

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ:
Директор института энергетики
и автоматизированных систем
СИ. Лукьянов
«26» сентября 2018 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ЭЛЕКТРИЧЕСКИЙ ПРИВОД

Направление подготовки (специальность) 13.03.02 Электроэнергетика и электротехника

> Направленность программы Электропривод и автоматика

Уровень высшего образования – бакалавриат

Программа подготовки – прикладной бакалавриат

Форма обучения Заочная

Институт Кафедра Курс Энергетики и автоматизированных систем Автоматизированного электропривода и мехатроники 3

Магнитогорск 2018 г.

Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 13.03.02 Электроэнергетика и электротехника, утвержденного приказом МО и Н РФ от 03 сентября 2015 г. № 955

Рабочая программа рассмотрена и од ного электропривода и мехатроники «21» с	обрена на заседании кафедры автоматизирован- ентября 2018 г., протокол № 4.
	Зав. кафедрой / <u>А.А. Николаев</u> / (И.О. Фамилия)
Рабочая программа одобрена методи	ческой комиссией института энергетики и авто-
матизированных систем «26» сентября 201	18 г., протокол № 1.Председатель / (подпись) / (И.О. Фамилия)
Рабочая программа составлена:	профессор каф. АЭПиМ, к.т.н.
	(подпись) / В.И. Косматов / (И.О. Фамилия)
Рецензент: <u>зам. начальника L</u>	ІЭТЛ ПАО «ММК» по электроприводу, к.т.н.
	(модинев) ДЭТП (МОД Фамилия)

Лист регистрации изменений и дополнений

№ п/п	Раздел программы	Краткое содержание изменения/дополнения	Дата № протокола заседания кафедры	Подпись зав. кафедрой
1	8	Актуализация учебно- методического и информационного обеспечения дисциплины	21.09.2019r. №4	AR P
2	8	Актуализация учебно- методического и информационного обеспечения дисциплины	30.08.2020r. №1	Ref

1 Цели освоения дисциплины

Целью преподавания дисциплины «Электрический привод» является формирование у студентов знаний в области современного электропривода, что позволит им успешно решать теоретические и практические задачи в их профессиональной деятельности.

Для достижения поставленной цели необходимо:

- -создать у студентов правильное представление о сущности происходящих в электрических приводах процессов преобразования энергии и о влиянии требований рабочих машин и технологий на выбор типа и структуры электропривода;
- -научить студентов самостоятельно выполнять простейшие расчеты по анализу движения электроприводов, определению их основных параметров и характеристик, оценке энергетических показателей работы и выборе двигателя и проверке его по нагреву;
- научить студентов самостоятельно проводить элементарные лабораторные исследования электрических приводов.

2 Место дисциплины в структуре ООП подготовки бакалавра

Дисциплина "Электрический привод" изучается на 3-м курсе.

Дисциплина входит в профессиональный цикл дисциплин и базируется на знаниях, полученных при изучении дисциплин "Математика", "Физика", "Теоретические основы электротехники", "Электрические машины " и " Прикладная механика" настоящей образовательной программы.

Изучение дисциплины является базой для последующих дисциплин профессионального цикла "Теория электропривода", "Системы управления электроприводов" и прохождения производственной практики.

3 Компетенции обучающегося, формируемые в результате освоения дисциплины:

Структурный элемент	Планируемые результаты обучения									
компетенции										
Код и содержание компетенции: ПК-6, способностью рассчитывать режимы работы										
	объектов профессиональной деятельности									
Знать:	- назначения и классификацию современных электрических									
	приводов, электромеханические свойства электроприводов;									
	- математическое описание статических и динамических									
	режимов работы электропривода;									
	- современные системы ТП-Д, ПЧ-АД, СД. Основы									
	проектирования электроприводов									
Уметь:	- проводить расчеты по основным режимам электроприводов;									
	- использовать методы расчета и выбора элементов систем									
	электроприводов;									
	- иметь навыки проведения пуско-наладочных работ									
Владеть:	- методиками расчета и выбора элементов систем									
	электроприводов;									
	- методами испытания и правилами эксплуатации									
	электроприводов;									
	- практическими навыками при проектировании и наладки									
	электроприводов									

4 Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 5 зачетных единиц 180 акад. часов, в том числе:

- контактная работа 15,2 акад. часов:
- аудиторная 12 акад. часов;
- внеаудиторная 3,2 акад. часов
- самостоятельная работа 156,1 акад. часов;
- подготовка к экзамену 8,7 акад. часа

Форма аттестации - экзамен

Раздел/ тема		Аудиторная контактная работа (в акад. часах)			оятельная акад. часах)	Вид самостоятельной	Форма текущего контроля успеваемости и	структурный лемент петенции
дисциплины	Kypc	лекции	лаборат. занятия	практич. занятия	Самостоятельная работа (в акад. часа	работы	промежуточной аттестации	Код и структурн элемент компетенции
1. Раздел. Электропривод как система								
1.1.Тема. Определение понятия	3	0,25	-	-	1	Работа с	-	ПК-6
электропривод. Блок-схема						библиографическими		3
электропривода						материалами		
1.2. Тема. Классификация	3	0,25	-	-		Подбор учебников, учебных	Проверка реферата	ПК-6
электроприводов. История развития						пособий и методических		3
электропривода						указаний		

Раздел/ тема дисциплины	Kypc	КО	диторн работа работа кад. час занятия	ая	Самостоятельная работа (в акад. часах)	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код и структурный элемент компетенции
Итого по разделу	3	0,5) Jiš	III '	9 <u>ec</u> 1		-	K
2. Раздел. Механическая часть силового канала электропривода 2.1. Тема. Уравнение движения электропривода. Приведение моментов сопротивления и моментов инерции к валу двигателя 2.2. Тема. Механические переходные процессы. Механические характеристики двигателей и производственных механизмов. Устойчивость работы электропривода.	3	0,25	-	-	19	Выполнение расчетно- графической работы №1 «Механическая часть силового канала электропривода»	Проверка и оценка расчетно-графической работы №1	ПК-6 3, у ПК-6 3, у, в
Итого по разделу		0,5	1	1	19	Выполнение РГР №1	Проверка и оценка РГР №1	ПК-6 3, y, в
3. Раздел. Физические процессы в электроприводах с двигателями постоянного тока независимого возбуждения								, , ,

Раздел/ тема дисциплины	Kypc	КС	удиторь онтактн работа кад. час кад. час видина заната	ая	Самостоятельная работа (в акад. часах)	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код и структурный элемент компетенции
3.1. Тема. Принцип действия. Основные уравнения и основные соотношения для двигателей постоянного тока независимого возбуждения (ДПТ НВ). Характеристики и режимы работы электроприводов с двигателями независимого возбуждения. Номинальные режимы. Допустимые значения координат	3	0,25	-	-	15	Выполнение расчетнографической работы №2 «Электромеханические свойства электроприводов с двигателями независимого возбуждения»	Проверка и оценка расчетно-графической работы №2	ПК-6 3, y, в
3.2. Тема. Пусковые и регулировочные свойства электроприводов с ДПТ НВ. Тормозные режимы электроприводов с двигателями независимого возбуждения (ДПТ с НВ)	3	0,25	1/1и	-	15	Выполнение лабораторной работы №1	Проверка и оценка лабораторной работы №1	ПК-6 3, y, в
Итого по разделу		0,5	1/1и	-	30	РГР №2 Лабораторная работа №1	Проверка и оценка РГР №2 и отчета ЛР №1	ПК-6 3, y, в
4. Раздел. Физические процессы в электроприводах с двигателями последовательного и смешанного возбуждения								

Раздел/ тема дисциплины	Kypc	ко (в а	удиторн работа работа кад. час занатив кад. час	аа (ханятия)	ec.	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код и структурный элемент компетенции
4.1. Тема. Принцип действия. Основные уравнения и основные соотношения для двигателей постоянного тока последовательного и смешанного возбуждения	3	0,25	-	-	10	Выполнение расчетно- графической работы №3 «Электромеханические свойства электроприводов с двигателями последовательного возбуждения	Проверка и оценка РГР №3	ПК-6 3, у, в
4.2. Тема. Характеристики и режимы электроприводов. Номинальные режимы. Допустимые значения координат. Расчет и построение электромеханических и механических характеристик.	3	0,25	-	-	-	-	-	-
Итого по разделу		0,5	-	-	10	РГР №3	Проверка и оценка РГР №3	ПК-6 3, y, в
5. Раздел. Физические процессы в электроприводах с асинхронными и синхронными двигателями 5.1. Тема. Схемы включения и основные соотношения для	3	0,5	1/1и	-	10	Выполнение расчетно- графической работы №4	Проверка и оценка РГР №4	ПК-6 3, у, в
асинхронных двигателей. Электромеханические и механические характеристики асинхронных						«Электромеханические свойства электроприводов с	Проверка отчета по	

Раздел/ тема	Kypc	Аудиторная контактная работа (в акад. часах)			Самостоятельная работа (в акад. часах)	Вид самостоятельной	Форма текущего контроля успеваемости и	Код и структурный элемент компетенции
дисциплины	X	иипээц	лаборат. занятия	практич. занятия	Самосто работа (в <i>в</i>	работы	промежуточной аттестации	Код и стр эле компе
двигателей. Искусственные механические характеристики асинхронных двигателей. Пусковые и тормозные режимы асинхронных двигателей						двигателями переменного тока» Выполнение лабораторной работы №2	лабораторной работе №2	
5.2. Тема. Синхронный электропривод – принцип работы, механическая и угловая характеристики. Регулирование скорости	3	0,5	-	-	-	-pwoo1 <i>5.11</i> -2		ПК-6 3, y, в
Итого по разделу		1	1/1и	-	10	Выполнение РГР №4 Выполнение ЛР №2	Проверка и оценка РГР №4 и ЛР №2	ПК-6 3, y, в
6. Раздел. Электрическая часть силового канала электропривода								
6.1. Тема. Структура силового канала электропривода. Преобразователи электрической энергии в электроприводе. Выпрямители, инверторы, источники тока. Принцип действия преобразователей, схемы, техническая реализация	3	0,5	-	-	10	Подготовка к тестированию	Оценка ответов по тестам	ПК-6 3
6.2. Тема. Система тиристорный преобразователь-двигатель постоянного тока. Система преобразователь частоты — двигатель переменного тока	3	0,5	2/2и	-	10	Выполнение лабораторных работ №3, 4	Проверка и оценка отчета по лабораторным работам №3, 4	ПК-6 3

Раздел/ тема дисциплины	Kypc	КС	лаборат. работа кад. час жанжия	ая	Самостоятельная работа (в акад. часах)	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код и структурный элемент компетенции
6.3. Тема. Скоростные и механические	3	0,5		-	10	Расчеты статических	Проверка и оценка	ПК-6
характеристики электроприводов с преобразователями энергии						характеристик	расчетов	3, у, в
Итого по разделу		1,5	2/2и	-	30			
7. Раздел. Принципы управления в электроприводе								
7.1. Тема. Разомкнутые системы управления. Реостатное управление двигателями постоянного и переменного тока, пуск, торможение, регулирование скорости. Расчет пусковых и тормозных сопротивлений. Реостатное регулирование скорости, изменением напряжения, магнитного потока, напряжения и частоты переменного тока	3	0,5	2	-	-	Выполнение лабораторных работ №5, 6	Проверка и оценка отчета по лабораторным работам №5, 6	ПК-6 3, у, в
7.2. Тема. Расчет переходных процессов в электроприводах постоянного и переменного тока	3	0,5	-	-	-	Выполнение расчетно- графической работы №5	Проверка расчетно- графической работы №5	ПК-6 у, в
Итого по разделу		1	2/2и	-	-			
8. Раздел. Элементы проектирования электропривода								

Раздел/ тема дисциплины	Kypc	КС	лаборат. таборат. занжим	ая	Самостоятельная работа (в акад. часах)	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код и структурный элемент компетенции
8.1. Тема. Основные этапы инженерного проектирования электроприводов: постановка и анализ задачи проектирования, поиск возможных решений, выбор двигателя, выбор механической передачи, выбор преобразователя	3	0,5	-	-	-		Опорный конспект лекций	
8.2. Тема. Нагрузочные диаграммы механизма и двигателя. Тепловая модель двигателя, стандартные режимы. Проверка двигателей по нагреву и перегрузке. Элементы теории надежности		0,5	-	-	-			ПК-6 3, y, в
Итого по разделу Тема. Расчет переходных процессов в электроприводах постоянного и переменного тока без учета		-	-	-	20	Выполнение расчетно- графической работы №5	Проверка и оценка РГР №5	ПК-6 3, y, в
электромагнитной инерции Тема. Разработка системы тиристорный преобразователь — двигатель (ТП-Д)	3	-	-	-	20	Выполнение расчетно- графической работы №6	Проверка и оценка РГР №6	ПК-6 3, y, в
Тема. Разработка силовой части системы частотный преобразователь – асинхронный двигатель (ПЧ-АД)	3	-	-	-	16,1	Выполнение расчетно- графической работы №7	Проверка и оценка РГР №7	ПК-6 3, y, в

Раздел/ тема дисциплины	Kypc	К	удиторн онтактн работа кад. ча	ая	Самостоятельная абота (в акад. часах)	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	структурный мемент ппетенции
	Ky	лекции	лаборат. занятия	практич. занятия				Код и структурн элемент компетенции
Итого по дисциплине		6	6/2и'	-	156,1			
		-		-				
Итого за семестр		6	6/4и'	-	156,1		Экзамен	
		•		-				

5 Образовательные технологии

Для реализации предусмотренных видов учебной работы в качестве образовательных технологий в преподавании дисциплины «Электрический привод» используются традиционная и модульно - компетентностная технологии.

Передача необходимых теоретических знаний и формирование основных представлений по курсу «Электрический привод» происходит с использованием мультимедийного оборудования (аудитории 227,123).

Лекции происходят в традиционной форме, в форме лекций-консультаций и проблемных лекций. Теоретический материал на проблемных лекциях является результатом усвоения полученной информации посредством постановки проблемного вопроса и поиска путей его решения. На лекциях — консультациях изложение нового материала сопровождается постановкой вопросов и дискуссией в поисках ответов на эти вопросы.

При проведении лабораторных занятий используются универсальные лабораторные стенды, работа в бригаде и методы IT.

Самостоятельная работа стимулирует студентов в процессе подготовки домашних заданий, при решении задач на лабораторных занятиях, при подготовке к контрольным работам, при выполнении исследований на лабораторных установках и итоговой аттестации.

6 Учебно-методическое обеспечение самостоятельной работы студентов

Аудиторная самостоятельная работа студентов на лабораторных занятиях осуществляется под контролем преподавателя в виде подготовки к лабораторным работам (расчёты параметров, схемные решения) и выполнение необходимых исследований и расчётов, которые определяет преподаватель для студентов.

Внеаудиторная самостоятельная работа студентов осуществляется в виде изучения и проработки материалов лекций, учебных пособий, учебников и выполнения домашних заданий с консультациями преподавателя.

Тема дисциплины	Вид самостоятельной работы	Количеств о часов	Формы контроля
1. Электропривод как система	Изучение литературы	1	Реферат
2. Механическая часть силового канала электропривода	-самостоятельное изучение литературы; -домашнее задание №1; подготовка к аудиторной контрольной работе; -подготовка и оформление отчета по лабораторной работе.	19	Отчет по лабораторной работе №1, проверка и оценка домашнего задания №1, аудиторная контрольная работа №1.
3. Физические процессы в электроприводах с машинами постоянного тока независимого возбуждения	-составление опорного конспекта лекций; -подготовка к выполнению лабораторной работы №2; -выполнение домашнего	30	Отчет по лабораторной работе №2, проверка и оценка домашнего задания №2, аудиторная

Итого по дисциплине		156,1	
проектирования электропривода	конспекта лекций; -выполнение домашнего задания №8; -устный опрос.	16,1	домашнего задания №7
8. Элементы	-устный опроссоставление опорного		Проверка и оценка
7. Принципы управления в электроприводе	-составление опорного конспекта лекций; -подготовка к выполнению лабораторной работы №6; -выполнение домашнего задания №6;	40	Отчет по лабораторной работе №6, проверка и оценка домашнего задания №6
6. Электрическая часть силового канала электропривода	-составление опорного конспекта лекций; -подготовка к выполнению лабораторной работы №5; -выполнение домашнего задания №5; -устный опрос.	30	Отчет по лабораторной работе №5, проверка и оценка домашнего задания №5,
5. Физические процессы в электроприводах с асинхронными и синхронными двигателями	-составление опорного конспекта лекций; -подготовка к выполнению лабораторной работы №4; -выполнение домашнего задания №4; -подготовка к аудиторной контрольной работе №4; -устный опрос.	10	Отчет по лабораторной работе №4, проверка и оценка домашнего задания №4, аудиторная контрольная работа №4.
4. Физические процессы в электроприводах с двигателями последовательного и смешанного возбуждения	задания №2; -подготовка к аудиторной контрольной работе №2; -устный опроссоставление опорного конспекта лекций; -подготовка к выполнению лабораторной работы №3; -выполнение домашнего задания №3; -подготовка к аудиторной контрольной работе №3; -устный опрос.	10	контрольная работа №2. Отчет по лабораторной работе №3, проверка и оценка домашнего задания №3, аудиторная контрольная работа №3.

7 Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Структурный						
элемент	Планируемые		Оценочные средства			
компетенции	результаты					
	обучения					
ПК-6. – способ	ность рассчитыва	ть ре	жимы работы объекта профессиональной			
деятельности						
Знать:	- назначения и		Модуль 1			
	классификацию					
	современных		1. Дайте определение электрического			
	электроприводо	В;	привода и приведите общую структуру			
	- математическо	e	электропривода.			
	описание		2. Объясните назначение основных			
	статических и		элементов и частей электропривода.			
	динамических		3. Как классифицируются электрические			
	режимов работь	I	приводы?			
	электропривода	;	4. Какие элементы относятся к			
	- современные		механической части электропривода?			
	системы ТП-Д,	ПЧ-	5. Объясните, в каких случаях можно			
	АД, СД;		получить многомассовую кинематическую схему			
	- основы		механической части системы, покажите моменты и			
	проектирования		скорости, действующие на отдельные массы этой			
	электропривода		системы.			
			6. Каким образом можно получить			
			упрощенную одномассовую систему?			
			7. Для чего выполняется операция			
			приведения статистических моментов и моментов			
			инерции системы электропривода?			
			8. В чем отличие расчета приведенного			
			момента сопротивления нагрузки механизма при			
			различных направлениях потока энергии			
			механической части электропривода? 9. Объясните особенности приведения			
			1			
			поступательного движения механизма к вращательному движению двигателя.			
			10. Что такое установившийся и переходный			
			режимы работы электропривода?			
			11. Какие моменты действуют на			
			электропривод в установившемся и переходном			
			режимах?			
			12. Запишите и объясните уравнение			
			движения электропривода для одномассовой			
			системы.			
						

13. В каких режимах будет работать двигатель при $M=M_c$, $M>M_c$ и $M< M_c$, а также если уравнение движения имеет вид

$$M - M_c = M_{\partial u_H}$$
?

- 14. Представить уравнение движения электропривода для режимов работы: двигательного ускоренного и тормозного замедленного.
- 15. Уравнение движения электропривода при $M > M_c$ имеет вид: $-M + M_c = M_{\partial u H}$. В каком режиме работает двигатель и как изменится этот режим при $M < M_c$?
- 16. Поясните правила знаков моментов в уравнении движения электропривода.
- 17. Что такое динамический момент электропривода?
- 18. Представьте уравнение движения электропривода дл двухмассовой системы.
- 19. Представьте и объясните структурную схему двухмассовой системы электропривода.
- 20. Дайте понятие механических характеристик двигателя производственного механизма и приведите примеры.
- 21. Что такое жесткость механической характеристики?
- 22. Как определяется скорость установившегося движения электропривода?
- 23. Какими способами оценивается устойчивость установившегося движения электропривода?
- 24. От чего в общем случае зависит динамический момент электропривода?
- 25. Каким образом можно определить время пуска и торможения электропривода при постоянном динамическом моменте?
- 26. Каким образом могут быть получены кривые переходных процессов при линейных механических характеристиках двигателя производственного механизма?
- 27. Какая нагрузка электропривода называется активной? Приведите ее механическую характеристику.
- 28. Какая нагрузка электропривода называется реактивной? Приведите ее механическую характеристику.

Модуль 2

- 1. Какая характеристика называется естественной механической?
- 2. Начертите семейство механических характеристик двигателя постоянного тока независимого возбуждения:

- при неизменном потоке и для различных напряжений;
- при неизменном напряжении и различных потоках;
- при неизменных напряжении и потоке, но при различных сопротивлениях цепи якоря.
- 3. Что такое генераторный рекуперативный режим двигателя постоянного тока, режим противовключения, режим динамического торможения? Начертите механические характеристики этих режимов для различных сопротивлений цепи якоря.
- 4. Как построить скоростную и механическую характеристики двигателя параллельного возбуждения при ослабленном потоке?
- 5. Чем отличается электромагнитный момент двигателя от момента на валу?
- 6. Рассчитайте номинальное сопротивление двигателя параллельного возбуждения при $P_{_{\!\mathit{H}}} = 40\,\kappa Bm$, $U_{_{\!\mathit{H}}} = 220B$, $\eta_{_{\!\mathit{H}}} = 0.92$, если ток возбуждения составляет 0,025 от $I_{_{\!\mathit{H}}}$?
- 7. Начертить принципиальную схему включения двигателя параллельного возбуждения.
- 8. Сравните двигатели с параллельным, последовательным и смешанным возбуждением в отношении пускового момента и перегрузочной способности.
- 9. Как осуществляется расчет механических характеристик двигателя параллельного возбуждения по каталожным данным?
- 10. Какой вид имеют уравнения механических характеристик двигателя постоянного тока в относительных единицах?
- 11. Крановый двигатель постоянного тока параллельного возбуждения опускает груз в режиме противовключения. Что произойдет с его скоростью вращения, если в цепь якоря будет введено дополнительное сопротивление?
- 12. Как производится графический расчет сопротивлений пускового реостата двигателя параллельного возбуждения?
- 13. Какая мощность расходуется в последовательном внешнем сопротивлении в режиме противовключения двигателя?
- 14. При каких статических моментах возможен режим противовключения двигателя параллельного возбуждения посредством увеличения сопротивления в цепи якоря, посредством изменения полярности напряжения на якоре?
 - 15. Допустим ли режим противовключения

- двигателя при отсутствии дополнительного сопротивления в цепи якоря?
- 16. Для какой цели нужно знать механические характеристики и их уравнения9
- 17. Каков физический смысл характеристик режима противовключения во втором или четвертом квадранте?
- 18. Каковы преимущества и недостатки различных способов электрического торможения двигателей?
- 19. Что такое параметрический способ регулирования скорости двигателя?
- 20. Перечислите недостатки регулирования скорости двигателя изменением сопротивления в цепи якоря.
- 21. Каковы практические пределы регулирования скорости двигателя независимого возбуждения при изменении магнитного потока?
- 22. Каковы преимущества и недостатки различных способов регулирования скорости двигателя параллельного возбуждения?
- 23. Как понимать термин «регулирование скорости с постоянным моментом и с постоянной мошностью»?
- 24. Почему при регулировании скорости изменением магнитного потока меняется наклон механической характеристики, а при регулировании изменением напряжения он не меняется?
- 25. Какая скорость установится в конце процесса торможения различными способами при активном и пассивном моментах сопротивления?
- 26. Чем объяснить, что характеристики $\omega = f(I_{\scriptscriptstyle R})$ при ослаблении магнитного потока пересекаются в одной точке при $\omega = 0$?
- 27. Почему и при каких значениях тока и скорости пересекаются в одной точке характеристики двигателя при соединении его по схеме шунтирования якоря?
- 28. Может ли двигатель параллельного возбуждения рекуперировать энергию в сеть при соединении его по схеме шунтирования якоря?
- 29. Как изменит свое положение механическая характеристика динамического торможения при ослаблении магнитного потока двигателя.
- 30. Во сколько раз изменится момент двигателя при заданной скорости, если поток снизится в два раза (двигатель параллельного возбуждения)?
- 31. Начертите принципиальную реверсивную схему системы Г-Д, укажите принцип ее действия при регулировании скорости и торможении

двигателя.

- 32. Каков общий диапазон регулирования скорости двигателя в системе Г-Д при комбинированном регулировании напряжением генератора и потоком двигателя?
- 33. Какие факторы ограничивают диапазон регулирования скорости в системе Г-Д и какими способами его можно расширить?
- 34. Укажите достоинства и недостатки системы Γ -Д.
- 35. Как принципиально производится регулирование скорости двигателя в тиристорном приводе?
- 36. Что такое угол регулирования тиристоров и как его величина влияет на скорость двигателя?
- 37. Как осуществляется реверс двигателя в системе ТП-Д?
- 38. Назовите и представьте силовые схемы реверсивных тиристорных преобразователей, укажите их достоинства и недостатки, а также области применения.
- 39. Что такое инверторный режим тиристорного преобразователя?
- 40. В каком режиме работает двигатель при инверторном режиме преобразователя и какие переключения необходимо произвести в этом случае в цепи якоря двигателя?
- 41. Какой вид имеют механические характеристики двигателя в системе ТП-Д?
- 42. Что такое прерывистый режим тиристорного преобразователя и каково его влияние на работу привода?
- 43. Как зависит $\cos \varphi$ тиристорного привода от скорости вращения двигателя?
- 44. Укажите достоинства и недостатки тиристорного привода и возможные области его применения.
- 45. Как осуществляется регулирование скорости при использовании импульсных регуляторов напряжения?

Модуль 3

- 1. Почему для двигателя последовательного возбуждения нельзя получить точное аналитическое выражение механической характеристики?
- 2. Для какой цели могут служить выведенные приближенные уравнения механической характеристики двигателя с последовательным возбуждением?
- 3. В каких режимах может работать двигатель последовательного возбуждения? Почему

для него невозможна работа в генераторном режиме с отдачей энергии в сеть?

- 4. Почему естественная и реостатные характеристики двигателя последовательного возбуждения не переходят в область отрицательных моментов, а при шунтировании якоря того же двигателя переходят?
- 5. Покажите по уравнению электромеханической характеристики, изменением каких параметров можно регулировать скорость двигателя последовательного возбуждения.
- 6. Охарактеризуйте различные способы регулирования скорости двигателя последовательного возбуждения.
- 7. Чем объяснить нелинейность механической характеристики двигателя при шунтировании якоря и $R_w = 0$?
- 8. Возможна ли рекуперация энергии в сеть при шунтировании якоря двигателя последовательного возбуждения?
- 9. Почему в зоне значительных нагрузок механические характеристики при шунтировании обмотки возбуждения приближаются к линейным?
- 10. Какие способы пуска возможны для двигателя последовательного возбуждения и какие из них наиболее часто применяются на практике?
- 11. Поясните, как производится расчет пусковых и тормозных сопротивлений.
- 12. Представьте механические характеристики двигателя при шунтировании якоря и обмотки возбуждения.
- 13. Для какой цели и каким образом используются универсальные характеристики двигателя последовательного возбуждения в относительных единицах?
- 14. Двигатель постоянного тока с последовательным возбуждением работает на линейном участке кривой намагничивания. Как изменится жесткость механической характеристики, если нагрузка снизится в 2 раза?
- 15. Начертите принципиальные схемы включения двигателей последовательного и смешанного возбуждения при пуске.
- 16. Как могут рассчитываться кривые скорости, тока и момента для двигателей последовательного возбуждения при пуске и торможении?
- 17. Какими условиями определяется реальная скорость холостого хода двигателя постоянного тока с последовательным возбуждением?
 - 18. Почему в электроприводах с двигателем

постоянного тока последовательного возбуждения не применяются ременные и цепные передачи?

- 19. Какое соотношение $\omega_{\text{max}}/\omega_{\text{н}}$ является допустимым для двигателя последовательного возбуждения из соображений механической прочности электрической машины?
- 20. Каким образом может быть построена искусственная реостатная характеристика при известной естественной характеристике двигателя?
- 21. Объясните, почему перегрузочная способность электродвигателя последовательного возбуждения по моменту выше, чем у двигателя независимого возбуждения.
- 22. Изобразите примерную зависимость магнитного потока двигателя от скорости для естественной характеристики в схеме с шунтированием якоря.
- 23. Почему при токе якоря, превышающем номинальное значение, механические характеристики двигателя последовательного возбуждения линейны?
- 24. Сравните двигатели с параллельным, последовательным и смешанным возбуждением в отношении пускового момента и перегрузочной способности.
- 25. Каким образом осуществляется торможение противовключением при активном и реактивном статическом моменте?
- 26. В чем заключаются недостатки динамического торможения двигателя последовательного возбуждения с самовозбуждением и почему при динамическом торможении иногда осуществляется независимое питание обмотки возбуждения?
- 27. Почему в реальных условиях механические характеристики двигателя последовательного возбуждения в тормозном режиме с самовозбуждением при различных дополнительных сопротивлениях в якорной цепи исходят не из начала координат?
- 28. При каких условиях должно осуществляться торможение с самовозбуждением, чтобы не допустить размагничивания машины?

29.

Чемобъясняетсяограниченностьприменен иядинамическоготорможениядвигателяпоследовательноговозбу жденияс самовозбуждением?

30.

Назовитеобластиприменения двигателей п оследовательногоисмешанноговозбуждения и объясните их. Какбудутвыглядетьмеханическиехаракте ристикидвига-

телейсмешанноговозбужденияприразных соотношен ияхмежду ампер витками (МДС) параллельной и последовательной обмоток?

- 32. Какие способы электрического торможения используются для двигателей смешанного возбуждения?
- 33. Как производится реверсирование двигателя смешанного возбуждения?
- 34. Как графически произвести расчет пускорегулировочного реостата для двигателя смешанного возбуждения?

35.

Почемудвигательсмешанноговозбуждени яработаетнеустойчивопривстречномвключенииобмотоквозбуждения?

Модуль 4

- 1. В каких режимах может работать асинхронный двигатель?
- 2. Как зависит максимальный (критический) момент асинхронного двигателя от напряжения сети и сопротивления цепи ротора?
- 3. Как изменится критическое скольжение при включении симметричных сопротивлений в цепь статора?
- 4. Как определить активное сопротивление ротора асинхронного двигателя по каталожным данным?
- 5. Каким образом может быть построена естественная механическая характеристика асинхронного двигателя?
- 6. Как построить искусственную характеристику асинхронного двигателя при известной естественной характеристике:
 - для другого сопротивления ротора;
- для другого напряжения, к которому подключен статор;
 - для другой частоты сети?
- 7: При каких скольжениях возможна устойчивая работа асинхронного двигателя при постоянном статическом моменте $M_{\rm c}$?
- 8. Почему максимальный момент асинхронного двигателя в генераторном режиме больше максимального момента в двигательном режиме?
- 9. Чем объяснить, что ток статора при синхронной скорости не зависит от величины

добавочного сопротивления в роторной цепи?

- 10. Почему при одних и тех же значениях моментов короткого замыкания (начальных моментах), получающихся в одном случае при замыкании ротора накоротко, а в другом—при соответствующем дополнительном сопротивлении, различным и оказываются значения токов короткого замыкания?
- 11. Как изменяется ток ротора асинхронного двигателя с изменением скольжения?
- 12. Почему при неподвижном роторе ток двигателя в несколько раз превышает номинальный ток?
- 13. Как проводятся приближенный и точный графические расчеты пусковых сопротивлений в цепи ротора?
- 14. При каком напряжении сети практически может применяться пуск асинхронного двигателя переключением со звезды на треугольник?
- 15. Какие способы электрического торможения применяются для асинхронных двигателей?
- 16. Для каких механизмов можно осуществить торможение асинхронного двигателя с рекуперацией энергии в сеть?
- 17. С какой целью при динамическом торможении асинхронного двигателя в обмотки статора подают постоянный ток?
- 18. Начертите примерный вид механической характеристики динамического торможения асинхронного электродвигателя и укажите, как влияют на вид характеристик величина тока возбуждения и сопротивление роторной цепи.
- 19. В какой области механической характеристики двигателя при динамическом торможении может иметь место неустойчивый режим?
- 20. Можно ли утверждать, что при любой скорости выше синхронной двигатель будет отдавать энергию в сеть?
- 21. Чем объяснить наличие максимума момента при динамическом торможении и почему с уменьшением дополнительного сопротивления в роторной цепи максимум момента смешается в сторону меньших скольжений?
- 22. Изобразите примерную зависимость тока в роторной цепи двигателя при динамическом торможении, а также кривую результирующего рабочего магнитного потока от скорости.
- 23. Приведите примеры приводов, в которых возможен переход асинхронного двигателя в генераторный режим.

- 24. Чем объяснить появление больших токов при переходе в режим противовключением асинхронного двигателя?
- 25. Асинхронный двигатель механизма подъема крана обеспечивает подъем груза. Что происходит с его скоростью вращения, если в роторную цепь вводится значительное по величине дополнительное сопротивление?
- 26. Назовите возможные способы регулирования скорости вращения асинхронных двигателей.
- 27. Какие способы регулирования скорости асинхронного двигателя позволяют плавно изменять скорость при наличии жестких механических характеристик? Каковы недостатки этих способов?
- 28. К какому типу относится регулирование скорости асинхронного двигателя включением дополнительного сопротивления в роторе? Перечислите недостатки этого способа регулирования скорости.
- 29. Начертите схемы обмоток статора двухскоростного двигателя при регулировании скорости с постоянным моментом и постоянной мошностью.
- 30. Укажите достоинства и недостатки регулирования скорости с помощью тиристорных регуляторов напряжения в цепи статора.
- 31. Начертите каскадные схемы регулирования скорости асинхронного двигателя с использованием полупроводниковых выпрямителей в цепи ротора.
- 32. Каким должно быть соотношение напряжения и частоты при частотном регулировании для сохранения постоянной перегрузочной способности двигателя?
- 33. Как изменяется критическое скольжение при уменьшении частоты, если управление производится по закону U/f = const?
- 34. Как влияет учет насыщения на величины критического и пускового моментов двигателя при различных частотах и законе U/f = const?
- 35. Оцените преимущества и недостатки частотного управления с неизменным магнитным потоком при различных частотах.
- 36. Объясните возможность импульсного регулирования скорости асинхронного двигателя и представьте применяемые схемы реализации данного способа регулирования.
- 37. Сравните регулировочные свойства асинхронных двигателей и двигателей постоянного тока.
 - 38. Какие из рассмотренных способов

регулирования обеспечивают приблизительно постоянную располагаемую мощность, а какие и момент?

Модуль 5

- 1. Какие виды переходных режимов имеют место при работе электропривода?
- 2. Какое практическое значение имеют переходные процессы в электроприводе?
- 3. Для каких рабочих машин характер переходного процесса не имеет существенного значения?
- 4. В каких случаях для разомкнутых электроприводов исследуется механические и электромагнитные переходные процессы?
- 5. Объясните физическую сущность электромеханической T_{μ} и электромагнитной T_{g} постоянных времени. Каким образом могут быть определены постоянные времени T_{μ} и T_{g} ?
- 7. Как определяется длительность переходного процесса при известных значениях постоянных времени?
- 8. Представьте и объясните основные уравнения для скорости и тока двигателя при переходных процессах.
- 9. Почему при приложении нагрузки к валу двигателя постоянного тока увеличивается ток якоря?
- 10. Каким образом может быть определено время разгона двигателя при одноступенчатом и многоступенчатом пусках?
- 11. Представьте и объясните кривые переходных процессов при пуске, торможении противовключением и динамическом торможении.
- 12. Представьте и объясните кривые переходных процессов для скорости и тока двигателя постоянного тока независимого возбуждения при учете электромагнитной инерции якоря.
- 13. Как влияет изменение сопротивления при переходных процессах на длительность их протекания?
- 14. Объясните особенность исследования переходных процессов в разомкнутых электроприводах с асинхронным двигателем.
- 15. Для какой цели необходимо дефорсирование при пуске двигателя постоянного тока изменением напряжения?
- 16. Какие способы применяются для ускорения электромагнитных переходных процессов в обмотках возбуждения электрических

машин?

- 17. Перечислите способы форсирования и покажите, как будет изменяться ЭДС генератора при разных способах форсирования.
- 18. Как могут рассчитываться кривые скорости, тока и момента для двигателей последовательного возбуждения при пуске и торможении?
- 19. Для какой цели необходимо определять потери энергии при пуске и торможении двигателя?
- 20. Начертите диаграмму мощности и потерь при торможении противовключением двигателя постоянного тока параллельного возбуждения.
- 21. Запишите и объясните общее выражение для потерь в асинхронном двигателе в установившемся режиме. Определите потери в стали в режиме короткого замыкания.
- 22. Какая составляющая потерь энергии A_n , A_c или A_n обычно является доминирующей, и в каких случаях остальные составляющие могут иметь большее значение?
- 23. Каково соотношение между основными потерями при пуске и торможении для двигателя постоянного тока с параллельным возбуждением и для асинхронного двигателя?
- 24. Как определить потери энергии при пуске асинхронного двигателя с короткозамкнутым ротором и углубленным пазом или двойной клеткой?
- 25. Назовите возможные способы уменьшения пусковых потерь двигателей.
- 26. Назовите основной способ снижения потерь и расхода энергии при пуске двигателей постоянного тока.
- 27. Почему при ступенчатом пуске по сравнению с прямым до той же скорости время пуска и, соответственно, потери энергии заметно сокращаются?
- 28. Каким образом могут быть снижены потери в электроприводах с регулируемой скоростью?
- 29. Что представляют собой средние потери за цикл?
- 30. В каком соотношении находятся потери энергии при пуске двигателя в холостую и под нагрузкой?
- 31. Сравните потери энергии, выделяющиеся в двигателях при прямом и реостатном пусках в холостую.

Vyrami		Tonguno and anno Mal
Уметь	- проводить	Домашнее задание №1
	расчеты	Составление расчетных схем механической части
	статических	силового канала электропривода (по
	режимов работы	вариантам[3],[20]).
	электропривода;	
	- конструировать	7
	схемы включения	Домашнее задание №2
	ЭП;	Расчет и построение электромеханических и
	- графически	механических характеристик электропривода
	представлять	постоянного тока с двигателями независимого
	скоростные и	возбуждения (по вариантам, учебное пособие [3]).
	механические	7
	характеристики;	Домашнее задание№3
	- обобщать	Расчет и построение электромеханических и
	результаты	механических характеристик электропривода
	решений задач;	постоянного тока с двигателями последовательного
	- использовать	возбуждения (по вариантам, учебное пособие [3]).
	полученные	
	результаты в	Домашнее задание №4
	практике	Расчет и построение электромеханических и
	электропривода	механических характеристик электропривода
		переменного тока с асинхронными двигателями (по
		вариантам, учебное пособие [3]).
		Домашнее задание №5
		Расчет и построение фазовых, регулировочных и
		скоростных характеристик системы тиристорный
		преобразователь-двигатель постоянного тока
		(система ТП-Д, учебное пособие [18]).
		Домашнее задание №6
		Расчет переходных процессов в электроприводах
		постоянного и переменного тока (учебное пособие
		[3]).
		Домашнее задание №7
		Расчет нагрузочных диаграмм и тахограмм
		электропривода (по вариантам, учебное пособие
		[18]).
Владеть	- практическими	AKP №1 – Механика и режимы работы
	навыками	электропривода (учебное пособие [3]).
	исследования	АКР №2 – Электромеханические и
	электроприводов	регулировочные свойства электропривода с
	постоянного и	двигателем постоянного тока независимого
	переменного тока;	возбуждения (учебное пособие [3]).
	- методами наладки	АКР №3 - Электромеханические и
	электроприводов со	регулировочные свойства электропривода с
	статическими	двигателем постоянного тока последовательного
	преобразователями;	возбуждения (учебное пособие [3]).
	- навыками и	A TCD AC 4
		1
	методиками обобщения	регулировочные свойства электропривода с асинхронным двигателем (учебное пособие [3]).
	ооощения	асиндроппым двигателем (учестое посооне [3]).

результатов экспериментальных исследований Лабораторная работа №1 Исследование механической части силового канала электроприводов; - основными электропривода с учетом упругих связей. методами решения практических задач Лабораторная работа №2 в области Исследование электромеханических свойств автоматизированно электроприводов с двигателями постоянного тока го электропривода; независимого возбуждения. профессиональным Лабораторная работа №3 языком в области Исследование электромеханических свойств автоматизированно электроприводов с асинхронными двигателями. го электропривода; - способами Лабораторная работа №4 совершенствования Исследование электромеханических свойств профессиональных электроприводов по системе ТП-Д. знаний и умений путем Лабораторная работа №5 использования Исследование электромеханических свойств электроприводов по системе ПЧ-АД. возможностей информационной Лабораторная работа №6 среды Исследование динамических режимов электроприводов с двигателями постоянного и переменного тока

б) Порядок проведения промежуточной аттестации, показатели и критерии опенивания:

Промежуточная аттестация по дисциплине «Электрический привод» включает в себя теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания выявляющие степень сформированности умений и владений, проводится в виде экзамена.

Экзамен по данной дисциплине проводится в устной форме по экзаменационным билетам, каждый из которых включает 2 теоретических вопроса и одно практическое задание.

Показатели и критерии оценивания экзамена:

– на оценку **«отлично»** (5 баллов) – обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.

- на оценку **«хорошо»** (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку **«удовлетворительно»** (3 балла) обучающийся демонстрирует пороговый уровень сформированности компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку **«неудовлетворительно»** (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку **«неудовлетворительно»** (1 балл) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.

Вопросы для экзамена по дисциплине «Электрический привод»

- 1. Объяснить для чего и каким образом выполняется операция приведения статических моментов и моментов инерции системы электропривода? Как влияет на расчет приведенного момента сопротивления различное направление потока энергии?
- 2. Как определяется скорость и оценивается устойчивость установившегося движения электропривода?
- 3. Каким образом можно определить время пуска и торможения электропривода при постоянном динамическом моменте?
- 4. Представить и объяснить уравнение движения электропривода для режимов работы: двигательного ускоренного и тормозного замедленного при активном и реактивном статическом моменте.
- 5. Объяснить, что такое генераторный рекуперативный режим двигателя постоянного тока, режим противовключения и режим динамического торможения? Представить механические характеристики этих режимов для различных сопротивлений якоря.
- 6. Объясните, каким образом осуществляется режим противовключения двигателя независимого возбуждения при различном характере статического момента (активом и реактивном)?
- 7. Каким образом рассчитываются дополнительное сопротивление в цепи якоря и какая мощность расходуется в этих сопротивления в режимах противовключения и динамического торможения двигателя независимого возбуждения.

- 8. Какая скорость установиться в конце процесса торможения двигателя независимого возбуждения различными способами при активном и реактивном моменте сопротивления?
- 9. Объясните и сравните между собой способы регулирования скорости: реостатный и шунтированием якоря для двигателя независимого возбуждения с точки зрения показателей регулирования.
- 10. Начертите принципиальную реверсивную схему системы «генератордвигатель» и объясните принцип действия схемы при регулировании скорости и при торможении двигателя.
- 11. Начертите и сравните между собой по показателям регулирования способы регулирования скорости: изменением напряжения на зажимах двигателя и ослаблением поля двигателя независимого возбуждения.
- 12. Энергетические режимы работы двигателя постоянного тока независимого возбуждения.
- 13. Расчет пусковых сопротивлений двигателя независимого возбуждения.
- 14. Как понимать термин «регулирование скорости с постоянным моментом и постоянной мощностью» двигателя?
- 15. В каких режимах может работать двигатель последовательного возбуждения? Почему для него не возможна работа в генераторном режиме с отдачей энергии в сеть?
- 16. Как осуществляется расчет и построение искусственных и естественных механических характеристик двигателя последовательного возбуждения?
- 17. В чем недостатки динамического торможения с самовозбуждением двигателя последовательного возбуждения и почему при динамическом торможении иногда осуществляется независимое питание обмотки возбуждения?
- 18. Оценить и сравнить способы торможения двигателей последовательного возбуждения.
- 19. Каким образом осуществляется торможение противовключением двигателя последовательного возбуждения при активном и реактивном статическом моменте?
- 20. Для каких механизмов можно осуществить торможение асинхронного двигателя с рекуперацией энергии в сеть? Объяснить сущность этого способа торможения.
- 21. Динамическое торможение асинхронных двигателей. Объясните, как влияет на вид механических характеристик величина тока возбуждения и сопротивление роторной пепи?
- 22. Какие способы регулирования скорости асинхронного двигателя позволяют плавно изменять скорость при наличии жестких механических характеристик? Каковы недостатки этих способов?

- 23. Сравните регулировочные свойства асинхронных двигателей и двигателей постоянного тока.
- 24. Основные законы регулирования напряжения и частоты асинхронного двигателя.
- 25. Двухзонное регулирование скорости асинхронного двигателя при изменении частоты питающего напряжения.
- 26. Сравните между собой способы торможения противовключением асинхронного двигателя при активном и реактивном статическом моменте.
- 27. Как осуществляется расчет пусковых сопротивлений асинхронного двигателя?
- 28. Объясните принцип регулирования скорости асинхронного двигателя изменением числа пар полюсов. Покажите схемы обмотки статора двухскоростного двигателя при регулировании скорости с постоянным моментом и постоянной мошностью.
- 29. Представить и объяснить кривые переходных процессов для двигателя независимого возбуждения:
- а) при одноступенчатом и многоступенчатом пуске двигателя;
- б) при торможении противовключением;
- в) при динамическом торможении;
- г) при учете электромагнитной инерции якоря.
- 30. Объясните особенности исследования переходных процессов в разомкнутых электроприводах с асинхронными двигателями при торможении двигателя.
- 31. Определение потерь в двигателях независимого возбуждения:
- а) при пуске двигателя;
- б) при торможении двигателя.
- 32. Определение потерь в асинхронном двигателе при пуске и торможении двигателя.
- 33. Способы уменьшения потерь в двигателях в переходных режимах.

Задачи для экзамена по дисциплине «Электрический привод»

Механизм приводится во вращение двигателем постоянного тока независимого возбуждения со следующими техническими данными: $P_n=10\,\kappa Bm$, $U_n=220\,B$, $I_n=63\,A$, $n_n=1000\,o \delta/muh$, $R_n=0.224\,Om$, $R_{on}=0.075\,Om$, $R_e=85\,Om$. Определить величину добавочного сопротивления, включенного в цепь якоря, если двигатель работает в режиме противовключения со скоростью $150\,o \delta/muh$ при токе якоря $I=0.8\cdot I_n$. Определить также мощности: потраченную из сети, подводимую с вала и теряемую в сопротивлении в этом режиме.

Задача 2

Двигатель независимого возбуждения имеет следующие номинальные данные: $P_{\!\scriptscriptstyle H}=13.5\,\kappa Bm$, $U_{\!\scriptscriptstyle H}=220\,B$, $I_{\!\scriptscriptstyle H}=73\,A$, $I_{\!\scriptscriptstyle gH}=1.2\,A$, $n_{\!\scriptscriptstyle H}=1060\,o\!\delta/m$ ин , $R_{\!\scriptscriptstyle R}=0.126\,O\!m$. Определить изменение скорости двигателя при $U=U_{\!\scriptscriptstyle H}$ и $U=0.75\cdot U_{\!\scriptscriptstyle H}$, если двигатель работает при нагрузках , меняющихся от $M_{\!\scriptscriptstyle C}=0.2\cdot M_{\!\scriptscriptstyle H}$ до $M_{\!\scriptscriptstyle C}=0.8\cdot M_{\!\scriptscriptstyle H}$. Построить механические характеристики для этих случаев.

Задача 3

Электродвигатель независимого возбуждения работает в режиме подъема груза с номинальной скоростью. В каком режиме и с какой скоростью будет работать двигатель лебедки, если полярность напряжения на его зажимах изменить на обратную при начальном токе $I_{\textit{haq}} = 2.5 \cdot I_{\textit{h}}$. Номинальные данные двигателя: $P_{\textit{h}} = 8 \kappa \textit{Bm}$, $U_{\textit{h}} = 220 \, \textit{B}$, $I_{\textit{h}} = 44 \, \textit{A}$, $n_{\textit{h}} = 1550 \, o\! o\! f/$ мин, $R_{\textit{h}} + R_{\textit{o}n} = 0.322 \, O\! m$, $R_{\textit{e}} = 130 \, O\! m$.

Задача 4

Электродвигатель постоянного тока независимого возбуждения главного подъема мостового крана имеющий технические данные: $P_{_H} = 9 \kappa B m$, $I_{_H} = 48 A$, $n_{_H} = 900 \, o \delta / m u H$, $R_{_H} = 0.33 \, O M$, $R_{_B} = 132 \, O M$. Определить величину сопротивления $R_{_D}$, которое нужно включить к якорю двигателя для перехода в режим динамического торможения с $M_{_DM} = 2 \cdot M_{_H}$, если в режиме подъема груза с $M_{_C} = 49 \, H M$ он работает на реостатной характеристике с сопротивлением в цепи якоря $R_{_H} = 0.5 \, O M$. Определить также скорость, с которой будет вращаться двигатель после окончания переходного процесса, если КПД подъемного механизма $\eta_{_M} = 0.85$.

Задача 5

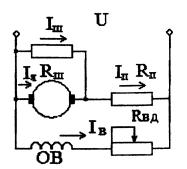
Для двигателя с техническим данными: $P_{\scriptscriptstyle H}=10\,\kappa Bm$, $U_{\scriptscriptstyle H}=110\,B$, $I_{\scriptscriptstyle H}=100\,A$, $R_{\partial e}=0.05\,O\!M$ определить добавочное сопротивление, которое следует ввести в цепь якоря двигателя постоянного тока последовательного возбуждения для спуска груза в режиме

противовключения, чтобы при номинальном моменте нагрузки скорость была равна $\omega = -0.6 \cdot \omega_{_H}$. Универсальная электромеханическая характеристика двигателя может быть представлена в виде следующей таблицы:

i	0.3	0.4	0.5	0.6	0.8	1.0	1.2	1.6	2.0
V	2.28	1.75	1.41	1.28	1.1	1.0	0.92	0.81	0.72

Задача 6

Двигатель последовательного возбуждения имеет следующие технические данные: $P_{H}=6.8\,\kappa Bm$, $I_{H}=38.5\,A$, $n_{H}=900\,o \delta/muH$, $U_{H}=220\,B$, $R_{g}=0.322\,O$ M, $R_{\partial n}=0.111\,O$ M, $R_{g}=109\,O$ M. Рассчитать пусковые сопротивления, обеспечивающие пуск двигателя в две ступени. Максимальный ток двигателя при пуске не должен превышать двухкратного номинального значения ($I_{max}\leq 2\cdot I_{H}$). Универсальные характеристики представлены в виде следующей таблицы:


i	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
ν	1.6	1.23	1.09	1.0	0.94	0.89	0.85	0.81	0.78
μ	0.34	0.49	0.78	1.0	1.22	1.58	1.9	2.35	

Залача 7

Двигатель постоянного тока последовательного возбуждения имеет следующие технические данные: $P_{\scriptscriptstyle H}=100\,\kappa Bm$, $U_{\scriptscriptstyle H}=220\,B$, $I_{\scriptscriptstyle H}=500\,A$, $n_{\scriptscriptstyle H}=525\,o \delta/m$ ин, $R_{\scriptscriptstyle g}=0.0039\,O$ м, $R_{\scriptscriptstyle g}=0.0027\,O$ м, $R_{\scriptscriptstyle g}=0.0032\,O$ м. Скорость двигателя регулируется изменением напряжения на зажимах двигателя. Определить диапазон регулирования напряжения, если при номинальном напряжении при токе $I=200\,A$ скорость двигателя равна $150\,o \delta/m$ ин. Построить естественную и искусственную характеристики двигателя, если универсальные характеристики двигателя представлены в виде следующей таблицы.

Задача 8

Двигатель постоянного тока независимого возбуждения с номинальными данными: $P_{\mu} = 21 \kappa Bm$, $U_{\mu} = 220 B$, $I_{\mu} = 110 A$, $R_{g} = 0.13 Om$, работает по схеме, представленной на

рисунке, на нагрузку с постоянным моментом сопротивления $M_c=M_n$. Шунтирующее сопротивление $R_u=8\cdot R_n$. Определить сопротивление R_u и R_n , если скорость при $I_n=0$ равна $n_0=500\,o\delta/мин$ и просадка скорости при M_n равна $\Delta\omega_u=2\cdot\Delta\omega_n$.

8 Учебно-методическое и информационное обеспечение дисциплины

а) Основная литература:

- 1. Москаленко, В. В. Электрический привод [Электронный ресурс] : учебник / В В. Москаленко. М.: ИНФРА М., 2015.-364 с. (Высшее образование: Бакалавриат).- Режим доступа: www.dx.doi.org/10.12737/4557.- ISBN 978-5-16-009474-8 (print).- ISBN 978-5-16-100607-8 (online).
- 2. *Фролов, Ю. М.* Электрический привод: краткий курс: учебник для вузов / Ю. М. Фролов, В. П. Шелякин; под редакцией Ю. М. Фролова. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2020. 253 с. (Высшее образование). ISBN 978-5-534-00092-4. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/453050 (дата обращения: 24.10.2020).

б) Дополнительная литература:

- 1. *Шичков, Л. П.* Электрический привод : учебник и практикум для вузов / Л. П. Шичков. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2020. 326 с. (Высшее образование). ISBN 978-5-534-07893-0. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/453064 (дата обращения: 24.10.2020).
- 2. Жуловян, В. В. Электрические машины: электромеханическое преобразование энергии: учебное пособие для вузов / В. В. Жуловян. Москва: Издательство Юрайт, 2020. 425 с. (Высшее образование). ISBN 978-5-534-04292-4. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/453145 (дата обращения: 24.10.2020).

в) Методические указания:

1. Методические указания для студентов по выполнению лабораторных работ / Составители: Линьков С.А., Омельченко Е.Я; Магнитогорский гос. технический ун-т им. Г. И. Носова. - Магнитогорск : МГТУ им. Г. И. Носова, 2014. - 129 с. : ил., табл. - Текст : непосредственный.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

программное		
Наименование ПО	№ договора	Срок действия лицензии
	· · · · · · · · · · · · · · · · · · ·	1
MS Office 2007	№ 135 от 17.09.2007	бессрочно
Professional		
MathWorks MatLab		
v.2014 Classroom	К-89-14 от 08.12.2014	бессрочно
License		
MathCAD v.15		
	Д-1662-13 от 22.11.2013	бессрочно
Education University		1
Edition		
MS Office Visio	Д-1227-18 от 08.10.2018	11.10.2021
Prof 2013(для	д-1227-16 01 00.10.2016	11.10.2021
классов)		

MS Windows 7 Professional(для	Д-1227-18 от 08.10.2018	11.10.2021
7Zip	свободно распространяемое ПО	бессрочно
FAR Manager	свободно распространяемое ПО	бессрочно

Профессиональные базы данных и информационные справочные системы

11	C
Название курса	Ссылка
Электронная база периодических изданий	https://dlib.eastview.com/
East View Information Services, OOO	
Информационная система - Единое окно	URL: http://window.edu.ru/
лоступа к информационным ресурсам	
Национальная информационно-	URL: https://elibrary.ru/project_risc.asp
аналитическая система – Российский индекс	ORL: https://enorary.ru/project_nsc.asp
научного питирования (РИНП)	
Поисковая система Академия Google	URL: https://scholar.google.ru/
(Google Scholar)	
Электронные ресурсы библиотеки МГТУ	http://magtu.ru:8085/marcweb2/Default.asp
им. Г.И. Носова	
Университетская информационная система	https://uisrussia.msu.ru
РОССИЯ	
Международная наукометрическая	http://webofscience.com
реферативная и полнотекстовая база данных	http://weborseienee.com
научных изланий «Weh of science»	
Международная реферативная и	http://scopus.com
полнотекстовая справочная база данных	

9 Материально-техническое обеспечение дисциплины включает:

Тип и название аудитории	Оснащение аудитории
Учебные аудитории для проведения занятий лекционного типа	мультимедийные средства хранения, передачи и представления информации
Учебная аудитория для проведения лабораторных занятий: лаборатория автоматизированного электропривода и электрических машин	стенды учебно-лабораторные «Исследование двигателя постоянного тока и асинхронного двигателя переменного тока»
Учебная аудитория для проведения лабораторных занятий: лаборатория схемотехники и микропроцессорных средств	макет «Индукционный асинхронный электропривод»; стенд учебно-лабораторный «Исследование синхронного двигателя»
Учебные аудитории для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации	Доска, мультимедийный проектор, экран
Учебные аудитории для самостоятельной работы обучающихся	Персональные компьютеры с ПО из п. 8(г), выходом в Интернет и с доступом в электронную информационно-образовательную среду университета