

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ:

Директор института энергетики и автоматизированных систем С.И. Лукьянов 2018 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ВОДОПОДГОТОВКИ

Направление подготовки 13.03.01 Теплоэнергетика и теплотехника

Профиль программы Энергообеспечение предприятий

Уровень высшего образования - бакалавриат

Программа подготовки – академический бакалавриат

Форма обучения Заочная

Институт Кафедра Курс Энергетики и автоматизированных систем Теплотехнических и энергетических систем 3

Магнитогорск 2018 г. Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 13.03.01 Теплоэнергетика и теплотехника, утвержденного приказом МОиН РФ от 01.10.2015 № 1081.

Рабочая программа рассмотрена и од и энергетических систем «25» сентября 20	добрена на заседании кафедры теплотехнических 018 г., протокол № 2.
	Зав. кафедрой Е.Б. Агапитов /
Рабочая программа одобрена методи матизированных систем «26» сентября 20	ической комиссией института энергетики и авто- 018 г., протокол № 1.
	Председатель/ С.И. Лукьянов /
Рабочая программа составлена:	ст. преподаватель кафедры ТиЭС
	<u> Дриго</u> / М.С. Соколова /
Рецензент:	зам. начальника ЦЭСТ ПАО «ММК», к.т.н.
	/ В.Н. Михайловский /

Лист регистрации изменений и дополнений

Раздел	Краткое содержание	Дата, №	Подпись
РПД (модуля)	изменения/дополнения	протокола заседания	зав.кафедрой
9	Актуализация материально-	№ 2	11
8	Актуализация учебно-методического и информационного обеспечения дисциплины	№1 1.09.2020 г.	
To the state of th			
		1	
		turti	
	РПД (модуля)	РПД изменения/дополнения 9 Актуализация материально- технического обеспечения дисциплины 8 Актуализация учебно-методического и информационного обеспечения	РПД изменения/дополнения протокола заседания кафедры 9 Актуализация материально- №2 технического обеспечения дисциплины 8.10.2019 № 8 Актуализация учебно-методического и информационного обеспечения 1.09.2020 г.

1. Цели освоения дисциплины (модуля)

Целями освоения дисциплины «Физико-химические основы водоподготовки» являются изучение систем водоподготовки энергообъектов промышленных предприятий; изучение методов расчета систем водоподготовки на стадиях проектирования; изучение методов подготовки добавочной и подпиточной воды; изучение методов обработки охлаждающей воды оборотных систем водоснабжения; приобретение знаний по организации и обеспечению требуемых водно-химических режимов объектов промышленной теплоэнергетики; изучение методов обработки воды для различных условий работы теплоэнергетического оборудования; изучение общих схем технологического процесса при применении различных методов обработки воды для котельных и тепловых электростанций.

2. Место дисциплины (модуля) в структуре образовательной программы подготовки бакалавра

Дисциплина «Физико-химические основы водоподготовки» входит в вариативную часть блока 1 образовательной программы.

Для изучения дисциплины необходимы знания, умения и владения, сформированные в результате изучения дисциплин:

- «Общая и неорганическая химия» растворы, дисперсные системы, химическая термодинамика и кинетика, химическое и фазовое равновесие;
 - «Физика» механика жидкостей и газов, молекулярная физика и термодинамика;

Знания и умения студентов, полученные при изучении данной дисциплины, будут необходимыми для освоения дисциплин: Б1.В.05 «Источники и системы теплоснабжения», Б1.В.10 «Технологические энергоносители предприятий», Б1.В.13 «Энергосбережение в теплоэнергетике и теплотехнологии», Б1.В.ДВ.07.01 «Тепловые электрические станции».

Знания, полученные при изучении данной дисциплины, используются при расчетах систем ВПУ ТЭС и АЭС, а также при выполнении выпускной квалификационной работы.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины «Физико-химические основы водоподготовки»» обучающийся должен обладать следующими компетенциями:

Структурный	
элемент	Планируемые результаты обучения
компетенции	
ПК-9 способности	ью обеспечивать соблюдение экологической безопасности на произ-
водстве и планир	овать экозащитные мероприятия и мероприятия по энерго- и ресур-
сосбережению на	производстве
	Основные методы соблюдения экологической безопасности на произ-
Знать	водстве, способы планирования экозащитных мероприятий и меропри-
Энать	ятий по энерго- и ресурсосбережению в области водоподготовки на
	производстве.
	Объяснять, выявлять и строить типичные модели решения экологиче-
Уметь	ских и энергосберегающих задач. Выявлять способы эффективного
J MC16	решения мероприятий по энерго- и ресурсосбережению в области во-
	доподготовки.
	Основными методами решения задач в области водоподготовки в энер-
Владеть	гетике и экозащитных мероприятий, энерго- и ресурсосбережения, спо-
	собами совершенствования профессиональных знаний, способами де-
	монстрации и умения анализировать ситуацию.
ПК-10 готовности	ью к участию в работах по освоению и доводке технологических

Структурный	
элемент	Планируемые результаты обучения
компетенции	
процессов	
Знать	Специфику того, как участвовать в работах по освоению и доводке технологических процессов в области водоподготовки по известным правилам и инструкциям. Современные технологии выполнения работ по освоению и доводке технологических процессов в области водоподготовки.
Уметь	Организовывать свой труд, оценивать результаты своей деятельности при выполнении работ по доводке и освоению технологических процессов.
Владеть	Приемами и методами анализа работ по освоению и доводке технологических процессов в области водоподготовки по известным правилам и инструкциям. Навыками применения прогрессивных современных технологий для выполнения работ по освоению и доводке технологических процессов в области водоподготовки.

4 Структура и содержание дисциплины (модуля) для заочной формы обучения

Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108 акад. часов, в том числе:

контактная работа – 9,7 акад. часов:

- 1. аудиторная 8 акад. часов;
- 2. внеаудиторная 1,7 акад. час; самостоятельная работа 94,4 акад. часа. подготовка к зачету с оценкой 3,9 акад. час.

		Аудиторная контактная работа (в акад. часах)		Самостоятель- ная работа (в акад. часах)				
Раздел/тема дисциплины		лекции	лаборат. практич. занятия занятия		Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточ- ной аттестации	Код и структурный элемент компетенции	
1. Раздел 1. Источники загрязнения пароводяного тракта ТЭС.	3							
1.1. Тема 1. Технологические показатели качества воды.	3	1	-	-	10	Проработка лекцион- ного материала	Наличие конспектов лекций	ПК-9 – зув; ПК-10 – зув
Итого по разделу 1	3	1	-	-	10			
 Раздел 2. Предварительная очистка воды на ВПУ. 	3							
2.1. Тема 1. Методы осаждения: коагуляция, известкование.	3	1	-	1/1И	11		Наличие конспектов лекций; проверка выполнения курсовой работы.	ПК-9 – зув; ПК-10 – зув
2.2. Тема 2. Очистка от взвешенных примесей методом фильтрования.	3	-	-	-	10	ного материала.	Наличие конспектов лекций; проверка выполнения курсовой работы.	ПК-9 – зув; ПК-10 – зув
Итого по разделу 2	3	1	-	1/1И	21			
3. Раздел 3. Обработка воды методами ионного обмена.	3							
3.1. Тема 1. Ионообменные материалы. Na-катионирование, Н-катионирование, технология, регенерация фильтров.	3	1	ı	1/1И	11	Проработка лекцион- ного материала	Наличие конспектов лекций	ПК-9 — зув; ПК-10 — зув
3.2. Тема 2. Анионирование воды. Оборудование, технологические схемы умягчения и химического обессоливания.	3	-	ı	ı	11	Проработка лекцион- ного материала	Наличие конспектов лекций	ПК-9 — зув; ПК-10 — зув
Итого по разделу 3	3	1	-	1/1И	22			
4. Раздел 4. Удаление из воды растворенных газов.	3							

		Аудиторная контактная работа (в акад. часах)						
Раздел/тема дисциплины		лекции	лаборат. занятия	практич. занятия	Самостоятельная работа (в акад. часах)	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточ- ной аттестации	Код и структурный элемент компетенции
4.1. Тема 1. Методы удаления растворенных газов из воды.	3	-	-	-	10	ного материала.	Наличие конспектов лекций; проверка выполнения курсо- вой работы.	ПК-9 – зув; ПК-10 – зув
Итого по разделу 4	3	-	-		10			
5. Раздел 5. Безреагентные методы подготовки воды в схемах ВПУ.	3							
5.1. Тема 1. Термическое обессоливание воды в испарителях.	3	-	-	-	10	ного материала.	Наличие конспектов лекций; проверка выполнения курсовой работы.	ПК-9 – зув; ПК-10 – зув
5.2. Тема 2. Мембранные методы обработки воды, обратный осмос.	3	1	-	1/1И	10		Наличие конспектов лекций; проверка выполнения курсовой работы.	ПК-9 – зув; ПК-10 – зув
Итого по разделу 5	3	1	-	1/1И	20			
б. Раздел б.Обработка охлаждающей воды оборотных систем водоснабжения.	3							
6.1. Тема. Методы обработки охлаждающей воды в оборотных системах водоснабжения.	3	-	-	1/1И	11,4	ного материала. Решение курсовой	Наличие конспектов лекций; проверка выполнения курсовой работы.	ПК-9 – зув; ПК-10 – зув
Итого по разделу 6	3	-	-	1/1И	11,4			
Итого по дисциплине	3						Зачет с оценкой, курсовая работа	

5. Образовательные и информационные технологии

Для решения предусмотренных видов учебной работы при изучении дисциплины «Физико-химические основы водоподготовки» в качестве образовательных технологий используются как традиционные, так и модульно-компетентностные технологии.

Целями образовательных и информационных технологий являются:

- активизирование мышления обучающихся;
- формирование интереса к изучаемому материалу;
- развитие интеллекта и творческих способностей обучающихся.

Лекционный материал закрепляется на лабораторных работах, где применяется совместная деятельность студентов в группе, направленная на решение общей задачи путем сложения результатов индивидуальной работы членов группы. Для развития и совершенствования коммуникативных способностей студентов организуются практические занятия в виде дискуссий, анализа реальных проблемных ситуаций и междисциплинарных связей из различных областей в контексте решаемой задачи. Передача необходимых теоретических знаний и формирование представлений по курсу происходит с применением мультимедийного оборудования. На занятиях внедряются такие информационные технологии, как использование электронных изданий (чтение лекций с использованием слайд-презентаций, электронного курса лекций, графических объектов, видео- аудио- материалов (через Интернет). Самостоятельная работа стимулирует студентов к самостоятельной проработке тем в процессе написания рефератов, подготовки к дискуссиям, к контрольным работам и тестированию. Этапы познавательной деятельности студентов предполагают последовательно постановку интересующей их проблемы, выдвижение гипотез при ее решении, выражение решения гипотезы научным языком, а также реализация продукта в виде публичного выступления, доклада или презентации. Корректировки образовательного процесса проходят с использованием обратной связи между преподавателем и обучающимися на консультациях, а также при текущем и промежуточном контроле.

6. Учебно-методическое обеспечение самостоятельной работы обучающихся

Самостоятельная работа стимулирует студентов к проработке тем в процессе подготовки к практическим занятиям и осуществляется:

- во время аудиторных практических занятий;
- под контролем преподавателя в форме плановых консультаций.

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам усвоения дисциплины включают в себя:

- тесты для самопроверки;
- курсовую работу.

6.1. Перечень вопросов для тестирования и текущего контроля

1	Процесс подготовки теплоносителя у источника теплоты состоит из
1	трех последовательных операций:
A	1) механическая очистка; 2) деаэрация; 3) известкование
В	1) метод осаждения; 2) осветление; 3) деаэрация
С	1) механическая очистка; 2) химическая обработка; 3) деаэрация
D	1) подпитка; 2) периодическая продувка; 3) деаэрация

2	Удаление газов из питательной или подпиточной воды называют:
A	Десорбцией
В	Деаэрацией
С	Декарбонизацией

	T
D	Диссоциацией
3	Величина подпитки закрытых систем теплоснабжения принимается равной:
A	0,25 % в час от объема воды в системе теплоснабжения
В	0,25 % в час от объема воды в котлоагрегатах
С	0,25 % в час от объема деаэраторного бака
D	0,75 % в час от объема воды в трубопроводах
4	При каком значении рН происходит смена окраски индикатора ФФ (фенолфталеина), при определении щелочности воды Щф по ФФ:
A	при рН ~ 4,0
В	при рН ~ 5,5
С	при рН ~ 7,0
D	при рН ~ 8,3
5	При каком значении рН происходит смена окраски индикатора МО
	(метилоранж), при определении щелочности воды Щм по МО:
A	при рН ~ 4,0
В	при рН ~ 5,5
C	при рН ~ 7,0
D	при рН ~ 8,3
-	Mr. a mark and a same and a same
6	Жесткостью воды называют:
A	Суммарное количество содержащихся в воде ионов ОН - и НСО ₃ - ,
	выраженное в миллиграмм-эквивалентах в килограмме или литре
В	Суммарное количество содержащихся в воде катионов H ⁺ и Na ⁺ , выраженное в миллиграмм-эквивалентах в килограмме или литре
	Суммарное количество содержащихся в воде катионов Ca^{2+} и Mg^{2+} , выра-
C	женное в миллиграмм-эквивалентах в килограмме или литре
_	Суммарное количество содержащихся в воде ионов Н ⁺ и ОН ⁻ , выраженное
D	в миллиграмм-эквивалентах в килограмме или литре
7	Временной жесткостью называют
A	Карбонатную жесткость
В	Некарбонатную жесткость
С	Сульфатную жесткость
D	Кальциевую жесткость
8	Процесс определения жесткости воды заключается
A	В постепенном добавлении к отмеренной порции воды 0,1 н. или 0,01 н.
	раствора NaCl
В	В постепенном добавлении к отмеренной порции воды 0,1 н. или 0,01 н.
	раствора аммиачно-буферной смеси
C	В постепенном добавлении к отмеренной порции воды 0,1 н. или 0,01 н.
	раствора трилона Б
D	В постепенном добавлении к отмеренной порции воды 0,1 н. или 0,01 н.
	раствора кислоты
0	Произведения по научаети воду у зачативаета
9	Процесс определения щелочности воды заключается В постепенном добавлении к отмеренной порции воды 0,1 н. или 0,01 н.
A	в постепенном дооавлении к отмеренной порции воды 0,1 н. или 0,01 н. раствора NaCl
	pacibopa NaCi

),01 н.),01 н.),01 н.
),01 н.
),01 н.
[
I
енера-
м
рации,
в реге-
т про-
т про-
т про-
- -

С	Снижение степени использования ДОЕ (динамической обменной емкости)
D	Снижение удельного расхода воды через фильтр

17	Наиболее экономичный температурный режим работы источника
	теплоты по расходу теплоносителя на подпитку теплосети
A	95/70
В	105/70
С	130/70
D	150/70

18	Температура воды после химводоочистки, на входе в деаэратор долж- на быть
A	$\sim 50^{\circ} \mathrm{C}$
В	~ 55° C
С	$\sim 60^{\circ} {\rm C}$
D	$\sim 65^{\circ} \mathrm{C}$

19	Общая жесткость воды для котлов с естественной циркуляцией не должна превышать
A	1 мкг-экв/кг
В	10 мкг-экв/кг
С	100 мкг-экв/кг
D	1 мг-экв/кг

20	Значение рН воды для котлов с естественной циркуляцией не должно превышать
A	$pH = 5.5 \pm 0.1$
В	$pH = 7.0 \pm 0.1$
С	$pH = 8.3 \pm 0.1$
D	$pH = 9,1 \pm 0,1$

21	Содержание растворенного кислорода в воде после деаэратора для котлов с естественной циркуляцией не должно превышать
A	0,1 мкг/кг
В	1,0 мкг/кг
С	10,0 мкг/кг
D	100 мкг/кг

22	Значение рН воды для подпитки тепловых сетей при закрытой системе теплоснабжения
A	$pH = 5.5 \pm 0.1$
В	$pH = 7.0 \pm 0.1$
С	$pH = 8.3 \pm 0.1$
D	$pH = 9.0 \pm 0.1$

6.2. Перечень вопросов для подготовки к зачету с оценкой

- 1. Источники и характеристика загрязнений пароводяного тракта ТЭС.
- 2. Основные требования к качеству питательной воды паровых котлов и подпиточной воды тепловых сетей.
 - 3. Классификация и характеристика примесей природных вод.
 - 4. Технологические показатели качества воды.
 - 5. Технологические схемы предварительной очистки воды.

- 6. Физико-химические основы коагуляции воды.
- 7. Известкование воды.
- 8. Магнезиальное обескремнивание воды.
- 9. Конструкции осветлителей.
- 10. Физико-химические основы фильтрования в фильтрах насыпного типа.
- 11. Фильтрующие материалы осветлительных фильтров.
- 12. Классификация и конструкции осветлительных фильтров.
- 13. Технология осветления воды в фильтрах.
- 14. Ионообменные материалы, строение, структура.
- 15. Технологические свойства ионообменных материалов.
- 16. Физико-химические основы ионного обмена.
- 17. Технология Na-катионирования воды.
- 18. Регенерация Na-катионитных фильтров.
- 19. Двухступенчатое Na-катионирование воды.
- 20. Технология Н-катионирования воды.
- 21. Регенерация Н-катионитных фильтров.
- 22. Анионирование воды.
- 23. Конструкции и эксплуатация ионитных фильтров.
- 24. Схема параллельного Н-Na-катионирования.
- 25. Схема последовательного Н-Nа-катионирования.
- 26. Схема последовательного H-Na-катионирования с «голодной» регенерацией H-катионитных фильтров.
 - 27. Схемы химического обессоливания воды.
 - 28. Теоретические основы термической деаэрации.
 - 29. Конструкции термических деаэраторов.
 - 30. Декарбонизация воды.
 - 31. Химические методы удаления газов из воды.
- 32. Термическое обессоливание воды. Схема одноступенчатой испарительной установки.
 - 33. Схема многоступенчатой испарительной установки.
 - 34. Конструкции испарителей (кипящего типа, мгновенного вскипания).
 - 35. Причины загрязнения пара и способы уменьшения загрязнения.
 - 36. Физические методы уменьшения накипеобразования в испарителях.
 - 37. Химические методы уменьшения накипеобразования в испарителях.
 - 38. Физико-химические методы уменьшения накипеобразования в испарителях.
 - 39. Обработка охлаждающей воды. Рекарбонизация.
- 40. Методы уменьшения биологических отложений на поверхностях теплообменников и трубопроводов.
 - 41. Мембранные методы обработки воды.
 - 42. Сущность метода обратного осмоса и его применение.

Курсовая работа выполняется обучающимся самостоятельно под руководством преподавателя. При выполнении курсовой работы обучающийся должен показать свое умение работать с нормативным материалом и другими литературными источниками, а также возможность систематизировать и анализировать фактический материал и самостоятельно творчески его осмысливать.

В начале изучения дисциплины преподаватель предлагает обучающимся на выбор перечень тем курсовых работ. Обучающийся самостоятельно выбирает тему курсовой работы. Совпадение тем курсовых работ у студентов одной учебной группы не допускается. Утверждение тем курсовых работ проводится ежегодно на заседании кафедры.

После выбора темы преподаватель формулирует задание по курсовой работе и рекомендует перечень литературы для ее выполнения. Исключительно важным является использование информационных источников, а именно системы «Интернет», что даст возможность

обучающимся более полно изложить материал по выбранной им теме.

В процессе написания курсовой работы обучающийся должен разобраться в теоретических вопросах заданной тематики, самостоятельно проанализировать практический материал, разобрать и обосновать практические предложения.

Преподаватель, проверив работу, может возвратить ее для доработки вместе с письменными замечаниями. Студент должен устранить полученные замечания в установленный срок, после чего работа окончательно оценивается.

Курсовая работа должна быть оформлена в соответствии с СМК-О-СМГТУ-42-09 «Курсовой проект (работа): структура, содержание, общие правила выполнения и оформления».

Примерный перечень тем курсовых работ и пример задания представлены в разделе 7 «Оценочные средства для проведения промежуточной аттестации».

7 Оценочные средства для проведения промежуточной аттестации

Промежуточная аттестация имеет целью определить степень достижения запланированных результатов обучения по дисциплине (модулю) «Физико-химические основы водоподготовки» и проводится в форме зачета с оценкой.

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства	
ПК-9 способность и ресурсосбереже	IK-9 способностью обеспечивать соблюдение экологической безопасности на производстве и планировать экозащитные мероприятия и мероприятия по энер ресурсосбережению на производстве		
Знать	Основные методы соблюдения экологической безопасности на производстве, способы планирования экозащитных мероприятий и мероприятий по энерго- и ресурсосбережению в области водоподготовки на производстве.	 Перечень вопросов: 1. Чем обусловлена цветность воды и в чем ее измеряют? 2. Как количественно оценивают запах и вкус воды? 3. В каком виде находится в воде диоксид углерода? 4. Что такое окисляемость воды? 5. Чем выражается степень загрязнения воды органическими соединениями? 6. Что такое полный ВПК и ВПКS? 7. Что такое ХПК? 8. В каких пределах варьируется активная реакция природных вод? 9. Как подразделяются гидрофлора водных объектов? 10. Чем определяется гидрофлора водных объектов? 11. Что характеризует величина рН? 12. Примеси сточных вод ТЭС. Их влияние на окружающую среду. 13. Основное назначение известкования. 14. Как изменяются показатели качества воды после известкования? 15. На какой стадии водоподготовки проводят известкования? 16. Какое вещество можно применять в качестве коагулянта при совместном проведении коагуляции и известкования и почему? 17. Для чего в процессе известкования добавляют каустический магнезит? 18. Как влияет подогрев воды на эффективность процессов осаждения и почему? 19. За счет чего прои известковании происходит снижение щелочности? 20. Назовите методы реагентного умягчения воды, кроме коагуляции и известкования. 21. За счет чего происходит снижение сухого остатка? 22. Что предетавляет соби известковое молко? 23. Что предетавляет соби известковое молко? 24. Как происходит регенерация H* и Na*-катионировании. 25. Как происходит умягчение воды при параллельном, последовательном и совместном H* и Na*-катионировании? 26. Почему при Na*-катионировании увеличивается солесодержание? 27. На чем основана обработка воды методами ионного обмена? 28. Чем определяется продолжительность рабочего цикла ионитных фильтров? 29. Какие материалы используют в качестве ионитов? 29. Какие материалы используют в качестве ио	

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства	
		 31. Как получают сульфоуголь? 32. Для чего применяют аниониты? 33. Назовите некоторые марки катионитов и анионитов. 34. Обменная емкость ионита составляет 500 г-экв/м³. Что это означает? 35. Что такое голодная регенерация и для чего она применяется? 36. Что такое пептизация ионитов? 	
Уметь	Объяснять, выявлять и строить типичные модели решения экологических и энергосберегающих задач. Выявлять способы эффективного решения мероприятий по энерго- и ресурсосбережению в области водоподготовки.	Применение комплексных методов решения экологических задач. Например, произвести термическое обессоливание воды: 200-300 мл воды подвергнуть на лабораторной испарительной установке (рис. 3) термическому обессоливанию. Дистиллят собрать в сборник. В дистилляте определить жесткость и солесодержание.	
		Рис. 3. Схема лабораторной испарительной установки: 1 - колба с исходной водой; 2 - холодильник; 3 - сборник дистиллята	
Владеть	Основными методами решения задач в области водоподготовки в энергетике и экозащитных мероприятий, энерго- и ресурсосбережения, способами совершенствования профессиональных знаний, способами демонстрации и умения анализировать ситуацию.		

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства	
ПК-10 готовност	ью к участию в работах по освоению и доводке те	• окисляемость; • стабильность. После коагуляции необходимо проверить окисляемость. После термического газоудаления необходимо проверить содержание O_2 и CO_2 . После термического обессоливания необходимо проверить жесткость и солесодержание. После H^+ -катионирования необходимо проверить жесткость, щелочность и солесодержание. После Na^+ -катионирования необходимо проверить жесткость, щелочность и солесодержание. ехнологических процессов	
Знать	Специфику того, как участвовать в работах по освоению и доводке технологических процессов в области водоподготовки по известным правилам и инструкциям. Современные технологии выполнения работ по освоению и доводке технологических процессов в области водоподготовки.	Перечень вопросов по современным технологиям в области водоподготовки: 1. Технологические схемы предварительной очистки воды. 2. Физико-химические основы коагуляции воды. 3. Известкование воды. 4. Магнезиальное обескремнивание воды. 5. Конструкции осветлителей. 6. Физико-химические основы фильтрования в фильтрах насыпного типа. 7. Фильтрующие материалы осветлительных фильтров. 8. Классификация и конструкции осветлительных фильтров. 9. Технология осветления воды в фильтрах. 10. Ионообменные материалы, строение, структура. 11. Технологические свойства ионообменных материалов. 12. Физико-химические основы ионного обмена. 13. Технология Nа-катионирования воды. 14. Регенерация Nа-катионирования воды. 15. Двухступенчатое Na-катионирование воды. 16. Технология H-катионирования воды. 17. Регенерация H-катионирования воды. 18. Анионирование воды. 19. Конструкции и эксплуатация ионитных фильтров. 20. Схема параллельного H-Na-катионирования. 21. Схема последовательного H-Na-катионирования. 22. Схема последовательного H-Na-катионирования. 23. Схемы химического обессоливания воды. 24. Теоретические основы термической деаэрации. 25. Конструкции термических деаэраторов. 26. Декарбонизация воды. 27. Химические методы удаления газов из воды.	

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства	
		 Термическое обессоливание воды. Схема одноступенчатой испарительной установки. Схема многоступенчатой испарительной установки. Конструкции испарителей (кипящего типа, мгновенного вскипания). Причины загрязнения пара и способы уменьшения загрязнения. Физико-химические методы уменьшения накипеобразования в испарителях. Обработка охлаждающей воды. Рекарбонизация. Методы уменьшения биологических отложений на поверхностях теплообменников и трубопроводов. Мембранные методы обработки воды. Сущность метода обратного осмоса и его применение. 	
Уметь	Организовывать свой труд, оценивать результаты своей деятельности при выполнении работ по доводке и освоению технологических процессов.	ЗАДАНИЕ. Для предложенного источника водоснабжения и норм качества воды предложить 3 схемы ВПУ с разными способами обработки воды с определением показателей качества воды после отдельных стадий ее обработки лишь для одной схемы. Пример: Источник водоснабжения - р. Иртыш. Нормы качества воды: рабочее давление: 13 МПа; Ж _о = 1 мкг-экв/л; содержание соединений железа в пересчете на Fe, мкг/кг – 20; содержание меди, мкг/кг-5; содержание растворенного кислорода, мкг/кг – 10; содержание нефтепродуктов, мг/кг-0,3; значение рН-9,1+-0,1; содержание кремниевой кислоты, мкг/кг-120).	
Владеть	Приемами и методами анализа работ по освоению и доводке технологических процессов в области водоподготовки по известным правилам и инструкциям. Навыками применения прогрессивных современных технологий для выполнения работ по освоению и доводке технологических процессов в области водоподготовки.	ПРИМЕР ЗАДАНИЯ ПО ТЕМЕ КУРСОВОЙ РАБОТЫ (ЗАДАНИЯ ПО ВАРИАНТАМ УТВЕРЖДАЮТСЯ НА ЗАСЕДАНИИ КАФЕДРЫ) Рассчитать выбранную схему ВПУ с оборудованием, числом и габаритами основного оборудования, потребляемого расхода реагентов и расходов воды на собственные нужды. Выполнить чертеж развернутой схемы ВПУ с включением основного и вспомогательного оборудования, трубопроводов, арматуры и КИП. Составить пояснительную записку со спецификацией оборудования. Пример: Схема: ИК - М - H_1 - A_1 - H_2 - D_3 - D_4 - D_4 - D_5 - D_5 - D_6	

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		нормам:
		Рабочее давление: 13 МПа.
		$\mathbf{K}_{o} = 1 \text{ мкг-экв/л.}$
		Содержание соединений железа в пересчете на Fe, мкг/кг – 20.
		Содержание меди, мкг/кг-5.
		Содержание растворенного кислорода, мкг/кг – 10.
		Содержание нефтепродуктов, мг/кг-0,3.
		Значение рН-9,1+-0,1.
		Содержание кремниевой кислоты, мкг/кг-120.

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Физико-химические основы водоподготовки» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме зачета с оценкой.

Зачет с оценкой по данной дисциплине проводится в устной форме.

Показатели и критерии оценивания зачета с оценкой:

- на оценку «отлично» (5 баллов) обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку «хорошо» (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку «удовлетворительно» (3 балла) обучающийся демонстрирует пороговый уровень сформированности компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку «неудовлетворительно» (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку «неудовлетворительно» (1 балл) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.

Курсовая работа выполняется под руководством преподавателя, в процессе ее написания обучающийся развивает навыки к научной работе, закрепляя и одновременно расширяя знания, полученные при изучении курса «Физико-химические основы водоподготовки». При выполнении курсовой работы, обучающийся должен показать свое умение работать с нормативным материалом и другими литературными источниками, а также возможность систематизировать и анализировать фактический материал и самостоятельно творчески его осмысливать.

В процессе написания курсовой работы, обучающийся должен разобраться в теоретических вопросах избранной темы, самостоятельно проанализировать практический материал, разобрать и обосновать практические предложения. Курсовая работа выполняется по вариантам и представляется обучающимися в печатном и электронном виде.

Показатели и критерии оценивания курсовой работы:

- на оценку «отлично» (5 баллов) работа выполнена в соответствии с заданием, обучающийся показывает высокий уровень знаний не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам, оценки и вынесения критических суждений;
- на оценку «хорошо» (4 балла) работа выполнена в соответствии с заданием, обучающийся показывает знания не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам:
- на оценку «удовлетворительно» (3 балла) работа выполнена в соответствии с заданием, обучающийся показывает знания на уровне воспроизведения и объяснения информации, интеллектуальные навыки решения простых задач;
- на оценку «неудовлетворительно» (2 балла) задание преподавателя выполнено частично, в процессе защиты работы обучающийся допускает существенные ошибки, не может

показать интеллектуальные навыки решения поставленной задачи.

– на оценку «неудовлетворительно» (1 балл) – задание преподавателя выполнено частично, обучающийся не может воспроизвести и объяснить содержание, не может показать интеллектуальные навыки решения поставленной задачи.

8. Учебно-методическое и информационное обеспечение дисциплины «Физикохимические основы водоподготовки»

а) Основная литература:

1. Фрог, Б.Н. Водоподготовка: Учеб. для вузов / Фрог Б.Н., Первов А.Г. — М.: Издательство ACB, 2015. - 512 с. — ISBN 978-5-93093-974-3 — Текст : электронный // ЭБС «Консультант студента»: [сайт]. — URL:

https://www.studentlibrary.ru/book/ISBN9785930939743.html

(дата обращения: 01.09.2020). – Режим доступа: по подписке.

2. Первов, А.Г. Технологии очистки природных вод: Учебное издание / Первов А.Г. – М.: Издательство АСВ, 2016. – 600 с. – ISBN 978-5-4323-0149-9 – Текст: электронный // ЭБС «Консультант студента»: [сайт]. – URL:

https://www.studentlibrary.ru/book/ISBN9785432301499.html

(дата обращения: 22.10.2020). – Режим доступа: по подписке.

б) Дополнительная литература:

1. Толмачева, В.Ф. Физико-химические способы водоподготовки: конспект лекций: учебное пособие / В.Ф. Толмачева. – Магнитогорск: МГТУ, 2013. – 1 электрон. опт. диск (CD-ROM). – Загл. с титул. экрана. – URL:

 $\underline{https://magtu.informsystema.ru/uploader/fileUpload?name=922.pdf\&show=dcatalogues/1/1118918/922.pdf\&view=true}$

(дата обращения: 1.09.2020). – Макрообъект. – Текст: электронный. – Сведения доступны также на CD-ROM.

2. Григорьева, Л.С. Физико-химическая оценка качества и водоподготовка природных вод / Григорьева Л.С. – М.: Издательство АСВ, 2011. – 152 с. – ISBN 978-5-93093-802 – Текст: электронный // ЭБС «Консультант студента»: [сайт]. - URL:

 $\underline{https://www.studentlibrary.ru/book/ISBN 978593093802.html}$

(дата обращения: 22.10.2020). – Режим доступа: по подписке.

3. Журналы: «Теплоэнергетика», «Электрические станции», «Энергетик», «Промышленная энергетика» и др.

в) Методические указания:

1. Толмачева, В.Ф. Физико-химические способы водоподготовки: методические указания для студентов по подготовке к практическим работам / В.Ф. Толмачева. – Магнитогорск: МГТУ, 2013. – 1 электрон. опт. диск (CD-ROM). – Загл. с титул. экрана. – URL:

https://magtu.informsystema.ru/uploader/fileUpload?name=1534.pdf&show=dcatalogues/1/112430 0/1534.pdf&view=true

(дата обращения: 1.09.2020). – Макрообъект. – Текст: электронный. – Сведения доступны также на CD-ROM.

2. Соколова, М.С. Определение показателей качества воды: методические указания к лабораторной работе по дисциплине «Физико-химические основы водоподготовки». – Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И. Носова, 2019. – 17 с.

г) Программное обеспечение и Интернет-ресурсы:

Наименование ПО	№ договора	Срок действия лицензии

Стандартные		
Microsoft Windows 7	Д-1227 от 08.10.2018	11.10.2021
Microsoft Office 2007	№135 от 17.09.2007	бессрочно
7Zip	Свободно распространяемое	бессрочно
FAR Manager	Свободно распространяемое	бессрочно
Дополнительные		
Microsoft Windows 10 Pro	Д-1227 от 8.10.2018	11.10.2021

- 1. Федеральный институт промышленной собственности: сайт РОСПАТЕНТА / ФИПС. Москва: ФИПС, 2009 . URL: http://www1.fips.ru/ (дата обращения: 18.09.2020). Режим доступа: свободный. Текст: электронный.
- 2. Российский индекс научного цитирования (РИНЦ): национальная библиографическая база данных научного цитирования. Текст: электронный // eLIBRARY.RU: научная электронная библиотека: сайт. Москва, 2000 . URL: https://elibrary.ru/project_risc.asp (дата обращения: 18.09.2020). Режим доступа: для зарегистрир. пользователей.
- 3. Академия Google (Google Scholar): поисковая система: сайт. URL: https://scholar.google.ru/ (дата обращения: 18.09.2020). Режим доступа: для зарегистрир. пользователей. Текст: электронный.
- 4. Единое окно доступа к информационным ресурсам : электронная библиотека : сайт / ФГАУ ГНИИ ИТТ «ИНФОРМИКА». Москва, 2005. . –URL: http://window.edu.ru/ (дата обращения: 18.09.2020). Режим доступа: свободный. Текст: электронный.
- 5. East View Information Services: Электронная база периодических изданий / ООО «ИВИС». URL: https://dlib.eastview.com/ (дата обращения: 18.09.2020). Режим доступа: по подписке. Текст: электронный.
- 6. Российская Государственная библиотека. Каталоги: сайт / Российская государственная библиотека. Москва: РГБ, 2003 . URL: https://www.rsl.ru/ru/4readers/catalogues/(дата обращения: 18.09.2020). Режим доступа: свободный. Текст: электронный.
- 7. Электронная библиотека МГТУ им. Г. И. Носова. URL: http://magtu.ru:8085/marcweb2/Default.asp (дата обращения: 18.09.2020). Режим доступа: для зарегистрир. пользователей (вход с внешней сети по логину и паролю). Текст: электронный.
- 8. Университетская информационная система РОССИЯ: научная электронная библиотека: сайт / НИВЦ ; Экономический факультет МГУ. Москва: НИВЦ, 1997 . URL: https://uisrussia.msu.ru (дата обращения: 18.09.2020). Режим доступа: свободный. Текст: электронный.
- 9. Web of science: Международная наукометрическая реферативная и полнотекстовая база данных научных изданий: сайт. URL: http://webofscience.com (дата обращения: 18.09.2020). Режим доступа: для зарегистрир. пользователей (вход по IP-адресам вуза). Текст: электронный.
- 10. Scopus: Международная реферативная и полнотекстовая справочная база данных научных изданий: сайт. URL: http://scopus.com (дата обращения: 18.09.2020). Режим доступа: для зарегистрир. пользователей (вход по IP-адресам вуза). Текст: электронный.
- 11. Springer Journals: Международная база полнотекстовых журналов: сайт. URL: http://link.springer.com/ (дата обращения: 18.09.2020). Режим доступа: для зарегистрир. пользователей (вход по IP-адресам вуза). Текст: электронный.
- 12. Springer Protocols: Международная коллекция научных протоколов по различным отраслям знаний: сайт. URL: http://www.springerprotocols.com/ (дата обращения: 18.09.2020). Режим доступа: для зарегистрир. пользователей (вход по IP-адресам вуза). Текст: электронный.
- 13. SpringerMaterials: Международная база научных материалов в области физических наук и инжиниринга: сайт. URL: http://materials.springer.com/ (дата обращения: 18.09.2020).

- Режим доступа: для зарегистрир. пользователей (вход по IP-адресам вуза). Текст: электронный.
- 14. Springer Reference: Международная база справочных изданий по всем отраслям знаний: сайт. URL: http://www.springer.com/references (дата обращения: 18.09.2020). Режим доступа: для зарегистрир. пользователей (вход по IP-адресам вуза). Текст: электронный.
- 15. zbMATH: Международная реферативная база данных по чистой и прикладной математике: сайт. URL: http://zbmath.org/ (дата обращения: 18.09.2020). Режим доступа: для зарегистрир. пользователей (вход по IP-адресам вуза). Текст: электронный.
- 16. Springer Nature: Международная реферативная и полнотекстовая справочная база данных научных изданий: сайт. URL: https://www.nature.com/siteindex (дата обращения: 18.09.2020). Режим доступа: для зарегистрир. пользователей. Текст: электронный.
- 17. Архив научных журналов: сайт / Национальный электронно-информационный концорциум. Москва: НЭИКОН, 2013 . URL: https://archive.neicon.ru/xmlui/ (дата обращения: 18.09.2020). Режим доступа: для зарегистрир. пользователей (вход по IP-адресам вуза). Текст: электронный.
- 18. eLIBRARY.RU: научная электронная библиотека: сайт. Москва, 2000 . URL: https://elibrary.ru (дата обращения: 09.01.2018). Режим доступа: для зарегистрир. пользователей. Текст: электронный.
- 19. РУКОНТ: национальный цифровой ресурс: межотраслевая электронная библиотека: сайт / консорциум «КОТЕКСТУМ». – Сколково, 2010 – . – URL: https://rucont.ru (дата обращения: 18.09.2020). – Режим доступа: для авториз. пользователей. – Текст: электронный.

9. Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Тип и название аудитории	Оснащение аудитории
Учебные аудитории для прове-	Мультимедийные средства хранения, передачи и пред-
дения занятий лекционного типа	ставления информации.
Учебные аудитории для прове-	Доска, мел.
дения практических занятий,	
групповых и индивидуальных	
консультаций, текущего кон-	
троля и промежуточной аттеста-	
ции	
Учебные аудитории для выпол-	Персональные компьютеры с пакетом MS Office, выхо-
нения курсового проектирования,	дом в Интернет и с доступом в электронную информа-
помещения для самостоятельной	ционно-образовательную среду университета.
работы обучающихся	
Помещение для хранения и про-	Стеллажи, сейфы для хранения учебного оборудования.
филактического обслуживания	Инструменты для ремонта лабораторного оборудования.
учебного оборудования	