

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Магнитогорский государственный технический университет им. Г.И. Носова»

УТВЕРЖДАЮ: Директор института энергетики и автоматизированных систем С.И. Лукьянов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

КОНСТРУКЦИИ И ТЕПЛОВАЯ РАБОТА ПРОМЫШЛЕННЫХ ПЕЧЕЙ

Направление подготовки 13.03.01 Теплоэнергетика и теплотехника

Профиль программы Энергообеспечение предприятий

Уровень высшего образования - бакалавриат

Программа подготовки – академический бакалавриат

Форма обучения Заочная

Институт Кафедра Курс Энергетики и автоматизированных систем Теплотехнических и энергетических систем

Магнитогорск 2018 г. Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 13.03.01 Теплоэнергетика и теплотехника, утвержденного приказом МОиН РФ от 01.10.2015 № 1081.

Рабочая программа рассмотрена и од- и энергетических систем «25» сентября 20	обрена на заседании кафедры теплотехнических 18 г., протокол № 2. Зав. кафедрой/ Е.Б. Агапитов /
Рабочая программа одобрена методи матизированных систем «26» сентября 20	ической комиссией института энергетики и авто- 118 г., протокол № 1. Председатель/ С.И. Лукьянов /
Рабочая программа составлена:	ст. препопаватель кафедры ТиЭС
Рецензент:	зам. начальника ЦЭСТ ПАО «ММК», к.т.н.

Лист регистрации изменений и дополнений

No	Раздел	Краткое содержание	Дата, №	Подпись
п/п	РПД	изменения/дополнения	протокола	зав.кафедрой
	(модуля)		заседания	
			кафедры	
1	9	Актуализация материально-	№2	
		технического обеспечения дисциплины	8.10.2019 P	-11
2	8	Актуализация учебно-методического и	№ 1	
		информационного обеспечения	1.09.2020 г.	
		дисциплины		7
	71			
			Tricks.	

1 Цели освоения дисциплины (модуля)

Целями освоения дисциплины (модуля) «Конструкции и тепловая работа промышленных печей» являются:

- формирование у студентов знаний и умений для производственно-технологической;
 монтажно-наладочной и сервисно-эксплуатационной деятельности;
- изучение фундаментальных законов теплопередачи, современной теории горения и рационального сжигания топлива в рабочих пространствах промышленных печей;
- изучение конструкций и элементов высокотемпературных металлургических печей, а также технологии тепловой обработки металлов в них, устройств и материалов применяемых при сооружении печей;
- изучение методов передачи и использования теплоты в промышленных печах и теплоэнергетических агрегатах и установках, изучение свойств теплоносителей, применяемых в теплоэнергетике;
- получение комплекса знаний о процессах, происходящих в промышленных печах и теплоэнергетических установках;
- формирование умений выполнения теплотехнических расчетов и анализа процессов, совершаемых в промышленных печах и теплоэнергетических установках;
- формирование умений определять пути совершенствования технологических процессов и разработки экологически безвредных и малоотходных технологий.

Задачи дисциплины:

- развитие у студентов познавательных, деятельностных и личностных качеств в соответствии с требованиями ФГОС ВО;
- усвоение студентами знаний оборудования и агрегатов для агрегатов для термической обработки материалов в объеме, необходимом для технически грамотного использования с целью повышения их энергетической эффективности.

2 Место дисциплины (модуля) в структуре образовательной программы подготовки бакалавра

Дисциплина Б1.В.ДВ.05.02 «Конструкции и тепловая работа промышленных печей» входит в вариативную часть блока 1 образовательной программы по направлению подготовки Теплоэнергетика и теплотехника.

Успешное усвоение материала предполагает знание студентами основных положений следующих дисциплин:

- Математика (дифференциальное и интегральное исчисление, дифференциальные уравнения, численные методы, уравнения математической физики);
 - Физика (молекулярная физика, термодинамика);
 - Химия (химическая термодинамика, химическое и фазовое равновесие);
- Гидрогазодинамика (основные физические свойства жидкостей и газов, подобие гидромеханических процессов, уравнение движения вязкой жидкости, режимы движения, пограничный слой);
- Техническая термодинамика (первый и второй закон термодинамики, идеальные и реальные газы, водяной пар, фазовые диаграммы).
- Тепломассообмен (основные законы тепло- и массопереноса: теплопроводность, конвекция, тепловое излучение; интенсификация процессов тепломассообмена).

Знания (умения, навыки), полученные при изучении данной дисциплины будут необходимы для выполнения выпускной квалификационной работы и изучении дисциплин «Вторичные энергоресурсы промышленных предприятий», «Тепломассообменное оборудование предприятий».

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Конструкции и тепловая работа промышленных печей» обучающийся должен обладать следующими компетенциями:

Структурный									
элемент	Планируемые результаты обучения								
компетенции									
ПК-7 способность	ПК-7 способностью обеспечивать соблюдение правил техники безопасности, производ								
ственной санитар	ии, пожарной безопасности, норм охраны труда, производственной и								
трудовой дисципл	ины								
	- основные определения и понятия используемых в теории и практике металлургической теплотехники;								
Знать	фундаментальные законы теплообмена в рабочем пространстве печей, основные правила техники безопасности, производственной санитарии, пожарной безопасности, норм охраны труда, производственной и трудовой дисциплины.								
	- разбираться в конструкции промышленных печей;								
Уметь:	определять способ тепло- и массообмена в промышленной печи с учетом правил техники безопасности.								
	-основными методами математического анализа и моделирования в об-								
70	ласти тепловой работы печей,								
Владеть:	выбирать вид и конструкцию топливосжигающих устройств с соблюде-								
	нием норм охраны труда, пожарной безопасности, производственной и трудовой дисциплины								
ПК-8 готовностью	о к участию в организации метрологического обеспечения технологи-								
	при использовании типовых методов контроля режимов работы тех-								
нологического обо									
Знать	-технику проведения экспериментов и метрологического обеспечения								
	технологических процессов в области теплотехнологий								
Уметь	применять методы математического анализа при анализе метрологиче-								
	ских данных контроля технологическими процессами.								
Владеть	- практическими навыками использования приборами метрологического контроля								

4 Структура и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 4 зачетных единицы - 144 акад. часа, в том числе: контактная работа - 14,2 акад. час:

- аудиторная— 10 акад. часов;
- внеаудиторная 4,2 акад. часов; самостоятельная работа —121,1 акад. час; подготовка к экзамену 8,7 акад. часов.

Раздел/ тема дисциплины	Kypc	на: та раб	практич. практия (в стара (в стара (в стара (в стара стара (в стара ста	Самост. работа (в акад. часах).	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код и струк- турный эле- мент компе- тенции
Раздел 1. Конструкции и тепловая работа промышленных печей.	4						
Тема 1.1. Введение в дисциплину	4			12	Самостоятельное изучение учебной и научной литера- туры [АКР№1].	Текущий контроль успеваемости	ПК-2 ПК-3 Зув
Тема 1.2. Введение в высокотемпературную теплотехнологию. Вводные понятия и определения. Тепловые, теплотехнические и структурные схемы высокотемпературных теплотехнологических установок.	4	0,5		12	Самостоятельное изучение учебной и научной литературы [АКР№1]	Текущий контроль успеваемости	ПК-2 ПК-3 Зув
Тема 1.3. Классификация высокотемпературных теплотехнологических процессов и установок. Энергетические и экологические проблемы высокотемпературной теплотехнологии. Предмет дисциплины. Материальные балансы теплотехнологических процессов	4	1		15	Самостоятельное изучение учебной и научной литературы [АКР№2]	Текущий контроль успеваемости	ПК-2 ПК-3 Зув

Раздел/ тема дисциплины		Аудитор- ная кон- тактная работа (в акад.часах)		Самост. работа (в акад. часах).	Вид самостоятельной работы	Форма текущего контроля успевае- мости и	Код и струк- турный эле- мент компе-
	Kypc	лекции	практич. занятия	Ca)		промежуточной аттестации	тенции
Тема 1.4. Тепловые балансы теплотехнологического реактора, других элементов тепловой схемы и высокотемпературной теплотехнологической установки в целом. Видимый, суммарный и приведенный удельные расходы топлива; суммарные удельные энергозатраты, приведенные к первичному топливу.	4	0,5		20	Самостоятельное изучение учебной и научной литературы [АКР№3]	Текущий контроль успеваемости	ПК-2 ПК-3 Зув
Итого по разделу 1	4	2		59			
Раздел 2. Основы теплообмена в промышленных печах.	4						
Тема 2.1. Внешний теплообмен в реакторе высокотемпературной теплотехнологической установки. Основные размеры рабочего пространства реактора, обеспечивающие заданную производительность высокотемпературной теплотехнологической установки.	4	0,5		12	Самостоятельное изучение учебной и научной литературы [АКР№4]	Текущий контроль успеваемости	ПК-2 ПК-3 Зув
Тема 2.2. Внешний теплообмен в реакторах с нефильтруемым слоем технологических материалов, с фильтруемым плотным слоем кусковых материалов и изделий, с кипящим слоем зернистых материалов, с псевдогазовым слоем пылевидных материалов, с барботируемой ванной расплава. Пути интенсификации внешнего теплообмена	4	0,5	2/2И	12	Самостоятельное изучение учебной и научной литературы. Выполнение курсовой работы п. 6.	Текущий контроль успеваемости	ПК-2 ПК-3 зув

Раздел/ тема дисциплины	Курс ная контактная работа (в акад. часах занадии занадия		ная кон- тактная работа (в акад.часах)		Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код и струк- турный эле- мент компе- тенции
Тема 2.3. Нагрев и плавление термически тонких и термически массивных тел. Температурные режимы нагрева термически массивных тел	4	1		12	Самостоятельное изучение учебной и научной литературы [АКР№5]	Текущий контроль успеваемости	ПК-2 ПК-3 Зув
Тема 2.4. Организации процесса генерации теплоты в теплотехнологических реакторах и способы их обеспечения в технологических реакторах различных типов. Способы преобразования электрической энергии в теплоту и область их применения в высокотемпературных теплотехнологических установках.	4	1	2/2И	12	Самостоятельное изучение учебной и научной литературы. Выполнение курсовой работы п. 6.	Текущий контроль успеваемости	ПК-2 ПК-3 Зув
Тема 2.5. Снижение энергозатрат путем внешнего использования тепловых и горючих отходов. Основные направления технического прогресса энергетики высокотемпературной теплотехнологии	4	1		14,1	Самостоятельное изучение учебной и научной литературы [АКР№6]	Текущий контроль успеваемости	ПК-2 ПК-3 Зув
Итого по разделу 2	4	4	4/4И	62,1			
Итого по дисциплине	4	6	4/4И	121,1	Промежуточный контроль (экзамен, курсовая работа)		

5 Образовательные и информационные технологии

Для решения предусмотренных видов учебной работы при изучении дисциплины «Конструкции и тепловая работа промышленных печей» в качестве образовательных технологий используются как традиционные, так и модульно - компетентностные технологии. Передача необходимых теоретических знаний и формирование представлений по курсу происходит с применением мультимедийного оборудования. Лекционный материал закрепляется на лабораторных работах, где применяется совместная деятельность студентов в группе, направленная на решение общей задачи путем сложения результатов индивидуальной работы членов группы. Для развития и совершенствования коммуникативных способностей студентов организуются практические занятия в виде дискуссий, анализа реальных проблемных ситуаций и междисциплинарных связей из различных областей в контексте решаемой задачи. Самостоятельная работа стимулирует студентов к самостоятельной проработке тем в процессе написания рефератов, подготовке к дискуссиям, к контрольным работам и тестированию. При организации самостоятельной работы студентов используются электронные версии курса лекций, лабораторного практикума, расчетно-графической работы.

6 Учебно-методическое обеспечение самостоятельной работы студентов

Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

Примерные вопросы аудиторных контрольных работ (АКР) AKP№1

- 1. В каких единицах измеряется количество теплоты?
 - 1. °C:
 - 2. _{κΓ/м};
 - 3. Дж;
 - 4. H/M
- 2. Теплопроводность каких материалов наибольшая?
 - 1. Металлов;
 - 2. Газов;
 - 3. Твердых тел диэлектриков;
 - 4. Жилкостей.
- 3. От каких параметров зависит коэффициент теплопроводности?
 - 1. От вида движения жидкости;
 - 2. От температуры и физических свойств веществ:
 - 3. От массы и площади поверхности тела;
 - 4. От количества подведенной теплоты.
- 4. Какое из уравнение плотности теплового потока соответствует переносу теплоты теплопроводностью через однослойную плоскую стенку:
 - 1. $q = \frac{\delta}{\lambda} (t_2 t_1);$

 - 2. $q = -\lambda \operatorname{grad}t;$ 3. $q = \alpha(t_2 t_1);$
 - 4. $q = \frac{\lambda}{\delta} (t_2 t_1)$.
- 5. По какому из уравнений рассчитывается теплопередача через стенку?

1.
$$q = \frac{\lambda(t_{c1} - t_{c2})}{\delta}$$

2.
$$q = \frac{t_{c1} - t_{c(n+1)}}{\sum_{i=1}^{n} \frac{\delta_{i}}{\lambda_{i}}}$$

$$2. \ q = \frac{t_{c1} - t_{c(n+1)}}{\sum_{i=1}^{n} \frac{\delta_{i}}{\lambda_{i}}}$$
$$q = \frac{t_{oc1} - t_{oc2}}{\frac{1}{\alpha_{1}} + \frac{\delta}{\lambda} + \frac{1}{\alpha_{2}}}$$

AKP№2

- 1. Указать, какому интервалу значений коэффициента λ соответствует теплопроводность сталей.
 - $1.20 50 \, \text{BT/(м гр)}$
 - 2. $0.07 4 \text{ BT/(M }\Gamma\text{p})$
 - 3. 0.007 0.07 BT/(M Γ p)
- 2. В каких единицах измеряется коэффициент теплопроводности?
 - 1. $\frac{Bm}{M^2}$;
 - 2. $\frac{Bm}{M^2 \epsilon pa \partial}$;
 - 3. $\frac{Bm}{M \cdot \epsilon pa\partial}$;
- 3. Коэффициент теплопередачи характеризует интенсивность передачи теплоты:
 - 1. От одной среды к другой;
 - 2. Внутри твердых стенок;
 - 3. От одной среды к другой через разделительную стенку;
 - 4. От жидкостей к твердым стенкам.
- 4. Число Фурье определяет:
 - 1. Режим движения жидкости;
 - 2. Термическую массивность тел;
 - 3. Безразмерное время нагрева;
 - 4. Физические параметры вещества.

AKP№3

- 1. При каких значениях числа Био тело является термически тонким:
 - 1. $Bi \rightarrow 0$;
 - 2. $Bi \rightarrow \infty$;
 - 3. Bi < 0;
 - 4. Bi = 25.
- 2. Какое число подобия является определяемым при расчетах конвективного теплообмена?
 - 1. Pr;
 - 2. Nu:
 - 3. Re:
- 3. Каким уравнением подобия характеризуется вынужденная конвекция?
 - 1. Nu = f(Gr, Pr);
 - 2. Nu = f(Re, Pr);
 - 3. Nu = f(Fo, Pr);

- 4. Nu = f(Bi, Pr)
- 4. Какие значения Re соответствуют турбулентному режиму движения жидкости в трубах (каналах)
 - 1. Re > 1300;
 - 2. Re < 9300;
 - 3. Re > 10300:
 - 4. Re > 2300.

AKP№4

1. Число Рейнольдса определяется по формуле

1. Re =
$$\frac{Wa}{\mu}$$

1.
$$\operatorname{Re} = \frac{Wd}{\mu}$$
 2. $\operatorname{Re} = \frac{Wd}{V}$ 3. $\operatorname{Re} = \frac{vd}{W}$ 4. $\operatorname{Re} = \frac{vl}{W}$

3. Re =
$$\frac{vd}{W}$$

4. Re =
$$\frac{vl}{W}$$

- 2. Какое значение поглощательной способности имеет абсолютно черное тело:
 - 1. A < 1;
 - 2. $\hat{A} = 0$;
 - 3. $\hat{A} = 1$;
 - 4. $\hat{A} > 1$
- 3. Какой из приведенных законов применяется для расчетов теплообмена излучением?

1.
$$q = -\lambda \frac{\partial t}{\partial n}$$

2.
$$q = \alpha (t_c - t_{_{\mathcal{H}C}})$$

3.
$$q = \varepsilon * c_o \left(\frac{T}{100}\right)^4$$

AKPNo5

- 1. Какие газы обладают излучательной и поглощательной способностью?
 - 1. He, Ar, Ne
 - 2. N_2 , O_2 , H_2
 - 3. H2O, CO2, SO2
- 2. Важнейшие химические элементы топлива органического происхождения:
- 1. кислород и углерод
- 2. кислород и водород
- 3. углерод и водород
- 3. Какая теплота сгорания топлива соответствует действительному количеству теплоты, выделяемой при сгорании в печах и топках?
- 1. высшая теплота сгорания
- 2. низшая теплота сгорания

AKPNo6

- 1. Какому газообразному топливу с теплотой сгорания 3,5-4,0 МДж/м 3 соответствует примерный состав: 9-14% CO $_2$; 25-30% CO; 57-58% N $_2$; остальное- метан и водород .
- 1. коксовый газ

- 2. доменный газ
- 3. природный газ
- 4. коксодоменная смесь
- 2. Теплота сгорания условного топлива:
- 1. 7000 кДж/кг
- 2. 29,3 МДж/кг
- 3. Интервал значений «пирометрического коэффициента» для ориентировочного определения действительной температуры в печах и топках ?
- 1.0,5-0,6
- 2.0,7 0,8
- 3.0,9-1,0
- 4. Наибольшее количество теплоты, которое печь может нормально (без недожога топлива в рабочем пространстве) усвоить, называется:
- 1. тепловой нагрузкой
- 2. тепловой мощностью
- 3. коэффициентом полезного действия
- 4. тепловым режимом печи
- 5. К огнеупорным относят материалы, огнеупорность которых не ниже (по стандартам и терминологии России):
- 1. 1580 °C;
- 2. 1680 °C;
- 3. 1780 °C;
- 6. Укажите правильную последовательность убывания концентрации компонентов продуктов горения топлива в печах и топках при сжигании в воздухе
- $1.CO_2$, H_2O , N_2
- $2. N_2$, H_2O , CO_2
- 3. N_2 , CO_2 , H_2O

Курсовая работа

Курсовая работа включает полный тепловой и аэродинамический расчеты пламенной или электрической печи. В объем работы входит пояснительная записка, включающая все топливные, тепловые, аэродинамический расчёт дымового и воздушного трактов, определение расхода топлива, расчёт и выбор теплообменных аппаратов, топливосжигающих и тягодутьевых устройств.

Пояснительная записка должна быть изложена на 20-30 с. бумаги размера 210 х 297 на одной стороне листа, оформлена в обложке, снабжена оглавлением и списком использованной литературы. Пояснительная записка в целом или отдельные ее элементы могут быть представлены распечаткой программы и ее решения на компьютере.

Курсовая работа выполняется в следующей последовательности (по этапам):

- 1. Характеристика нагревательной печи.
- 2. Расчет горения топлива и определение действительной температуры горения.
- 3. Расчет времени нагрева металла.
- 4. Определение основных размеров и предварительное конструирование печи.
- 5. Тепловой баланс и определение теплотехнических характеристик работы печи.
- 6. Тепловой расчёт теплообменного аппарата.
- 7. Расчет и выбор топливосжигающих устройств.
- 8. Аэродинамический расчёт дымового тракта и выбор тягодутьевых устройств.

На выполнение каждого этапа курсовой работы выделяется по восемь часов самостоятельной работы.

Курсовая работа выполняется по вариантам и представляется обучающимися в рукописном или печатном виде.

Цель выполнения работы — приобретение студентами навыков выполнения теплотехнических расчетов процессов, совершаемых в высокотемпературных теплотехнологических установках, выбора конструктивных решений, умений пользоваться справочной и нормативной литературой по теплотехнике, использовать различные диаграммы для расчета параметров и процессов.

Задания для выполнения курсовой работы по дисциплине «Конструкции и тепловая работа промышленных печей»

№ вари- анта	Марка стали	Размер заготовки,	$t_{nos}^{\kappa o \mu}, {}^{o}C$	Р, т/ч	$d_{\scriptscriptstyle B}$, Γ/M^3	d_{Γ} , Γ/M^3	t _{Me,} OC	Тип печи
1	30X	120x1000x6000	1180	40	35	15	0	MT
2	Ст.40	100x150x4000	1190	40	25	30	10	ШТ
3	Хромоникелевая	D300x900	1180	50	24	20	10	ШС
4	Ст.40	D300x800	1200	30	32	15	20	MBP
5	Хромоникелевая	140x1000x6000	1180	0	20	9	20	ШС
6	30X	D200x1200	1200	50	22	15	10	ШС
7	Хромоникелевая	100x100x4000	1180	50	30	10	12	ШС
8	Ст.40	120x120x6000	1200	70	30	20	0	ШС
9	30X	D150x1500	1190	35	25	18	20	MBP
10	Ст.40	160x1000x4000	1200	45	10	12	15	ШТ
11	30X	120x1000x6000	1170	60	15	10	0	MT
12	Ст.40	140x100x4000	1180	70	20	11	20	ШТ
13	Ст.40	120x1000x6000	1200	45	15	7	20	MT
14	Хромоникелевая	120x100x4000	1190	50	20	10	10	ШС
15	30X	140x1000x6000	1190	40	35	30	12	MT
16	X18H98	D200x1800	1180	30	10	30	15	MBP
17	Ст.40	130x100x4000	1190	60	17	17	0	MT
18	30X	120x1000x6000	1200	45	30	30	20	MT
19	1X18H9B	D120x6000	1180	50	22	22	10	ШС
20	Сталь ст 3		720	садка 40 т	20	9	60	ОК
21	08кп		720	садка 110 т	22	15	60	ТК
22	Ст.20	70x150x4000	1190	30	25	30	10	ШС
23	30X	100x120x4000	1190	35	25	18	20	MC
23	Ст.40	110x120x4000	1200	45	10	12	15	ШС
24	Ст.40	100x140x4000	1180	70	20	11	20	ШС
25	30X	120x1000x6000	1180	40	35	15	0	ШС
26	Хромоникелевая	60x100x4000	1190	50	20	10	10	ШС

ПРИМЕЧАНИЕ: δ - толщина заготовки; b - ширина заготовки; l - длина заготовки. **ШС** - печь с шагающим подом, со сводовым отоплением; **ШТ** - печь с шагающим подом, с торцевым отоплением; **ОК** – колпаковая одностопная; **ТК** – трехстопная колпаковая. **МТ** - толкательная методическая печь; **МВР**- печь с вращяющимся подом **К** - одностопная колпаковая печь; **КК** - трехстопная колпаковая печь

Состав топлива

№ вари-	СОСТАВ СУХОГО ГАЗА, объемные %									Коэф-т расхода воздуха,	Темпера- тура по- догрева	
анта	CO_2	CO	H_2	$\mathrm{CH_{4}}$	C_2H_6	C_3H_8	C_4H_1	H_2S	O_2	N_2	n	возду- ха, ⁰ С
1	14	26	1	29	0	0	0	0	0	30	1,02	450
2	2,4	7	60	25	2	0	0	0,2	0,6	2,8	1,1	400
3	10	21	19	37	0,6	0	0	0,1	0,2	2,1	1,12	350
4	5,5	28	30	20,2	0	0		0,2	0,2	15,9	1,1	400
5	0,1			96		2,7	0,8			0,4	1,1	400
6	0,3			36,3		17,1	29	0,3		17	1,12	350
7	0,1			93		4,3	1,9			0,7	1,15	375
8	9,5	17	15	38				0,5		20	1,05	400
9	20	10	28	38	0,3			0,3	0,9	2,5	1,06	350
10				93	0,6	0,6	1,1			4,7	1,1	350
11	0,3			88		1,9	0,5			9,3	1,15	300
12	7,3	1,5		85		3	1			2,2	1,15	400
13				65	0,2	14,5	7,8			12,5	1,15	450
14				89		9	2			0	1,12	300
15	1,3	38	51	5,5					0,2	4	1,05	450
16				98						2	1,2	300
17	20	34		43					0,2	2,8	1,1	350
18	7	17		44						32	1,05	400
19	7	17		15	29					32	1,08	400
20	0,1			96		2,3	0,8			0,8	1,1	350
21	0,3			36		17,1	29	0,3		17	1,12	300
22	2	7	58	30	0,3				1,7	1	1,08	500
23	4			94					0	2	1,1	300
24		14	86							0	1,11	350
25	2,4	7,5	60	25		0,1				5	1,1	350

7. Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Структурный эле-			и промежуто птоп иттестиции.
мент	Планируемые результаты обучения		Оценочные средства
компетенции			
ПК-7 способностью о	беспечивать соблюдение правил тех	ники (безопасности, производственной санитарии, пожарной безопасности, норм
охраны труда, произі	водственной и трудовой дисциплинь	I	
	- основные определения и понятия	Переч	лень теоретических вопросов к экзамену:
	используемых в теории и практике	1.	Понятие высокотемпературной теплотехнологии.
	металлургической теплотехники;	2.	Тепловые схемы высокотемпературных теплотехнологических установок.
	фундаментальные законы теплооб-	3.	Теплотехнические схемы высокотемпературных теплотехнологических уста-
	мена в рабочем пространстве пе-	новок	
	чей, основные правила техники	4.	Структурные схемы высокотемпературных теплотехнологических установок
	безопасности, производственной	5.	Классификация высокотемпературных теплотехнологических процессов и
	санитарии, пожарной безопасности,	устано	ОВОК.
	норм охраны труда, производ-	6.	Энергетические и экологические проблемы высокотемпературной теплотех-
	ственной и трудовой дисциплины.	нолог	
		7.	Материальные балансы теплотехнологических процессов
		8.	Тепловые балансы теплотехнологического реактора.
Знать		9.	Видимый, суммарный и приведенный удельные расходы топлива;
		10.	Суммарные удельные энергозатраты
		11.	Внешний теплообмен в реакторе высокотемпературной теплотехнологиче-
			установки
		12.	Внешний теплообмен в реакторах, с фильтруемым плотным слоем кусковых
		матер	
		13.	Внешний теплообмен в реакторах с кипящим слоем зернистых технологиче-
			материалов,
		14.	Внешний теплообмен в реакторах с взвешенным слоем зернистых техноло-
			ких материалов.
		15.	Пути интенсификации внешнего теплообмена
		16.	Нагрев и плавление термически тонких тел.
		17.	Нагрев и плавление термически массивных тел.

Структурный эле- мент компетенции	Планируемые результаты обучения	Оценочные средства
		18. Температурные режимы нагрева термически массивных тел 19. Организации процесса генерации теплоты в теплотехнологических реакторах 20. Способы преобразования электрической энергии в теплоту 21. Область их применения электрической энергии в высокотемпературных теплотехнологических установках 22. Снижение энергозатрат путем внешнего использования тепловых и горючих отходов.
		23. Основные направления технического прогресса энергетики высокотемпературной теплотехнологии
Уметь:	- разбираться в конструкции промышленных печей; определять способ тепло- и массообмена в промышленной печи с учетом правил техники безопасности.	Пример1:Определить температуру в центре сляба из малоуглеродистой стали толщиной $6=0.3$ м, нагреваемого в методической зоне печи с шагающим подом с $t_{\text{пов}}=0^{0}$ С до $t_{\text{пов}}=600^{0}$ С, если температура продуктов сгорания в зоне печи меняется от 800^{0} С до 1300^{0} С в конце зоны. Средний коэффициент теплоотдачи принять 100 Вт/м 2 ·К П2.Рассчитать рекуператор для подогрева воздуха для следующих условий: температура воздуха на входе – выходе рекуператора: $0-450^{0}$ С, температура дыма на входе в рекуператор - 1050^{0} С, расход газа на отопление печи $B=5.46$ м 3 /с, количество дыма на входе в рекуператор $V=34.9$ м 3 /с. Состав дымовых газов: $N_{2}=72\%$, $CO_{2}=11\%$, H_{2} $O=17\%$
Владеть:	-основными методами математического анализа и моделирования в области тепловой работы печей, выбирать вид и конструкцию топливосжигающих устройств с соблюдением норм охраны труда, пожарной безопасности, производственной и трудовой дисциплины	Выбрать горелку для случая: П1 Выбрать горелку для расхода газа 5м³/с при давлении воздуха перед горелкой 3.4кПа и температуре подогрева воздуха 300°C П2.Подобрать горелку типа «труба в трубе» для сжигания 0.223 м³/с смешанного газа с теплотой сгорания Q=6.7 Мдж/ м³.Давление газа перед горелкой №кПа, воздуха, подогретого до 400°C -1кПа.Коэффициент расхода воздуха 1.1
	участию в организации метрологич	еского обеспечения технологических процессов при использовании типовых ме-
1 1	имов работы технологического обору	
Знать	-технику проведения эксперимен-	Знать метрологические характеристики средств измерения:

Структурный эле- мент компетенции	Планируемые результаты обучения	Оценочные средства
	тов и метрологического обеспече-	1. Функция преобразования
	ния технологических процессов в	2. Что такое чувствительность прибора
	области теплотехнологий	3. Что такое цена деления прибора
		4.Порог чувствительности
		5.Диапазон показаний
		6.Диапазон измерений
		7.Динамические характеристики
		8.Погрешность средства измерения
		9.Вариация
Уметь	применять методы математическо-	П.1Определить величину неисключенной систематической погрешности измерения
	го анализа при анализе метрологи-	массового расхода воздуха при использовании в экспериментальной установке сле-
	ческих данных контроля техноло-	дующих приборов.
	гическими процессами.	По каналу круглого сечения, длина окружности которого по внешнему обмеру со-
		ставляет 1633+/-10мм, а толщина стенки 10+/-1.0мм, к установке должен подво-
		диться нагретый воздух, температура которого в процессе эксперимента должна из-
		меняться от 200 до 300° С. Для измерения этой температуры планируется использо-
		вать прибор с классом точности $2.5/1.5$ и диапазоном от 0 до 400° C. Расход воздуха
		в экспериментедолжен варьироваться от 8000 до 12000м ³ /ч., что соответствует диа-
		пазону изменения средних скоростей потока от 11.3 до 17м/с и динамических дав-
		лений от 40 до 108Па.Измерение среднихскоростей планируется осуществить кос-
		венным путем по методу равновеликих колец, используя пневмометрическую труб-
		ку и встроенный дифференциальный манометр ЛТА – 4, заданы его метрологиче-
D		ские характеристики.
Владеть	- практическими навыками исполь-	Пример:
	зования приборами метрологиче-	1.Оценить, можно ли прибором из хромель – алюмелевой термопары с чувствитель-
	ского контроля	ностью $S_1=0/023$ м $B/^0$ С и милливольтметра чувствительностью $S_2=0.1$ делений шка-
		лы/мВ измерить разность температур в 100 °C
		2.Определить числовое значение коэффициента корреляции, характеризующее есте-
		ственный разброс показаний в пределахаддитивной полосы погрешностей средства
		измерений с линейной статистической характеристикой и классом точности 1.5

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Конструкция и тепловая работа промышленных печей» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, при условии выполнения текущих практических заданий, выявляющих степень сформированности умений и владений, проводится в форме экзамена.

Экзамен по данной дисциплине проводится в устной форме.

Показатели и критерии оценивания экзамена:

- на оценку **«отлично»** обучающийся показывает высокий уровень сформированности компетенций, т.е. не менее 90% от общей трудоемкости дисциплины;
- на оценку «хорошо» обучающийся показывает средний уровень сформированности компетенций, т.е. находится в пределах от 75% до 90% от общей трудоемкости дисциплины;
- на оценку **«удовлетворительно»** обучающийся показывает пороговый уровень сформированности компетенций, т.е. находится в пределах от 60% до 75% от общей трудоемкости дисциплины;
- на оценку **«неудовлетворительно»** результат обучения не достигнут, обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.

Курсовая работа выполняется под руководством преподавателя, в процессе ее написания обучающийся развивает навыки к научной работе, закрепляя и одновременно расширяя знания, полученные при изучении курса «Конструкции и тепловая работа промышленных печей». При выполнении курсовой работы, обучающийся должен показать свое умение работать с нормативным материалом и другими литературными источниками, а также возможность систематизировать и анализировать фактический материал и самостоятельно творчески его осмысливать.

В процессе написания курсовой работы, обучающийся должен разобраться в теоретических вопросах избранной темы, самостоятельно проанализировать практический материал, разобрать и обосновать практические предложения. Курсовая работа выполняется по вариантам и представляется обучающимися в печатном и электронном виде.

Показатели и критерии оценивания курсовой работы:

- на оценку «отлично» (5 баллов) работа выполнена в соответствии с заданием, обучающийся показывает высокий уровень знаний не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам, оценки и вынесения критических суждений;
- на оценку «хорошо» (4 балла) работа выполнена в соответствии с заданием, обучающийся показывает знания не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам;
- на оценку «удовлетворительно» (3 балла) работа выполнена в соответствии с заданием, обучающийся показывает знания на уровне воспроизведения и объяснения информации, интеллектуальные навыки решения простых задач;
- на оценку «неудовлетворительно» (2 балла) задание преподавателя выполнено частично, в процессе защиты работы обучающийся допускает существенные ошибки, не может показать интеллектуальные навыки решения поставленной задачи.
- на оценку «неудовлетворительно» (1 балл) задание преподавателя выполнено частично, обучающийся не может воспроизвести и объяснить содержание, не может показать интеллектуальные навыки решения поставленной задачи.

а) Основная литература:

- 1. Расчет параметров плавки стали в современной дуговой печи: учебное пособие / В. А. Бигеев, М. В. Потапова, А. В. Пантелеев и др.; МГТУ. Магнитогорск: МГТУ, 2015. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=1555.pdf&show=dcatalogues/1/1124/790/1555.pdf&view=true Макрообъект. Текст: электронный. Сведения доступны также на CD-ROM.
- 2. Брюханов, О.Н. Тепломассообмен: Учебник / О.Н. Брюханов, С.Н. Шевченко. М.: НИЦ Инфра-М, 2012. 464 с. http://www.znanium.com/catalog.php?bookinfo=258657

б) Дополнительная литература:

- 1. Круглов, Г. А. Теплотехника : учебное пособие / Г. А. Круглов, Р. И. Булгакова, Е. С. Круглова. 2-е изд., стер. Санкт-Петербург : Лань, 2012. 208 с. ISBN 978-5-8114-1017-0. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/3900
- 2. Осколков, С. В. Тепломассообменное оборудование предприятий: методические указания по выполнению курсового проекта для студентов направления подготовки 140100 "Теплоэнергетика" / С. В. Осколков, Л. В. Николаев; МГТУ, Каф. теплотехнических и энергетических систем. Магнитогорск: МГТУ, 2012. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=1547.pdf&show=dcatalogues/1/1124725/1547.pdf&view=true
- 3. Матвеева, Г. Н. Экспериментальное исследование процессов теплообмена: учебное пособие / Г. Н. Матвеева, Ю. И. Тартаковский, Б. К. Сеничкин. 2-е изд., подгот. по печ. изд. 2008 г. Магнитогорск: МГТУ, 2011. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=989.pdf&show=dcatalogues/1/11191 53/989.pdf&view=true
- 4. Общая энергетика : учебное пособие / Е. Б. Агапитов, Ю. И. Тартаковский, Г. Н. Матвеева, Т. П. Семенова; Ин-т энергетики и автоматики МГТУ. Магнитогорск, 2013. 113 с. : ил., схемы, табл. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=629.pdf&show=dcatalogues/1/11093 98/629.pdf&view=true

в) Методические указания:

- 1. Пинтя, Т. Н. Термодинамика. Теплопередача: практикум / Т. Н. Пинтя, Ю. И. Тартаковский, Г. Н. Матвеева; МГТУ. [2-е изд., подгот. по печ. изд. 2012 г.]. Магнитогорск: МГТУ, 2013. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=48.pdf&show=dcatalogues/1/112431 1/48.pdf&view=true Макрообъект. Текст: электронный. Сведения доступны также на CD-ROM.
- 2. Злоказова, Н.Г., Иванов, Д.А. Лабораторный практикум по дисциплинам «Топливо и ТСУ», «Теория и практика теплогенерации». Магнитогорск: Изд-во Магниторск. гос. техн. ун-та им. Г.И.Носова, 2013, 53 с
- 3. Свечникова, Н. Ю. Практикум по технической термодинамике и теплотехнике : практикум / Н. Ю. Свечникова, С. В. Юдина, А. В. Горохов ; МГТУ. Магнитогорск : МГТУ, 2018. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=3545.pdf&show=dcatalogues/1/1515 134/3545.pdf&view=true Макрообъект. Текст : электронный. Сведения доступны также на CD-ROM.

г) Программное обеспечение и Интернет-ресурсы:

Наименование ПО	№ договора	Срок действия лицензии
Стандартные		
Microsoft Windows 7	Д-1227 от 08.10.2018	11.10.2021
Microsoft Office 2007	№135 от 17.09.2007	Бессрочно
7Zip	Свободно распространяемое	бессрочно
FAR Manager	Свободно распространяемое	бессрочно
Дополнительные		
Microsoft Windows 10 Pro	Д-1227 от 8.10.2018	11.10.2021

- 1. Федеральный институт промышленной собственности : сайт РОСПАТЕНТА / ФИПС. Москва : ФИПС, 2009 . URL: http://www1.fips.ru/ (дата обращения: 18.09.2020). Режим доступа: свободный. Текст: электронный.
- 2. Российский индекс научного цитирования (РИНЦ) : национальная библиографическая база данных научного цитирования. Текст: электронный // eLIBRARY.RU : научная электронная библиотека : сайт. Москва, 2000 . URL: https://elibrary.ru/project_risc.asp (дата обращения: 18.09.2020). Режим доступа: для зарегистрир. пользователей.
- 3. Академия Google (Google Scholar) : поисковая система : сайт. URL: https://scholar.google.ru/ (дата обращения: 18.09.2020). Режим доступа: для зарегистрир. пользователей. Текст: электронный.
- 4. Единое окно доступа к информационным ресурсам : электронная библиотека : сайт / ФГАУ ГНИИ ИТТ "ИНФОРМИКА". Москва, 2005. . –URL: http://window.edu.ru/ (дата обращения: 18.09.2020). Режим доступа: свободный. Текст: электронный.
- 5. East View Information Services : Электронная база периодических изданий / ООО «ИВИС. URL: https://dlib.eastview.com/ (дата обращения: 18.09.2020). Режим доступа: по подписке. Текст: электронный.
- 6. Российская Государственная библиотека. Каталоги : сайт / Российская государственная библиотека. Москва : РГБ, 2003 . URL: https://www.rsl.ru/ru/4readers/catalogues/ (дата обращения: 18.09.2020). Режим доступа: свободный. Текст: электронный.
- 7. Электронная библиотека МГТУ им. Г. И. Носова. URL: http://magtu.ru:8085/marcweb2/Default.asp (дата обращения: 18.09.2020). Режим доступа: для зарегистрир. пользователей (вход с внешней сети по логину и паролю). Текст: электронный.
- 8. Web of science: Международная наукометрическая реферативная и полнотекстовая база данных научных изданий: сайт. URL: http://webofscience.com (дата обращения: 18.09.2020). Режим доступа: для зарегистрир. пользователей (вход по IPадресам вуза). Текст: электронный.
- 9. Scopus : Международная реферативная и полнотекстовая справочная база данных научных изданий : сайт. URL: http://scopus.com (дата обращения: 18.09.2020). Режим доступа: для зарегистрир. пользователей (вход по IP-адресам вуза). Текст: электронный.

- 10. Springer Journals : Международная база полнотекстовых журналов : сайт. URL: http://link.springer.com/ (дата обращения: 18.09.2020). Режим доступа: для зарегистрир. пользователей (вход по IP-адресам вуза). Текст: электронный.
- 11. SpringerMaterials : Международная база научных материалов в области физических наук и инжиниринга : сайт. URL: http://materials.springer.com/ (дата обращения: 18.09.2020). Режим доступа: для зарегистрир. пользователей (вход по IP-адресам вуза). Текст: электронный.
- 12. Springer Reference : Международная база справочных изданий по всем отраслям знаний: сайт. URL: http://www.springer.com/references (дата обращения: 18.09.2020). Режим доступа: для зарегистрир. пользователей (вход по IP-адресам вуза). Текст: электронный.
- 13. Архив научных журналов : сайт / Национальный электронно-информационный концорциум. Москва : НЭИКОН, 2013 . URL: https://archive.neicon.ru/xmlui/ (дата обращения: 18.09.2020). Режим доступа: для зарегистрир. пользователей (вход по IP-адресам вуза). Текст: электронный.
- 14. eLIBRARY.RU : научная электронная библиотека : сайт. Москва, 2000 . URL: https://elibrary.ru (дата обращения: 09.01.2018). Режим доступа: для зарегистрир. пользователей. Текст: электронный.
- 15. РУКОНТ: национальный цифровой ресурс: межотраслевая электронная библиотека: сайт / консорциум «КОТЕКСТУМ». Сколково, 2010 . URL: https://rucont.ru (дата обращения: 18.09.2020). Режим доступа: для авториз. пользователей. Текст: электронный.

9 Материально-техническое обеспечение дисциплины (модуля)

В соответствии с учебным планом по дисциплине «Конструкция и тепловая работа промышленных печей» предусмотрены следующие виды занятий: лекционные, практические занятия, самостоятельная работа, консультации (столбец ВНКР), курсовая работа, экзамен.

Тип и название аудитории	Оснащение аудитории
Учебные аудитории для проведения заня-	Мультимедийные средства хранения, пере-
тий лекционного типа	дачи и представления информации.
Учебные аудитории для проведения прак-	Доска, мультимедийный проектор, экран
тических занятий, групповых и индивиду-	
альных консультаций, текущего контроля и	
промежуточной аттестации	
Учебные аудитории для выполнения курсо-	Персональные компьютеры с пакетом MS
вого проектирования, помещения для само-	Office, выходом в Интернет и с доступом в
стоятельной работы обучающихся	электронную информационно-
	образовательную среду университета
Помещение для хранения и профилактиче-	Стеллажи, сейфы для хранения учебного
ского обслуживания учебного оборудова-	оборудования
ния	Инструменты для ремонта лабораторного
	оборудования