гипотезы, обобщение результатов, выводы, обозначение новых проблем).

Информационный проект — учебно-познавательная деятельность с ярко выраженной эвристической направленностью (поиск, отбор и систематизация информации о какомто объекте, ознакомление участников проекта с этой информацией, ее анализ и обобщение для презентации более широкой аудитории).

5. **Интерактивные технологии** — организация образовательного процесса, которая предполагает активное и нелинейное взаимодействие всех участников, достижение на этой основе личностно значимого для них образовательного результата. Наряду со специализированными технологиями такого рода принцип интерактивности прослеживается в большинстве современных образовательных технологий. Интерактивность подразумевает субъект-субъектные отношения в ходе образовательного процесса и, как следствие, формирование саморазвивающейся информационно-ресурсной среды.

Формы учебных занятий с использованием специализированных интерактивных технологий:

Лекция «обратной связи» – лекция–провокация (изложение материала с заранее запланированными ошибками), лекция-беседа, лекция-дискуссия, лекция-прессконференция.

Семинар-дискуссия – коллективное обсуждение какого-либо спорного вопроса, проблемы, выявление мнений в группе (межгрупповой диалог, дискуссия как спор-диалог).

6. **Информационно-коммуникационные образовательные технологии** — организация образовательного процесса, основанная на применении специализированных программных сред и технических средств работы с информацией.

Формы учебных занятий с использованием информационно-коммуникационных технологий:

Лекция-визуализация — изложение содержания сопровождается презентацией (демонстрацией учебных материалов, представленных в различных знаковых системах, в т.ч. иллюстративных, графических, аудио- и видеоматериалов).

Практическое занятие в форме презентации – представление результатов проектной или исследовательской деятельности с использованием специализированных программных сред.

Самостоятельная работа студентов стимулирует студентов к самостоятельной проработке тем в процессе подготовки к практическим работам и выполнении домашних заданий.

В ходе занятий предполагается использование комплекса инновационных методов интерактивного обучения студентов, включающего в себя:

- создание проблемных ситуаций с показательным решением проблемы преподавателем;
- самостоятельную поисковую деятельность в решении учебных проблем, направляемую преподавателем;
 - самостоятельное решение проблем студентами под контролем преподавателя;
- проблемное обучение стимулирование студентов к самостоятельной «добыче» знаний, необходимых для решения конкретной проблемы;
- контекстное обучение мотивация студентов к усвоению знаний путем выявления связей между конкретным знанием и его применением;
- обучение на основе опыта активизация познавательной деятельности студентов за счет ассоциации их собственного опыта с предметом изучения;
- индивидуальное обучение выстраивание студентами собственных образовательных траекторий на основе формирования индивидуальных учебных планов и программ с учетом интересов и предпочтений студентов;

- междисциплинарное обучение использование знаний из разных областей, их группировка и концентрация в контексте конкретной решаемой задачи;
- опережающая самостоятельная работа изучение студентами нового материала до его изложения преподавателем на лекции и других аудиторных занятиях.

6. Учебно-методическое обеспечение самостоятельной работы обучающихся.

Тестовые вопросы к лабораторным работам. 4 курс

Тестовые вопросы к лабораторной работе №1 «Разомкнутая система ТП-Д»

- 1. Какие особенности присущи тиристорному преобразователю (ТП), как динамическому звену системы электропривода?
- 2. Какая передаточная функция ТП принимается при исследовании динамических свойств системы электропривода?
- 3. Какие параметры определяют величину постоянной времени ТП?
- 4. От чего зависит величина коэффициента передачи ТП? В каком случае коэффициент остается постоянным, а в каком переменным?
- 5. Как рассчитать параметры ТП?
- 6. Какие допущения принимаются при выводе структурной схемы электродвигателя постоянного тока независимого возбуждения (ДПТ)?
- 7. Как получить структурную схему электродвигателя постоянного тока независимого возбуждения?
- 8. Какие управляющие и возмущающие воздействия можно выделить для ДПТ?
- 9. Какие факторы определяют быстродействие якорной цепи ДПТ?
- 10. Какие факторы определяют быстродействие электромеханического преобразования в ДПТ?
- 11. Как определить передаточную функцию ДПТ по управляющему воздействию?
- 12. Как получить передаточную функцию ДПТ по возмущающему воздействию?
- 13. Что влияет на коэффициент демпфирования ДПТ?
- 14. В каком случае переходные процессы в ДПТ носят колебательный характер?
- 15. В каком случае переходные процессы в ДПТ апериодические?
- 16. Как рассчитать параметры якорной цепи ДПТ?
- 17. Как рассчитать параметры электромеханического преобразователя ДПТ?
- 18. Как определить корни характеристического уравнения ДПТ?

Тестовые вопросы к лабораторной работе №2 «СУЭП с отрицательной обратной связью по напряжению»

- 1. Что такое обратная связь?
- 2. Какая обратная связь считается отрицательной, а какая положительной?
- 3. В чем отличие жесткой обратной связи от гибкой?
- 4. Что такое задержанная обратная связь?
- 5. Как выполняется система управления с параллельными обратными связями? Какие достоинства и недостатки присущи данным СУЭП?
- 6. Как осуществляется обратная связь по напряжению?
- 7. Структурная схема системы управления с отрицательной обратной связью по напряжению?
- 8. Как получить вырожденную структурную схему данной СУЭП?
- 9. Как получить уравнение электромеханической характеристики на основании вырожденной структурной схемы данной СУЭП?

- 10. Какой параметр определяет величина напряжения на входе регулятора скорости (РС)?
- 11. Как изменится скорость вращения двигателя при обрыве цепи обратной связи?
- 12. Какие параметры системы управления влияют на величину жесткости электромеханической характеристики замкнутой СУЭП?
- 13. Как изменится вид электромеханической характеристики, если при неизменной величине напряжения задания на входе РС увеличить значение коэффициента обратной связи по напряжению Кон?
- 14. Как изменится статическая просадка по скорости в замкнутой СУЭП при уменьшении величины коэффициента усиления РС Крс?
- 15. Какая предельная жесткость электромеханической характеристики получается в данной СУЭП?
- 16. Как получить предельную жесткость электромеханической характеристики при реальных параметрах системы управления?
- 17. Как рассчитать величину Крс для получения заданной жесткости электромеханической характеристики?
- 18. Как отразится на виде электромеханической характеристики замкнутой СУЭП уменьшение Кон?
- 19. Как получить уравнение внешней характеристики данной СУЭП на основании вырожденной схемы?
- 20. Поясните физический смысл повышения жесткости электромеханической характеристики данной СУЭП?

Тестовые вопросы к лабораторной работе №3 «Исследование замкнутой системы регулирования электропривода с отрицательной обратной связью по скорости»

- 1. Как реализуется обратная связь по скорости вращения электропривода?
- 2. Структурная схема СУЭП с отрицательной обратной связью по скорости.
- 3. Как получить уравнение электромеханической характеристики данной СУЭП на основании вырожденной структурной схемы?
- 4. Как изменится скорость идеального холостого хода данной СУЭП при снижении величины Крс и неизменном значении напряжения задания на входе РС?
- 5. Как влияет величина коэффициента обратной связи по скорости Кос на вид электромеханических характеристик?
- 6. Какова предельная жесткость электромеханической характеристики в данной СУЭП?
- 7. С какой целью на выходе тахогенератора устанавливают делитель напряжения?
- 8. С какой целью выходное напряжение тахогенератора подвергают фильтрации?
- 9. Как влияет величина Крс на статическую просадку скорости в данной СУЭП?
- 10. Изменится ли величина статической просадки скорости в данной СУЭП при увеличении напряжения задания на входе РС?
- 11. Как получить предельную жесткость электромеханической характеристики при реальных параметрах системы управления?
- 12. Как выглядит внешняя характеристика в данной СУЭП для обеспечения предельной жесткости электромеханической характеристики?
- 13. Как рассчитать величину Крс для получения заданной жесткости электромеханической характеристики?
- 14. Как правильно подключить отрицательную обратную связь по скорости на вход РС?
- 15. Как влияет величина момента нагрузки на жесткость электромеханической характеристики?

Тестовые вопросы к лабораторной работе №4 «СУЭП с обратными связями по току»

- 1. Как реализуется обратная связь по якорному току электропривода?
- 2. Структурная схема СУЭП с положительной обратной связью по величине якорного тока.
- 3. Как получить вырожденную структурную схему данной СУЭП?
- 4. Как вывести уравнение электромеханической характеристики для данной СУЭП на основании вырожденной структурной схемы?
- 5. Как влияет величина коэффициента обратной связи по току Кот на вид электромеханической характеристики?
- 6. Как определить величину Кот для получения абсолютно жесткой электромеханической характеристики?
- 7. Как определить величину Кот для получения жесткости естественной характеристики?
- 8. Почему на практике одну положительную обратную связь по току не применяют?
- 9. Что такое токовая отсечка? Как реализуется токовая отсечка?
- 10. Вырожденная структурная схема СУЭП с токовой отсечкой.
- 11. Как получить уравнение электромеханической характеристики СУЭП с токовой отсечкой?
- 12. Как влияет величина напряжения задания на входе регулятора на величину тока отсечки?
- 13. Как изменится вид электромеханической характеристики при увеличении коэффициента Кот?
- 14. Как рассчитать коэффициенты данной СУЭП для получения заданной величины то-ка стопорения?
- 15. Как в данной СУЭП задать величину необходимого тока отсечки?
- 16. Как изменится вид электромеханической характеристики при изменении величины напряжения задания на входе регулятора?

Тестовые вопросы к лабораторной работе № 5 «СУЭП с внешним контуром скорости»

- 1. Принципы оптимизации в системах подчиненного регулирования координат.
- 2. Расчет передаточных функций регуляторов.
- 3. Порядок настройки контура регулирования якорного тока.
- 4. Порядок настройки контура регулирования скорости.
- 5. Логарифмические частотные характеристики при модульном и симметричном оптимумах
 - 6. Влияние параметров САР на статические и динамические свойства системы.
 - 7. Структурная схема двухконтурной САР скорости.
- 8. Ограничение координат и производных в системах подчиненного регулирования координат.
 - 9. Оценка качества статических и динамических свойств замкнутой системы.
 - 10. Пуск под «отсечку» на холостом ходу и под нагрузкой.
 - 11. Пуск от ЗИ в системах регулирования с П РС и ПИ- РС.
- 12. Реакция системы регулирования скорости с П PC и ПИ- PC на наброс нагрузки.

Тестовые вопросы к лабораторной работе № 6 «СУЭП двухзонного регулирования»

1. Особенности работы схемы двухзонного регулирования скорости.

- 2. Осуществление автоматического разделения зон регулирования.
- 3. Особенности настройки контура регулирования тока возбуждения, структурная схема контура регулирования тока возбуждения и потока двигателя.
 - 4. Настройка датчика ЭДС двигателя.
- 5. Оценка качества динамических свойств системы двухзонного регулирования скорости.
 - 6. Компенсация нелинейностей, связанных с двухзонным регулированием.
- 7. Особенности работы системы двухзонного регулирования при пуске под отсечку и от задатчика интенсивности.

Тестовые вопросы к лабораторной работе № 7 «Исследование позиционной СУЭП»

- 1. Структурная схема трехконтурной системы регулирования.
- 2. Особенности работы позиционной САР при малых, средних и больших перемещениях.
 - 3. Фазовые характеристики при отработке перемещений.
 - 4. Оценка качества статических и динамических свойств позиционной САР.

Тестовые вопросы к лабораторным работам. 5 курс

Тестовые вопросы к лабораторной работе № 1 «Исследование скалярной системы регулирования ПЧ-АД», № 2 «Исследование скалярной системы регулирования ПЧ-АД с регулятором скорости», № 3 «Исследование скалярной системы регулирования ПЧ-АД для текстильной промышленности»

- 1. Какие основные законы частотного регулирования?
- 2. Какая система управления относится к скалярной?
- 3. Как настраивается функциональный блок U\f?
- 4. Каким образом осуществляется токовая отсечка в системе скалярного управления?
- 5. Как осуществляется компенсация скольжения?
- 6. Как осуществляется компенсация падения напряжения в статорной цепи?
- 7. Как изменяется вид механических характеристик при изменении коэффициентов компенсации?
- 8. Какой вид имеет механическая характеристика в системе с регулятором скорости (обратной связью по скорости)?

Тестовые вопросы к лабораторной работе № 4 «Исследование систем векторного управления ПЧ-АД», № 5 «Исследование бездатчиковой системы векторного управления ПЧ-АД», № 6 «Исследование системы векторного управления моментом ПЧ-АД»

- 1. В чем отличие системы векторного управления от системы скалярного управления?
- 2. С какой целью в системах векторного управления применяют координатные преобразователи?
- 3. Как настраивают контуры регулирования тока статора в системах векторного управления?

- 4. Как определяют потокосцепление статора?
- 5. Как определяют потокосцепление ротора?
- 6. Как выполняется построение контура регулирования скорости?
- 7. Как осуществляется настройка контура потокосцепления?
- 8. Как строится система управления с косвенной ориентацией по вектору потокосцепления ротора АД?
- 9. Вид механических характеристик в системе векторного управления, влияние настроек на вид механической характеристики?
- 10. Укажите достоинства и недостатки систем векторного управления АД без датчика скорости?

7. Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Структурный элемент компетенции	Планируемые результа- ты обучения	Оценочные средства							
Код и содержание компетенции: ПК- 2 способностью обрабатывать результаты экспериментов									
Знать	Нормативные доку-	Контрольные вопросы для подготовки к							
Sharb	менты по монтажу,	экзамену							
	наладке и ремонту вво-	 В функции каких основных параметров 							
	димого в эксплуатацию	выполняется построение релейно – контак-							
	электроэнергетического	торных систем управления электроприво-							
	и электротехнического	дов?							
	оборудования;	 Как осуществляется управление пуско – 							
	- Технические харак-	тормозными режимами электроприводов в							
	теристики элементов,	функции времени?							
	входящих в систему	 Как осуществляется управление пуско – 							
	управления вводимого	тормозными режимами электроприводов в							
	в эксплуатацию электроэнергетического и	функции скорости (ЭДС)?							
	троэнергетического и электротехнического	 Как осуществляется управление пуско – тормозными режимами электроприводов в 							
	оборудования;	функции тока (момента)?							
	– Нормативные доку-	— Что такое защита и блокировка в схемах							
	менты по монтажу,	управления электроприводов?							
	наладке и ремонту и	 Какие виды защит применяются в схе- 							
	технические характери-	мах управления электроприводов?							
	стики элементов, вхо-	- Как рассчитать уставки основных за-							
	дящих в систему управления вводимого	щит?							
	в эксплуатацию элек-	 Как выполнить переход от релейно — 							
	троэнергетического и	контакторной схемы управления к бескон-							
	электротехнического	тактной?							
	оборудования	 Какие функциональные элементы при- меняются в программируемых контролле- 							
		рах для реализации схем управления пуско							
		тормозными режимами электроприводов?							
		 Какая жесткость механической харак- 							
		теристики обеспечивается при помощи от-							

Структурный элемент компетенции	Планируемые результа- ты обучения	Оценочные средства
	1 0	рицательной обратной связи по напряжению? — Какая жесткость механической характеристики обеспечивается при помощи отрицательной обратной связи по скорости? — Какие механической характеристики моно получить применяя положительную обратную связь по якорному току? — Принцип работы САР с положительной обратной связью по току электродвигателя и токовой отсечкой, механические характеристики электропривода? — Принцип построения систем подчиненного регулирования с последовательной коррекцией, выбор передаточной функции регулятора для получения оптимальных переходных процессов — Контур регулирования якорного тока, настройка на получение оптимального переходного процесса — Ограничение координат в системах подчиненного регулирования — Ограничение ускорения в системах подчиненного регулирования — Необходимость компенсации влияния противо ЭДС электродвигателя на работу токового контура в системе подчиненного регулирования, принципы компенсации. — Необходимость учета влияния прерывистого режима работы тиристорного преобразователя на работу токового контура в системе подчиненного регулирования, применение адаптивного регулятора тока якоря. — Необходимость учета влияния прерывистого режима работы тиристорного преобразователя на работу токового контура в системе подчиненного регулирования, применение адаптивного регулирования, применение двойного регулирования, при
		ря. — Система подчиненного регулирования с П — РС и ПИ - РТ, принцип работы, статические и динамические характеристики. — Система подчиненного регулирования с ПИ — РС и ПИ - РТ, принцип работы, статические и динамические характеристики. — Система подчиненного регулирования положением механизма, принцип работы,

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		статические и динамические характеристики. — Двухзонная система подчиненного регулирования, принцип работы, настройка контура регулирования скорости, необходимость применения множительно — делительных и делительных устройств, статические и динамические характеристики. — Двухзонная система подчиненного регулирования, принцип работы, настройка контура регулирования ЭДС электродвигателя, необходимость применения делительных устройств, статические и динамические характеристики. — В чем заключается отличие позиционных систем от следящих; — Какие основные режимы работы отрабатывает позиционный электропривод? — Как происходит отработка малых перемещений? — Как происходит отработка больших перемещений? — Как происходит отработка больших перемещений? — С какой целью реализуется нелинейный регулятор положения? — Что влияет на точность позиционирования? — Как обеспечить заданную точность позиционирования? — Какие особенности преобразователей частоты, применяемых в электроприводе переменного тока? — Какие механические характеристики электрических машин можно получить при реализации основных законов частотного регулирования? — Как выполняется построение систем скалярного управления электроприводов переменного тока? — Каковы принципы построения систем
		векторного управления электроприводов переменного тока? – Какие основные элементы входят в состав систем векторного управления? – Какие структурные схемы применяют для реализации систем векторного управления?

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
Уметь	 Рассчитывать параметры объектов регулирования и выполнять настройку контуров регулирования вводимого в эксплуатацию электроэнергетического и электротехнического оборудования; Аргументированно обосновывать применение структур регуляторов и контуров регулирования для обеспечения требуемого качества статических и динамических показателей системы управления вводимого в эксплуатацию электроэнергетического и электротехнического оборудования; Применять полученные знания в профессиональной деятельности; 	 Проверка соединений жил контрольных кабелей. Приемы работы с аналоговыми и цифровыми измерительными приборами «Индуктивные» методы наладки: Проверка установки щеток на «нейтраль» в двигателе постоянного тока. Определение полярности обмоток асинхронного двигателя с к.з. ротором. Фазировка тиристорных преобразователей. Электронное моделирование основных динамических звеньев и элементов систем электроприводов.
Владеть	 Основными методиками расчета и настройки систем регулирования вводимого в эксплуатацию электроэнергетического и электротехнического оборудования; Основными методами решения задачанализа и синтеза систем управления с заданными характеристиками; Способами совершенствования профессиональных знаний и умений путем использования информационной среды; 	 Проверка соединений жил контрольных кабелей. Приемы работы с аналоговыми и цифровыми измерительными приборами «Индуктивные» методы наладки: Проверка установки щеток на «нейтраль» в двигателе постоянного тока. Определение полярности обмоток асинхронного двигателя с к.з. ротором. Фазировка тиристорных преобразователей. Электронное моделирование основных динамических звеньев и элементов систем электроприводов.

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Системы управления электроприводов» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме зачета на 4 курсе и в форме экзамена и в форме защиты курсового проекта на 5 курсе

Зачет по данной дисциплине проводится в виде собеседования в рамках теоретических вопросов, выносимых на зачет и/или решения практических заданий.

Показатели и критерии оценивания зачета:

на оценку «зачтено» студент должен показать высокий уровень знания материала по — на оценку **«зачтено»** — студент должен подготовить статью, и/или доклад, и/или оформить заявку на изобретение или рационализаторское предложение;

– на оценку **«не зачтено»** – студент должен не смог подготовить статью, и/или доклад, и/или оформить заявку на изобретение или рационализаторское предложение.

Экзамен по данной дисциплине проводится в устной форме по экзаменационным билетам, каждый из которых включает 2 теоретических вопроса и одно практическое задание

Показатели и критерии оценивания экзамена:

- на оценку «**отлично**» (5 баллов) обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку «**хорошо**» (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку «удовлетворительно» (3 балла) обучающийся демонстрирует пороговый уровень сформированности компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку **«неудовлетворительно»** (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.

Курсовой проект выполняется под руководством преподавателя, в процессе его написания обучающийся развивает навыки к научной работе, закрепляя и одновременно расширяя знания, полученные при изучении курса «Системы управления электроприводов». При выполнении курсового проекта обучающийся должен показать свое умение работать с нормативным материалом и другими литературными источниками, а также возможность систематизировать и анализировать фактический материал и самостоятельно творчески его осмысливать.

В процессе написания курсового проекта обучающийся должен разобраться в теоретических вопросах избранной темы, самостоятельно проанализировать практический материал, разобрать

Показатели и критерии оценивания курсового проекта:

- на оценку **«отлично»** (5 баллов) работа выполнена в соответствии с заданием, обучающийся показывает высокий уровень знаний не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам, оценки и вынесения критических суждений;
- на оценку **«хорошо»** (4 балла) работа выполнена в соответствии с заданием, обучающийся показывает знания не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам;
- на оценку **«удовлетворительно»** (3 балла) работа выполнена в соответствии с заданием, обучающийся показывает знания на уровне воспроизведения и объяснения информации, интеллектуальные навыки решения простых задач;
- на оценку **«неудовлетворительно»** (2 балла) задание преподавателя выполнено частично, в процессе защиты работы обучающийся допускает существенные ошибки, не может показать интеллектуальные навыки решения поставленной задачи.
- на оценку «неудовлетворительно» (1 балл) задание и обосновать практические предложения.

Показатели и критерии преподавателя выполнено частично, обучающийся не может воспроизвести и объяснить содержание, не может показать интеллектуальные навыки решения поставленной задачи.

8. Учебно-методическое и информационное обеспечение дисциплины

а) Основная литература:

- 1. Герман-Галкин, С. Г. Виртуальные лаборатории полупроводниковых систем в среде Matlab-Simulink: учебно-методическое пособие / С. Г. Герман-Галкин. Санкт-Петербург: Лань, 2013. 448 с. ISBN 978-5-8114-1520-5. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/36998 (дата обращения: 03.10.2020). Режим доступа: для авториз. пользователей.
- 2.Поляков, А. Е. Электрические машины, электропривод и системы интеллектуального управления электротехническими комплексами: учеб. пособие / А. Е. Поляков, А. В. Чесноков, Е. М. Филимонова. Москва: ФОРУМ, ИНФРА-М, 2019. 224 с. (Высшее образование: Бакалавриат). 978-5-00091-707-7. ISBN 978-5-00091-707-7. Текст: электронный. URL: https://znanium.com/catalog/product/1026781 (дата обращения: 02.10.2020). Режим доступа: по подписке.

б) Дополнительная литература:

- 1. Ившин, В. П. Современная автоматика в системах управления технологическими процессами: учебник / В. П. Ившин, М. Ю. Перухин. Москва: ИНФРА-М, 2020. 402 с.: ил. (Высшее образование). ISBN 978-5-16-013335-5. Текст: электронный. URL: https://znanium.com/catalog/product/1093431 (дата обращения: 03.10.2020). Режим доступа: по подписке.
- 2.Фомин, Н. В. Системы управления электроприводами [Электронный ресурс] : учебное пособие / Н. В. Фомин ; МГТУ. Магнитогорск : МГТУ, 2014. 1 электрон. опт. диск (CD-ROM). http://magtu.ru:8085/marcweb2/Found.asp Режим доступа: для авториз. пользователей.
- 3. Фомин, Н. В. Системы управления электроприводами. Курсовое проектирование [Электронный ресурс] : учебное пособие / Н. В. Фомин ; МГТУ. Магнитогорск : МГТУ, 2014. 1 электрон. опт. диск (CD-ROM). http://magtu.ru:8085/marcweb2/Found.asp Режим доступа: для авториз. пользователей.
- 4. Фомин, Н. В. Системы подчиненного регулирования координат в электроприводах постоянного тока [Текст] : учебное пособие / Н. В. Фомин ; МГТУ, [каф. АЭиМ]. Магнитогорск, 2010. 199с. : ил., граф., схемы, табл. http://magtu.ru:8085/marcweb2/Found.asp Режим доступа: для авториз. пользователей.
- 5.Фомин, Н.В. Параметрирование преобразователей «Simoreg» и «Simovert» [Электронный ресурс]: учебное пособие. Н. В. Фомин, Е. Я. Омельченко, В. В. Шохин и др./ Магнитогорск, ФГБОУ ВО "Магнитогорский государственный технический университет им. Г. И. Носова", 2017. № госрегистрации 0321701900 http://magtu.ru:8085/marcweb2/Found.asp Режим доступа: для авториз. пользователей.
- 6.Терехин, В.Б. Компьютерное моделирование систем электропривода постоянного и переменного тока в Simulink : учебное пособие / В.Б. Терехин, Ю.Н. Демен-тьев. Томск : ТПУ, 2015. 307 с. ISBN 978-5-4387-0558-1. Текст : элек-тронный // Элек-тронно-библиотечная система «Лань» : [сайт]. URL: https://e.lanbook.com/book/82848. Режим доступа: для авториз. пользователей

в) Методические указания:

- 1. Фомин Н. В., Омельченко Е. Я., Белый А. В., Шохин В. В. Исследование систем управления электроприводов с параллельными обратными связями: Методические указания к выполнению лабораторных работ по дисциплине «Системы управления электроприводов» для студентов специальностей 140604, 140600 и 220401. Магнитогорск: МГТУ, 2013, 36 с.
- 2. Фомин Н. В., Белый А. В., Омельченко Е. Я. Исследование систем подчиненного регулирования: методические указания к лабораторным работам по дисциплине «Системы управления электроприводов» для студентов специальности 140604. Магнитогорск: ГОУ ВПО «МГТУ», 2010.- 25 с.
- 3. Фомин Н. В. Системы управления электроприводов. Курсовое проектирование: учеб. пособие /Н. В. Фомин.- Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Γ . И. Носова, 2014. 102 с. (приложение)
- 4. Омельченко Е. Я. Исследование системы управления асинхронно вентильным каскадом: методические указания к выполнению лабораторных работ по дисциплине «Системы управления электроприводов» для студентов специальностей 140604, 140600, 220401. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г. И. Носова, 2013. 15 с

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
7Zip	свободно распространяемое ПО	бессрочно
MS Windows XP Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
MathWorks MathLab v.2014 Classroom License	К-89-14 от 08.12.2014	бессрочно
MS Windows 7(Белорецк)	К-171-09 от 18.10.2009	бессрочно
MS Office 2007(Белорецк)	К-171-09 от 18.10.2009	бессрочно
FAR Manager	свободно распространяемое ПО	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Электронная база периодических изданий East View Information Services, OOO «ИВИС»	https://dlib.eastview.com/
Национальная информационно-аналитическая система — Российский индекс научного цитирования (РИНЦ)	URL: https://elibrary.ru/project_risc. asp
Поисковая система Академия Google (Google Scholar)	URL: https://scholar.google.ru/
Информационная система - Единое окно доступа к информационным ресурсам	URL: http://window.edu.ru/
Федеральное государственное бюджетное учреждение «Федеральный институт промышленной собственности»	
Российская Государственная библиотека. Каталоги	https://www.rsl.ru/ru/4readers/catalogues/
Электронные ресурсы библиотеки МГТУ им. Г.И. Носова	http://magtu.ru:8085/marcweb 2/Default.asp
Университетская информационная система РОССИЯ	https://uisrussia.msu.ru
Международная наукометрическая реферативная и полнотекстовая база данных научных изданий «Web of science»	http://webofscience.com
Международная реферативная и полнотекстовая справочная база данных научных изданий «Scopus»	http://scopus.com

9 Материально-техническое обеспечение дисциплины

Материально-техническое обеспечение дисциплины включает:

Тип и название аудитории	Оснащение аудитории
Аудитория для лекционных заня-	Доска, мультимедийный проектор, экран, мульти-
тий	медийные средства хранения, передачи и пред-
	ставления информации с выходом в Интернет
Аудитория для практических за-	Доска, мультимедийный проектор, экран, мульти-
нятий	медийные средства хранения, передачи и пред-
	ставления информации с выходом в Интернет
Аудитория для лабораторных за-	Универсальные стенды, инструменты, персональ-
нятий	ные компьютеры с пакетом MS Office, выходом в
	Интернет и с доступом в электронную информа-
	ционно-образовательную среду университета
Аудитории для самостоятельной	Персональные компьютеры с пакетом MS Office,
работы: компьютерные классы;	выходом в Интернет и с доступом в электронную
читальный зал библиотеки	информационно-образовательную среду универ-
	ситета
Аудитории для групповых и инди-	Персональные компьютеры с пакетом MS Office,
видуальных консультаций, теку-	выходом в Интернет и с доступом в электронную
щего контроля и промежуточной	информационно-образовательную среду универ-
аттестации	ситета
Помещение для хранения и про-	Стеллажи для хранения учебно-наглядных посо-
филактического обслуживания	бий и учебно-методической документации
учебного оборудования	