

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ:

Директор института энергетики
и автоматизированных систем
С.И. Лукьянов
«26» сентября 2018 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

АВТОМАТИЗИРОВАННЫЙ ЭЛЕКТРОПРИВОД

Направление подготовки (специальность) 13.03.02 Электроэнергетика и электротехника

Направленность программы Электропривод и автоматика

Уровень высшего образования – бакалавриат

Программа подготовки – прикладной бакалавриат

Форма обучения Заочная

Институт Кафедра Курс Энергетики и автоматизированных систем Автоматизированного электропривода и мехатроники 4.5

Магнитогорск 2018 г.

Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 13.03.02 Электроэнергетика и электротехника, утвержденного приказом МО и Н РФ от 03 сентября 2015 г. № 955

	программа рассмотрена и од ривода и мехатроники «21»			
		Зав. кафедрой	(подпись)	/ А.А. Николаев (И.О. Фамилия)
	программа одобрена методи ых систем «26» сентября 20	018 г., протокол .		
		Председатель _	(подпись)	_/ <u>С.И. Лукьянов</u> (И.О. Фамилия)
Рабочая і	программа составлена:	<u>.</u>	доцент к УШС/ (подпись)	аф. АЭПиМ, к.т.н. / Ю.В. Мерзляков (И.О. Фамилия)
			ская Фед	$e_{P\partial J_i}$
Рецензен	т: <u>зам. начальника</u>	<u>ЦЭТЛ ПАО «ММ</u> 	1Ку по эцектр	А.Ю. Юдин / (И.О. Фамилия)
			орсинов окцион металг	pho o da

Лист регистрации изменений и дополнений

№ п/п	Раздел программы	Краткое содержание изменения/дополнения	Дата № протокола заседания кафедры	Подпись зав. кафедрой
1	8	Актуализация учебно- методического и информационного обеспечения дисциплины	21.09.2019r. №4	AL P
2	8	Актуализация учебно- методического и информационного обеспечения дисциплины	30.08.2020r. №1	Alex

1 Цели освоения дисциплины

Целями освоения дисциплины «Автоматизированный электропривод» являются развитие у студентов личностных качеств, а также формирование профессиональных компетенций в соответствии с требованиями ФГОС ВО по направлению «Электроэнергетика и электротехника»/ профиль «Электропривод и автоматика».

Задачами дисциплины являются:

- овладение студентами комплексом знаний и умений в области теории, принципов построения и способов реализации систем управления электроприводов постоянного и переменного тока, включая оптимальные, обеспечивающих требуемые законы изменения координат электропривода средствами аналоговой и цифровой техники;
- приобретение навыков проектирования, расчета и исследования таких систем с учетом характеристик, и свойств объектов управления и особенностей применяемых технических средств, включая современные комплектные электроприводы;
- изучение методов теоретического и экспериментального исследования, расчета и проектирования систем управления;
- выработка умения применять полученные знания в будущей самостоятельной профессиональной деятельности.

2 Место дисциплины в структуре образовательной программы подготовки бакалавра

Дисциплина «Автоматизированный электропривод» входит в вариативную часть блока 1 образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения основных положений следующих дисциплин:

Теоретические основы электротехники;

Электрические машины;

Теория электропривода;

Теория автоматического управления;

Электрический привод.

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы при выполнении и защите выпускной квалификационной работы.

3 Компетенции обучающегося, формируемые в результате освоения дисциплины и планируемые результаты обучения

В результате освоения дисциплины «Автоматизированный электропривод» обучающийся должен обладать следующими компетенциями:

Структурный	
элемент	Планируемые результаты обучения
компетенции	
ПК- 5 готовно	стью определять параметры оборудования объектов профессио-
нальной деяте	ельности
Знать	- Нормативные документы по монтажу, наладке и ремонту вводимого
	в эксплуатацию электроэнергетического и электротехнического обору-
	дования;
	- Технические характеристики элементов, входящих в систему управ-
	ления вводимого в эксплуатацию электроэнергетического и электро-

Структурный элемент компетенции	Планируемые результаты обучения
	технического оборудования; — Нормативные документы по монтажу, наладке и ремонту и технические характеристики элементов, входящих в систему управления вводимого в эксплуатацию электроэнергетического и электротехнического оборудования
Уметь	 Рассчитывать параметры объектов регулирования и выполнять настройку контуров регулирования, вводимого в эксплуатацию электроэнергетического и электротехнического оборудования; Аргументированно обосновывать применение структур регуляторов и контуров регулирования для обеспечения требуемого качества статических и динамических показателей системы управления, вводимого в эксплуатацию электроэнергетического и электротехнического оборудования; Применять полученные знания в профессиональной деятельности;
Владеть	 Основными методиками расчета и настройки систем регулирования, вводимого в эксплуатацию электроэнергетического и электротехнического оборудования; Основными методами решения задач анализа и синтеза систем управления с заданными характеристиками; Способами совершенствования профессиональных знаний и умений путем использования информационной среды;

4 Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 10 зачетных единиц, 360 акад. часов:

- 7, 8 семестры: 4 зачетных единицы -144 часа, в том числе:
- контактная работа 14,7 акад. часа;
 - аудиторная работа 14 акад. часов:
 - лекции 4 акад. часа,
 - лабораторные работы 6 акад. часов,
 - практические занятия 4 акад. часа;
 - внеаудиторная -0.7 акад. часа;
- самостоятельная работа 125,4 акад. часа;
- подготовка к зачету 3,9 акад. часа.

Форма аттестации - Зачет с оценкой,КП

- 9 семестр 6 зачетных единицы -216 акад. часов, в том числе:
- контактная работа 18,4 акад. часа;
 - аудиторная работа 14 акад. часов:
 - лекции 4 акад. часа;
 - лабораторные работы 6 акад. часов;
 - практические занятия 4 акад. часа;
 - внеаудиторная -4,4 акад. часов;
- самостоятельная работа 188,9 акад. часа;
- подготовка к экзамену 8,7 акад. часа.

Форма аттестации - экзамен

Раздел/ тема дисциплины	Семестр	КС	лабораг. табораг. сах) виним ве	ная а	Самостоятельная рабо- та (в акад. часах)		Форма текущего контроля успеваемости и промежуточной аттестации	Код и структурный элемент компетенции
1. Лекции 7,8 семест	ры			ı		1	1	1
1.1. Введение: роль и место автоматизированных электроприводов в технологических процессах; классификация систем управления; краткий обзор развития автоматизированного электропривода (АЭП)	7				5	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-5- зув
1.2. Релейно- контакторные схемы управления электро- приводами. Защиты в схемах электро- привода. Блокировки и сигнализация в схемах электропри- вода	7	1			5	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-5- зув
1.3. Системы управления электроприводов с параллельными обратными связями (АЭП с обратными связями по напряжению, току, скорости)	7				5	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-5- ув
1.4. Системы управления с подчиненным регулированием координат	7	1			5	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-5- зу
1.5. Системы управления электроприводов по системе ТП-Д с подчиненным регулированием координат. Настройка контура регулирования тока якоря.	7				5	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-5 ув

Раздел/ тема дисциплины	Семестр	КС	дитор онтакті работа акад. сах)	ная а	Самостоятельная рабо- та (в акад. часах)	Вид самостоя-	Форма текущего контроля успеваемости и	Код и структурный элемент компетенции
	Ce	лекции	лаборат. занятия	практич. занятия	Самостоятель та (в акад.	работы	промежуточной аттестации	Код и ст эле комп
1.6. Настройка контура регулирования скорости вращения электропривода.	7				5	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-5- зув
1.7. Настройка контура регулирования скорости в двукратно-интегрирующей системы автоматизированного электропривода.	7				5	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-5- ув
1.8.Позиционная система автоматизированного электропривода	7				5	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-5- зу
1.9. Двухзонная система автоматизированного электропривода	7	1			5	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-5 ув
2. Лабораторные рабо 2.1. Разомкнутая си-	ты		1/1		5			
стема ТП-Д 2.2. «АЭП с отрица- тельной обратной связью по напряже- нию»	7		1/1		5	Подготовка к лабораторной работе, оформ-ление	Прием лабора- торных работ	ПК-5- зув
2.3. "Исследование замкнутой системы регулирования электропривода с отрицательной обратной связью по скорости"	7		1/1		5	Подготовка к лабораторной работе, оформление	Прием лабора- торных работ	ПК-5- ув
2.4. «АЭП с обратными связями по току»	7		1/1		5	Подготовка к лабораторной работе, оформ-ление	Прием лабора- торных работ	ПК-5- зу
2.5. «АЭП с внешним контуром скорости»	7		1/1		5	Подготовка к лабораторной работе, оформ-ление	Прием лабора- торных работ	ПК-5 ув
2.6. «АЭП двухзон- ного регулирования»	7		1/1		5	Подготовка к лабораторной	Прием лабора- торных работ	ПК-5- зу

Раздел/ тема дисциплины	Семестр	(в	удитор онтакті работа акад. сах)	ная а ча-	Самостоятельная рабо- та (в акад. часах)	Вид самостоя- тельной работы	Форма текуще- го контроля успеваемости и промежуточной	Код и структурный элемент компетенции
)	иишэи	лаборат. занятия	практич занятия	Самостоя та (в а	pacora	аттестации	Код и с эл ком
						работе, оформ- ление		
2.7. «Исследование позиционного АЭП»	7				5	Подготовка к лабораторной работе, оформ- ление	Прием лабора- торных работ	ПК-5 ув
3. Практические занят	РИЯ					l	l	
3.1. Роль и место автоматизированных электроприводов в технологических процессах; классификация систем управления; краткий обзор развития систем автоматического управления элек-	7				5	Работа над кур- совым проектом	Проверка хода курсового аро- ектирования	ПК-5- зув
троприводов (АЭП)								
3.2. Релейно- контакторные схемы управления электро- приводами. Защиты в схемах электро- привода. Блокировки и сигнализация в схемах электропри- вода	7				5	Работа над кур- совым проектом	Проверка хода курсового аро- ектирования	ПК-5- зув
3.3. Системы управления электроприводов с параллельными обратными связями (АЭП с обратными связями по напряжению, току, скорости)	7			1	5	Работа над кур-совым проектом	Проверка хода курсового аро- ектирования	ПК-5- ув
3.4. Системы управления с подчиненным регулированием координат	7				5	Работа над кур- совым проектом	Проверка хода курсового аро- ектирования	ПК-5- зу
3.5. Системы управления электроприводов по системе ТП-Д с подчиненным ре-	7			1/1	5	Работа над кур- совым проектом	Проверка хода курсового аро- ектирования	ПК-5 ув

Раздел/ тема дисциплины	Семестр	КС	датор ритакти работа акад. сах)	ная а	Самостоятельная рабо- та (в акад. часах)	Вид самостоя- тельной работы	Форма текуще- го контроля успеваемости и промежуточной аттестации	Код и структурный элемент компетенции
гулированием координат. Настройка контура регулирования тока якоря.					O			
3.6. Настройка контура регулирования скорости вращения электропривода.	7				5	Работа над кур- совым проектом	Проверка хода курсового аро- ектирования	ПК-5- ув
3.7. Настройка контура регулирования скорости в двукратно-интегрирующей системы автоматизированного электропривода.	7			1	5	Работа над кур- совым проектом	Проверка хода курсового аро- ектирования	ПК-5- зу
3.8.Позиционная система автоматизированного электропривода					5	Работа над кур- совым проектом	Проверка хода курсового аро- ектирования	ПК-5 ув
3.9. Двухзонная система автоматизированного электропнивода				1/1	5,4	Работа над кур- совым проектом	Проверка хода курсового аро- ектирования	ПК-5 зув
Подготовка к зачету					3,9			
Итого за семестры	8	4	6/6	4/2	129.3	144	Зачет с оцен- кой, КП	
1. Лекции 9 семестр								
1.1. Система преобразователь частоты — асинхронный двигатель (ПЧ-АД). Общие принципы частотного регулирования координат асинхронного двигателя.	9	1			13	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-5- зу
1.2. Разомкнутые и замкнутые системы скалярного управления асинхронным электроприводом.					13	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-5

Раздел/ тема дисциплины	Семестр	КС	/дитор онтакті работа акад. сах)	ная а	Самостоятельная рабо- та (в акад. часах)	Вид самостоя- тельной	Форма текущего контроля успеваемости и	Код и структурный элемент компетенции
дисциплины	Ce	лекции	лаборат. занятия	практич. занятия	Самостоятелн та (в акад.	работы	промежуточной аттестации	Код и стј эле компе
1.3. Векторная модель АД. Системы векторного управления ПЧ – АД.	9	1		1	13	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-5- зув
1.4. Расчет параметров АД по паспортным данным	9			1	13	Подготовка к лекции	Текущий кон- троль посеща- емости, выбо- рочный опрос	ПК-5- зув
1.5. Расчет параметров схемы замещения ПЧ-АД	9			1/1	13	Подготовка к лекции	Текущий кон- троль посеща- емости, выбо- рочный опрос	ПК-5- ув
1.6. Расчет параметров регуляторов системы векторного управления ПЧ-АД	9	1		1/1	13	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-5- зу
1.7. Системы управления синхронным электроприводом	9	1			13	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-5 ув
1.8. Системы управления электроприводом с вентильным двигателем	9				14	Подготовка к лекции	Текущий контроль посещаемости, выборочный опрос	ПК-5 зув
2. Лабораторные раб	оть	ı 8 c	емест	p				
2.1. «Исследование скалярной системы регулирования ПЧ-АД»			1/1		14	Подготовка к лабораторной работе, оформ-ление	Прием лабора- торных работ	ПК-5- зув
2.2. «Исследование скалярной системы регулирования ПЧ-АД с регулятором скорости»	9		1/1		14	Подготовка к лабораторной работе, оформление	Прием лабора- торных работ	ПК-5- ув
2.3. «Исследование скалярной системы регулирования ПЧ-АД для текстильной промышленности»	9		1/1		14	Подготовка к лабораторной работе, оформление	Прием лабора- торных работ	ПК-5- зу
2.4. «Исследование систем векторного управления ПЧ-АД»	9		1/1		14	Подготовка к лабораторной работе, оформ-	Прием лабора- торных работ	ПК-5 ув

Раздел/ тема дисциплины	Семестр	КС	удитор онтакті работа акад. сах)	ная а	Самостоятельная рабо- та (в акад. часах)	Вид самостоя- тельной работы	Форма текуще- го контроля успеваемости и промежуточной аттестации	Код и структурный элемент компетенции
						ление		
2.5. «Исследование бездатчиковой системы векторного управления ПЧ-АД»	9		1/1		14	Подготовка к лабораторной работе, оформ-ление	Прием лабора- торных работ	ПК-5 зув
2.6. «Исследование системы векторного управления моментом ПЧ-АД»	9		1/1		13,9	Подготовка к лабораторной работе, оформ-ление	Прием лабора- торных работ	ПК-5 зув
Подготовка к экзамену					8,7			
Итого за семестр	9	4	6/6	4/2	197,6	216	Экзамен	
Итого по дисци- плине	7- 8	8	12/12	8/4	326,9	360	Зачет с оцен- кой,КП, экза- мен	

5 Образовательные и информационные технологии

Для реализации предусмотренных видов учебной работы в качестве образовательных технологий в преподавании дисциплины «Автоматизированный электропривод» используются традиционная и модульно - компетентностная технологии.

Передача необходимых теоретических знаний и формирование основных представлений по курсу «Автоматизированный электропривод» происходит с использованием мультимедийного оборудования.

Лекции проходят в традиционной форме и в форме лекций-консультаций. На лекциях — консультациях изложение нового материала сопровождается постановкой вопросов и дискуссией в поисках ответов на эти вопросы.

Самостоятельная работа стимулирует студентов в процессе подготовки домашних заданий, при решении задач на практических занятиях, при подготовке к контрольным работам и итоговой аттестации.

6. Учебно-методическое обеспечение самостоятельной работы обучающихся.

Тестовые вопросы к лабораторным работам. 7 семестр.

Тестовые вопросы к лабораторной работе №1 «Разомкнутая система ТП-Д»

- 1. Какие особенности присущи тиристорному преобразователю (ТП), как динамическому звену системы электропривода?
- 2. Какая передаточная функция ТП принимается при исследовании динамических свойств системы электропривода?

- 3. Какие параметры определяют величину постоянной времени ТП?
- 4. От чего зависит величина коэффициента передачи ТП? В каком случае коэффициент остается постоянным, а в каком переменным?
- 5. Как рассчитать параметры ТП?
- 6. Какие допущения принимаются при выводе структурной схемы электродвигателя постоянного тока независимого возбуждения (ДПТ)?
- 7. Как получить структурную схему электродвигателя постоянного тока независимого возбуждения?
- 8. Какие управляющие и возмущающие воздействия можно выделить для ДПТ?
- 9. Какие факторы определяют быстродействие якорной цепи ДПТ?
- 10. Какие факторы определяют быстродействие электромеханического преобразования в ДПТ?
- 11. Как определить передаточную функцию ДПТ по управляющему воздействию?
- 12. Как получить передаточную функцию ДПТ по возмущающему воздействию?
- 13. Что влияет на коэффициент демпфирования ДПТ?
- 14. В каком случае переходные процессы в ДПТ носят колебательный характер?
- 15. В каком случае переходные процессы в ДПТ апериодические?
- 16. Как рассчитать параметры якорной цепи ДПТ?
- 17. Как рассчитать параметры электромеханического преобразователя ДПТ?
- 18. Как определить корни характеристического уравнения ДПТ?

Тестовые вопросы к лабораторной работе №2 «АЭП с отрицательной обратной связью по напряжению»

- 1. Что такое обратная связь?
- 2. Какая обратная связь считается отрицательной, а какая положительной?
- 3. В чем отличие жесткой обратной связи от гибкой?
- 4. Что такое задержанная обратная связь?
- 5. Как выполняется система управления с параллельными обратными связями? Какие достоинства и недостатки присущи данным АЭП?
- 6. Как осуществляется обратная связь по напряжению?
- 7. Структурная схема системы управления с отрицательной обратной связью по напряжению?
- 8. Как получить вырожденную структурную схему данной АЭП?
- 9. Как получить уравнение электромеханической характеристики на основании вырожденной структурной схемы данной АЭП?
- 10. Какой параметр определяет величина напряжения на входе регулятора скорости (РС)?
- 11. Как изменится скорость вращения двигателя при обрыве цепи обратной связи?
- 12. Какие параметры системы управления влияют на величину жесткости электромеханической характеристики, замкнутой АЭП?
- 13. Как изменится вид электромеханической характеристики, если при неизменной величине напряжения задания на входе РС увеличить значение коэффициента обратной связи по напряжению Кон?
- 14. Как изменится статическая просадка по скорости в замкнутой АЭП при уменьшении величины коэффициента усиления РС Крс?
- 15. Какая предельная жесткость электромеханической характеристики получается в данной АЭП?
- 16. Как получить предельную жесткость электромеханической характеристики при реальных параметрах системы управления?

- 17. Как рассчитать величину Крс для получения заданной жесткости электромеханической характеристики?
- 18. Как отразится на виде электромеханической характеристики, замкнутой АЭП уменьшение Кон?
- 19. Как получить уравнение внешней характеристики данной АЭП на основании вырожденной схемы?
- 20. Поясните физический смысл повышения жесткости электромеханической характеристики данной АЭП?

Тестовые вопросы к лабораторной работе №3 «Исследование замкнутой системы регулирования электропривода с отрицательной обратной связью по скорости»

- 1. Как реализуется обратная связь по скорости вращения электропривода?
- 2. Структурная схема АЭП с отрицательной обратной связью по скорости.
- 3. Как получить уравнение электромеханической характеристики данной АЭП на основании вырожденной структурной схемы?
- 4. Как изменится скорость идеального холостого хода данной АЭП при снижении величины Крс и неизменном значении напряжения задания на входе РС?
- 5. Как влияет величина коэффициента обратной связи по скорости Кос на вид электромеханических характеристик?
- 6. Какова предельная жесткость электромеханической характеристики в данной AЭП?
- 7. С какой целью на выходе тахогенератора устанавливают делитель напряжения?
- 8. С какой целью выходное напряжение тахогенератора подвергают фильтрации?
- 9. Как влияет величина Крс на статическую просадку скорости в данной АЭП?
- 10. Изменится ли величина статической просадки скорости в данной АЭП при увеличении напряжения задания на входе РС?
- 11. Как получить предельную жесткость электромеханической характеристики при реальных параметрах системы управления?
- 12. Как выглядит внешняя характеристика в данной АЭП для обеспечения предельной жесткости электромеханической характеристики?
- 13. Как рассчитать величину Крс для получения заданной жесткости электромеханической характеристики?
- 14. Как правильно подключить отрицательную обратную связь по скорости на вход РС?
- 15. Как влияет величина момента нагрузки на жесткость электромеханической характеристики?

Тестовые вопросы к лабораторной работе №4 «АЭП с обратными связями по току»

- 1. Как реализуется обратная связь по якорному току электропривода?
- 2. Структурная схема АЭП с положительной обратной связью по величине якорного тока.
- 3. Как получить вырожденную структурную схему данной АЭП?
- 4. Как вывести уравнение электромеханической характеристики для данной АЭП на основании вырожденной структурной схемы?
- 5. Как влияет величина коэффициента обратной связи по току Кот на вид электромеханической характеристики?
- 6. Как определить величину Кот для получения абсолютно жесткой электромеханической характеристики?

- 7. Как определить величину Кот для получения жесткости естественной характеристики?
- 8. Почему на практике одну положительную обратную связь по току не применяют?
- 9. Что такое токовая отсечка? Как реализуется токовая отсечка?
- 10. Вырожденная структурная схема АЭП с токовой отсечкой.
- 11. Как получить уравнение электромеханической характеристики АЭП с токовой отсечкой?
- 12. Как влияет величина напряжения задания на входе регулятора на величину тока отсечки?
- 13. Как изменится вид электромеханической характеристики при увеличении коэффициента Кот?
- 14. Как рассчитать коэффициенты данной АЭП для получения заданной величины тока стопорения?
- 15. Как в данной АЭП задать величину необходимого тока отсечки?
- 16. Как изменится вид электромеханической характеристики при изменении величины напряжения задания на входе регулятора?

Тестовые вопросы к лабораторной работе № 5 «АЭП с внешним контуром скорости»

- 1. Принципы оптимизации в системах подчиненного регулирования координат.
- 2. Расчет передаточных функций регуляторов.
- 3. Порядок настройки контура регулирования якорного тока.
- 4. Порядок настройки контура регулирования скорости.
- 5. Логарифмические частотные характеристики при модульном и симметричном оптимумах
 - 6. Влияние параметров САР на статические и динамические свойства системы.
 - 7. Структурная схема двухконтурной САР скорости.
- 8. Ограничение координат и производных в системах подчиненного регулирования координат.
 - 9. Оценка качества статических и динамических свойств замкнутой системы.
 - 10. Пуск под «отсечку» на холостом ходу и под нагрузкой.
 - 11. Пуск от ЗИ в системах регулирования с П РС и ПИ- РС.
- 12. Реакция системы регулирования скорости с Π PC и Π И PC на наброс нагрузки.

Тестовые вопросы к лабораторной работе № 6 «АЭП двухзонного регулирования»

- 1. Особенности работы схемы двухзонного регулирования скорости.
- 2. Осуществление автоматического разделения зон регулирования.
- 3. Особенности настройки контура регулирования тока возбуждения, структурная схема контура регулирования тока возбуждения и потока двигателя.
 - 4. Настройка датчика ЭДС двигателя.
- 5. Оценка качества динамических свойств системы двухзонного регулирования скорости.
 - 6. Компенсация нелинейностей, связанных с двухзонным регулированием.
- 7. Особенности работы системы двухзонного регулирования при пуске под отсечку и от задатчика интенсивности.

Тестовые вопросы к лабораторной работе № 7 «Исследование позиционного АЭП»

- 1. Структурная схема трехконтурной системы регулирования.
- 2. Особенности работы позиционной САР при малых, средних и больших перемещениях.
 - 3. Фазовые характеристики при отработке перемещений.
 - 4. Оценка качества статических и динамических свойств позиционной САР.

Тестовые вопросы к лабораторным работам. 8 семестр.

Тестовые вопросы к лабораторной работе № 1 «Исследование скалярной системы регулирования ПЧ-АД», № 2 «Исследование скалярной системы регулирования ПЧ-АД с регулятором скорости», № 3 «Исследование скалярной системы регулирования ПЧ-АД для текстильной промышленности»

- 1. Какие основные законы частотного регулирования?
- 2. Какая система управления относится к скалярной?
- 3. Как настраивается функциональный блок U\f?
- 4. Каким образом осуществляется токовая отсечка в системе скалярного управления?
- 5. Как осуществляется компенсация скольжения?
- 6. Как осуществляется компенсация падения напряжения в статорной цепи?
- 7. Как изменяется вид механических характеристик при изменении коэффициентов компенсации?
- 8. Какой вид имеет механическая характеристика в системе с регулятором скорости (обратной связью по скорости)?

Тестовые вопросы к лабораторной работе № 4 «Исследование систем векторного управления ПЧ-АД», № 5 «Исследование бездатчиковой системы векторного управления ПЧ-АД», № 6 «Исследование системы векторного управления моментом ПЧ-АД»

- 1. В чем отличие системы векторного управления от системы скалярного управления?
- 2. С какой целью в системах векторного управления применяют координатные преобразователи?
- 3. Как настраивают контуры регулирования тока статора в системах векторного управления?
- 4. Как определяют потокосцепление статора?
- 5. Как определяют потокосцепление ротора?
- 6. Как выполняется построение контура регулирования скорости?
- 7. Как осуществляется настройка контура потокосцепления?
- 8. Как строится система управления с косвенной ориентацией по вектору потокосцепления ротора АД?
- 9. Вид механических характеристик в системе векторного управления, влияние настроек на вид механической характеристики?
- 10. Укажите достоинства и недостатки систем векторного управления АД без датчика скорости?

7. Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Структурный элемент компетенции	Планируемые результа- ты обучения	Оценочные средства
		етры оборудования объектов профессио-
Знать	 Нормативные документы по монтажу, наладке и ремонту вводимого в эксплуатацию электроэнергетического оборудования; Технические характеристики элементов, входящих в систему управления вводимого в эксплуатацию электроэнергетического оборудования; Нормативные документы по монтажу, наладке и ремонту и технические характеристики элементов, входящих в систему управления вводимого в эксплуатацию электроэнергетического и электротехнического и электротехнического оборудования 	Контрольные вопросы для подготовки к экзамену — В функции каких основных параметров выполняется построение релейно — контакторных систем управления электроприводов? — Как осуществляется управление пуско — тормозными режимами электроприводов в функции времени? — Как осуществляется управление пуско — тормозными режимами электроприводов в функции скорости (ЭДС)? — Как осуществляется управление пуско — тормозными режимами электроприводов в функции тока (момента)? — Что такое защита и блокировка в схемах управления электроприводов? — Какие виды защит применяются в схемах управления электроприводов? — Как рассчитать уставки основных защит? — Как выполнить переход от релейно — контакторной схемы управления к бесконтактной? — Какие функциональные элементы применяются в программируемых контроллерах для реализации схем управления пуско — тормозными режимами электроприводов? — Какая жесткость механической характеристики обеспечивается при помощи отрицательной обратной связи по напряжению? — Какая жесткость механической характеристики обеспечивается при помощи отрицательной обратной связи по скорости? — Какие механической характеристики моно получить, применяя положительную обратную связь по якорному току? — Принцип работы САР с положительной обратной связью по току электродвигателя и токовой отсечкой, механические характеристики электропривода? — Принцип построения систем подчиненного регулирования с последовательной коррекцией, выбор передаточной функции

Структурный элемент компетенции	Планируемые результа- ты обучения	Оценочные средства
		регулятора для получения оптимальных переходных процессов — Контур регулирования якорного тока, настройка на получение оптимального переходного процесса — Ограничение координат в системах подчиненного регулирования — Ограничение ускорения в системах подчиненного регулирования — Необходимость компенсации влияния противо ЭДС электродвигателя на работу токового контура в системе подчиненного регулирования, принципы компенсации. — Необходимость учета влияния прерывистого режима работы тиристорного преобразователя на работу токового контура в системе подчиненного регулирования, применение адаптивного регулирования, применение адаптивного регулятора тока якоря. — Необходимость учета влияния прерывистого режима работы тиристорного преобразователя на работу токового контура в системе подчиненного регулирования, применение двойного регулятора тока якоря. — Система подчиненного регулирования с П — РС и ПИ - РТ, принцип работы, статические и динамические характеристики. — Система подчиненного регулирования с ПИ — РС и ПИ - РТ, принцип работы, статические и динамические характеристики. — Система подчиненного регулирования положением механизма, принцип работы, статические и динамические характеристики. — Двухзонная система подчиненного регулирования, принцип работы, настройка контура регулирования скорости, необходимость применения множительно — делительных и делительных устройств, статические и динамические характеристики.
		 Двухзонная система подчиненного регулирования, принцип работы, настройка контура регулирования ЭДС электродвигателя, необходимость применения делительных устройств, статические и динамические характеристики. В чем заключается отличие позицион-

Структурный элемент компетенции	Планируемые результа- ты обучения	Оценочные средства
		ных систем от следящих; — Какие основные режимы работы отрабатывает позиционный электропривод? — Как происходит отработка малых перемещений? — Как происходит отработка средних перемещений? — Как происходит отработка больших перемещений? — С какой целью реализуется нелинейный регулятор положения? — Что влияет на точность позиционирования? — Как обеспечить заданную точность позиционирования? — Какие особенности преобразователей частоты, применяемых в электроприводе переменного тока? — Какие механические характеристики электрических машин можно получить при реализации основных законов частотного регулирования? — Как выполняется построение систем скалярного управления электроприводов переменного тока? — Каковы принципы построения систем векторного управления электроприводов переменного тока? — Какие основные элементы входят в состав систем векторного управления? — Какие структурные схемы применяют для реализации систем векторного управления?
Уметь	 Рассчитывать параметры объектов регулирования и выполнять настройку контуров регулирования, вводимого в эксплуатацию электроэнергетического и электротехнического оборудования; Аргументированно обосновывать применение структур регуляторов и контуров регу- 	1. Проверка соединений жил контрольных кабелей. 2. Приемы работы с аналоговыми и цифровыми измерительными приборами 3. «Индуктивные» методы наладки: 3.1. Проверка установки щеток на «нейтраль» в двигателе постоянного тока. 3.2. Определение полярности обмоток асинхронного двигателя с к.з. ротором. 4. Фазировка тиристорных преобразователей. 5. Электронное моделирование основных динамических звеньев и элементов систем электроприводов.

Структурный элемент компетенции	Планируемые результа- ты обучения	Оценочные средства
Владеть	лирования для обеспечения требуемого качества статических и динамических показателей системы управления, вводимого в эксплуатацию электроэнергетического оборудования; — Применять полученные знания в профессиональной деятельности; — Основными методиками расчета и настройки систем регулирования, вводимого в эксплуатацию электроэнергетического и электротехнического и электротехнического оборудования; — Основными методами решения задачанализа и синтеза систем управления с заданными характеристиками; — Способами совершенствования профессиональных знаний и умений путем использования информационной среды;	1. Проверка соединений жил контрольных кабелей. 2. Приемы работы с аналоговыми и цифровыми измерительными приборами 3. «Индуктивные» методы наладки: 3.1. Проверка установки щеток на «нейтраль» в двигателе постоянного тока. 3.2. Определение полярности обмоток асинхронного двигателя с к.з. ротором. 4. Фазировка тиристорных преобразователей. 5. Электронное моделирование основных динамических звеньев и элементов систем электроприводов.

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Изучение дисциплины «Автоматизированный электроприводов» длится в течении 2 семестров. После первого семестра проводиться экзамен, охватывающий изученные темы. После второго семестра изучение учебной дисциплины «Автоматизированный электроприводов» завершается зачетом с оценкой и сдачей курсовой работы.

Зачет с оценкой является формой итогового контроля знаний и умений, полученных на лекциях, семинарских, практических занятиях и процессе самостоятельной работы.

Зачет с оценкой дает возможность преподавателю:

- выяснить уровень освоения обучающимися программы учебной дисциплины;
- оценить формирование определенных знаний и навыков их использования, необходимых и достаточных для будущей самостоятельной работы;

 оценить умение обучающихся творчески мыслить и логически правильно излагать ответы на поставленные вопросы.

Зачет с оценкой проводится в форме собеседования, в процессе которого обучающийся отвечает на вопросы преподавателя.

Литература для подготовки к зачету с оценкой рекомендуется преподавателем. Для полноты учебной информации и ее сравнения лучше использовать не менее двух учебников. Обучающийся вправе сам придерживаться любой из представленных в учебниках точек зрения по спорной проблеме (в том числе отличной от преподавателя), но при условии достаточной научной аргументации.

Основным источником подготовки к зачету с оценкой является конспект лекций, где учебный материал дается в систематизированном виде, основные положения его детализируются, подкрепляются современными фактами и информацией, которые в силу новизны не вошли в опубликованные печатные источники. В ходе подготовки к зачету с оценкой обучающимся необходимо обращать внимание не только на уровень запоминания, но и на степень понимания излагаемых проблем.

Зачет с оценкой проводится по вопросам, охватывающим весь пройденный материал. По окончании ответа преподаватель может задать обучающемуся дополнительные и уточняющие вопросы. Положительным также будет стремление студента изложить различные точки зрения на рассматриваемую проблему, выразить свое отношение к ней, применить теоретические знания по современным проблемам экологии. Результаты зачета с оценкой объявляются студенту непосредственно после окончания его ответа в день сдачи.

Курсовая работа выполняется под руководством преподавателя, в процессе ее написания обучающийся развивает навыки к научной работе, закрепляя и одновременно расширяя знания, полученные при изучении курса «Автоматизированный электроприводов». При выполнении курсовой работы обучающийся должен показать свое умение работать с нормативным материалом и другими литературными источниками, а также возможность систематизировать и анализировать фактический материал и самостоятельно творчески его осмысливать.

В процессе написания курсовой работы обучающийся должен разобраться в теоретических вопросах избранной темы, самостоятельно проанализировать практический материал, разобрать и обосновать практические предложения.

Критерии оценки (в соответствии с формируемыми компетенциями и планируемыми результатами обучения):

- на оценку «отлично» (5 баллов) обучающийся должен показать высокий уровень знаний не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам, оценки и вынесения критических суждений;
- на оценку «хорошо» (4 балла)— обучающийся должен показать знания не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам;
- на оценку «удовлетворительно» (3 балла) обучающийся должен показать знания на уровне воспроизведения и объяснения информации, интеллектуальные навыки решения простых задач;
- на оценку «неудовлетворительно» (2 балла) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.

8. Учебно-методическое и информационное обеспечение дисциплины

а) Основная литература:

- 1. Тимохин, А. Н. Моделирование систем управления с применением MatLab: учеб. пособие / А.Н. Тимохин, Ю.Д. Румянцев; под ред. А.Н. Тимохина. Москва: ИНФРА-М, 2017. 256 с. + Доп. материалы [Электронный ресурс; Режим доступа: https://new.znanium.com]. —(Высшее образование: Бакалавриат). www.dx.doi.org/10.12737/14347. ISBN 978-5-16-010185-9. Текст: электронный. URL: https://znanium.com/catalog/product/590240 (дата обращения: 24.10.2020). Режим доступа: по подписке.
- 2. Неменко, А. В. Механические компоненты электропривода машин: расчет и проектирование: Учебное пособие/Неменко А.В. Москва : Вузовский учебник, НИЦ ИНФРА-М, 2015. 307 с. ISBN 978-5-9558-0441-5. Текст : электронный. URL: https://znanium.com/catalog/product/508528 (дата обращения: 24.10.2020). Режим доступа: по подписке.

б) Дополнительная литература:

- 1. **Фролов, Ю. М**. Регулируемый асинхронный электропривод: учебное пособие / Ю. М. Фролов, В. П. Шелякин. 2-е изд., стер. Санкт-Петербург: Лань, 2018. 464 с. ISBN 978-5-8114-2177-0. Текст: электронный // Лань: электроннобиблиотечная система. URL: https://e.lanbook.com/book/102251 (дата обращения: 07.11.2020). Режим доступа: для авториз. пользователей.
- 2. **Ившин, В. П., Перухин, М. Ю.** Современная автоматика в системах управления технологическими процессами [Электронный ресурс]: Учеб. пособие.- М.: ИНФРА-М, 2014.- 400 С. (Высшее образование. Бакалавриат)/- Режим доступа: http://znanium.com/bookread.php?book=430323 .- Заглавие с экрана- ISBN 978-5-16-005162-8

в) Методические указания:

- 1.Методические указания для студентов по подготовке к практическим работам/составители: **Шохин, В.В.**; Магнитогорский гос. технический ун-т им. Г. И. Носова. Магнитогорск: МГТУ им. Г. И. Носова, 2016. 57 с. : ил., табл. Текст : непосредственный.
- 2.Методические указания для студентов по подготовке к практическим работам / Составители: **Косматов, В. И.** Магнитогорский гос. технический ун-т им. Г. И. Носова. Магнитогорск: МГТУ им. Г. И. Носова, 2013. 79 с. : ил., табл. Текст: непосредственный.
- 2. Методические указания для студентов по подготовке к практическим работам / Составители: Линьков, С. А. Магнитогорский гос. технический ун-т им. Г. И. Носова. Магнитогорск: МГТУ им. Г. И. Носова, 2017. 102 с. : ил., табл. Текст: непосредственный.

г) Программное обеспечение и Интернет-ресурсы: Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно
MathWorks MatLab v.2014 Classroom License	К-89-14 от 08.12.2014	бессрочно
MathCAD v.15 Education University Edition	Д-1662-13 от 22.11.2013	бессрочно

MS Office Visio Prof 2013(для клас- сов)	Д-1227-18 от 08.10.2018	11.10.2021
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021
7Zip	свободно распространяемое ПО	бессрочно
FAR Manager	свободно распространяемое ПО	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Электронная база периодических изданий East View Information Services, OOO	
Информационная система - Единое окно доступа к информационным ресурсам	URL: http://window.edu.ru/
Национальная информационно- аналитическая система – Российский индекс научного цитирования (РИНЦ)	
Поисковая система Академия Google (Google Scholar)	URL: https://scholar.google.ru/
Электронные ресурсы библиотеки МГТУ им. Г.И. Носова	http://magtu.ru:8085/marcweb2/Default.asp
Университетская информационная система РОССИЯ	https://uisrussia.msu.ru
Международная наукометрическая реферативная и полнотекстовая база данных научных изданий «Web of science»	
Международная реферативная и полнотекстовая справочная база данных научных изданий «Scopus»	

9 Материально-техническое обеспечение дисциплины (модуля) Материально-техническое обеспечение дисциплины включает:

Тип и название аудитории	Оснащение аудитории
Учебные аудитории для проведения занятий лекционного типа	мультимедийные средства хранения, передачи и представления информации
Учебные аудитории для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации	Доска, мультимедийный проектор, экран
Учебные аудитории для самостоятельной работы обучающихся	Персональные компьютеры с ПО из п. 8(г), выходом в Интернет и с доступом в электронную информационно-образовательную среду университета