МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Магнитогорский государственный технический университет им. Г.И. Носова»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

СЕНСОРНЫЕ ДАТЧИКИ

Направление подготовки (специальность) 11.04.04 Электроника и наноэлектроника

Направленность (профиль/специализация) программы Промышленная электроника и автоматика электротехнических комплексов

Уровень высшего образования - магистратура

Форма обучения очная

Институт энергетики и автоматизированных систем Институт/ факультет

Электроники и микроэлектроники

Кафедра

Курс 3 Семестр

> Магнитогорск 2020 год

Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 11.04.04 Электроника и наноэлектроника (уровень магистратуры) (приказ Минобрнауки России от 22.09.2017 г. № 959)

	Рабочая программа рассмотрен	на и одобрена на засед	дании кафедр	оы Электроники и
микро	электроники			
	13.02.2020 г. протокол № 6		(1)	
		Зав. кафедрой	#6	С.И. Лукьянов
	Рабочая программа одобрена м	етодической комиссие	ей ИЭиАС	
	26.02.2020 г. протокол № 5			
		Председатель	AG	С.И. Лукьянов
	Рабочая программа составлена:			
	доцент кафедры ЭиМЭ, канд. то		leeg	_ Д.В. Швидченко
	Рецензент:			
	директор СЦ, ООО "ТЕХНОАГ	I Инжиниринг ¹¹ , канд.	техн. наук	FOO
			9	_ Е.С. Суспицын

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2021 - 2022 учебном году на заседании кафедры Электроники и микроэлектроники					
	Протокол от	г. № С.И. Лукьянов			
Рабочая программа пересмотр учебном году на заседании ка		•			
	Протокол от	. 20 г. № С.И. Лукьянов			

1 Цели освоения дисциплины (модуля)

Целью дисциплины «Сенсорные датчики» является формирование у студентов знаний по принципам построения и функционирования современных сенсорных устройств (интеллектуальных датчиков), измерительных систем на их основе, используемых для этой цели информационных технологий, предназначенных для измерения наиболее распространенных и используемых на практике электрических и неэлектрических физических величин, освоение студентами основ применения компьютерных технологий в системах контроля и диагностики.

Задачи дисциплины — изучение многообразия принципов построения первичных измерительных преобразователей с микропроцессорной обработкой информации, реализуемым в них методов измерения и контроля, проведение экспериментальных исследований изучаемых устройств в различных режимах функционирования, ознакомление с существующими в данной области в настоящее время проблемами и способами их решения.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Сенсорные датчики входит в часть учебного плана формируемую участниками образовательных отношений образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик:

Технологические датчики

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы для изучения дисциплин/практик:

Выполнение и защита выпускной квалификационной работы

Производственная-преддипломная практика

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Сенсорные датчики» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции			
ПК-6 Способен пр	оводить аппаратное макетирования и экспериментальные работы по			
проверке достижи	мости технических характеристик, планируемых при проектировании			
электронной аппар	ратуры			
ПК-6.1	Проводит экспериментальные исследования электронных устройств и			
	систем по проверке достижимости технических характеристик,			
	планируемых при проектировании электронной аппаратуры			
ПК-6.2	Осуществляет контроль соответствия разрабатываемых проектов и			
	технической документации стандартам, техническим условиям и			
	другим нормативным документам			

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 1 зачетных единиц 36 акад. часов, в том числе:

- контактная работа 19 акад. часов:
- аудиторная 18 акад. часов;
- внеаудиторная 1 акад. часов
- самостоятельная работа 17 акад. часов;

Форма аттестации - зачет

Раздел/ тема дисциплины	Семестр	конт	худитор: актная _ј акад. ча лаб. зан.	работа	Самостоятельная работа студента	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код компетенции
1. Основные принц построения измерители систем								
1.1 Обобщённая структура измерительной системы. Статические характеристики элементов измерительной системы: систематические и статистические. Ошибка измерения в установившемся режиме. Способы уменьшения статической ошибки измерения.		2			1	самостоятельное изучение учебной литературы. Подготовка к практическим занятиям и контрольной работе	контрольная работа	
1.2 Динамические характеристики элементов измерительной системы. Динамическая ошибка при измерении. Способы уменьшения динамической ошибки измерения.	3	2			2	самостоятельное изучение учебной литературы. Подготовка к практическим занятиям и контрольной работе	контрольная работа	
1.3 Применение теории четырёхполюсников для расчёта измерительных систем		2			2	самостоятельное изучение учебной литературы. Подготовка к практическим занятиям и контрольной работе	контрольная работа	

1.4 Сигналы и шум в измерительных системах. Влияние шума и помех на измерительные цепи. Источники шума. Методы снижения влияния шума и помех на процесс измерения.		2			2	самостоятельное изучение учебной литературы. Подготовка к практическим занятиям и контрольной работе	контрольная работа	
1.5 Надёжность измерительной системы. Способы повышения надёжности измерительной системы.		2			2	самостоятельное изучение учебной литературы. Подготовка к практическим занятиям и контрольной работе	контрольная работа	
Итого по разделу		10			9			
2. Основные элеме	енты							
измерительных систем			1	-				
2.1 Основные типы сенсоров (чувствительных элементов). Классификация сенсоров: по физическому принципу измерения, по типу выходного сигнала, активные и пассивные.		2			2	самостоятельное изучение учебной литературы. Подготовка к практическим занятиям.		
2.2 Основные схемы формирования сигнала: мерительные мосты, усилители, схемы модуляции, демодуляции, осцилляторы и резонаторы.	3	2			2	самостоятельное изучение учебной литературы. Подготовка к практическим занятиям.		
2.3 Элементы обработки сигналов: АЦП, ЦАП, микроконтроллеры, компьютеры, ЦОС		2			2	самостоятельное изучение учебной литературы. Подготовка к практическим занятиям.		
2.4 Элементы отображения информации. Обзор и выбор		2			2	самостоятельное изучение учебной литературы. Подготовка к практическим занятиям.		
Итого по разделу		8			8			
Итого за семестр		18			17		зачёт	
Итого по дисциплине		18			17		зачет	
								I

5 Образовательные технологии

Практические занятия проходят как в традиционной форме, так и в интерактивной форме, где студентам заранее предлагается ознакомиться с информацией по теме занятия для подготовки вопросов преподавателю, таким образом, практическое занятие проходит по типу «вопросы—ответы—дискуссия». На всех практических занятиях также применяются элементы занятия-визуализации, за счет представления части материала с помощью заранее подготовленных презентаций, слайдов с помощью мультимедийного оборудования.

Теоретический материал, освоенный студентами самостоятельно, закрепляется на практических занятиях, на которых выполняются индивидуальные и групповые задания по пройденной теме. Часть практических занятий проводится в виде традиционных семинаров с целью более глубокого и полного усвоения теоретического материала по данной теме. Для этого студентам предлагается готовить доклады по рассматриваемой теме с дальнейшим обсуждением в ходе практического занятия (учебных дискуссий). На практических занятиях также применяются метод контекстного обучения, работы в команде и метод case-study, позволяющие усвоить учебный материал путём вы-явления связей между конкретным знанием и его применением, а также анализа конкретных ситуаций и поиска решений в группе студентов. Защита результатов практических заданий проходит в виде диалога преподавателя и студента, преподавателем задаются контрольные вопросы с целью выяснения глубины знаний студента по данному разделу, при этом пробелы знаниях студента восполняются дополнительными пояснениями. В комментариями преподавателя.

В качестве оценочных средств на протяжении семестра используются контрольные работы. Самостоятельная работа студентов заключается в проработке материала при подготовке к практическим занятиям.

- **6 Учебно-методическое обеспечение самостоятельной работы обучающихся** Представлено в приложении 1.
- **7** Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.
- 8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:
- 1. Датчики: справочное пособие / В. М. Шарапов, Е. С. Полищук, Н. Д. Кошевой, Г. Г. Ишанин. Москва: Техносфера, 2012. 624 с. ISBN 978-5-94836-316-5. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/73560 Режим доступа: для авториз. пользователей.
- 2. Немченко, В. И. Проектирование установки датчиков и средств автоматизации на технологическом оборудовании: учебное пособие / В. И. Немченко, Г. Н. Епифанова, А. Г. Панкратова. 2-е изд. Самара: АСИ СамГТУ, 2017. 58 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/127541 Режим доступа: для авториз. пользователей.

б) Дополнительная литература:

1. Войтович, И. Д. Интеллектуальные сенсоры: учебное пособие / И. Д. Войтович, В. М. Корсунский. — 2-е изд. — Москва: ИНТУИТ, 2016. — 1164 с. — ISBN 978-5-9963-0124-9. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/100608 — Режим доступа: для авториз. пользователей.

- 2. Попов, Г. В. Микромеханические инерциальные датчики : учебное пособие / Г. В. Попов. Москва : МГТУ им. Н.Э. Баумана, 2015. 269 с. ISBN 978-5-7038-4336-9. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/103444 Режим доступа: для авториз. пользователей.
- 3. Рыжова, А. А. Устройство, работа и метрологическое обслуживание датчиков систем автоматизации: учебно-методическое пособие / А. А. Рыжова. Казань: КНИТУ, 2018. 220 с. ISBN 978-5-7882-2428-2. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/138496 Режим доступа: для авториз. пользователей.

в) Методические указания:

- 1. Лабораторный практикум по курсу "Датчики на основе микро- и нанотехнологий : учебное пособие / Б. И. Подлепецкий, С. В. Гуменюк, М. Ю. Никифорова, Н. Н. Самотаев. Москва : НИЯУ МИФИ, 2010. 56 с. ISBN 978-5-7262-1356-9. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/75741 Режим доступа: для авториз. пользователей.
- 2. Систематические характеристики элементов измерительных систем методические указания.URL:https://newlms.magtu.ru/pluginfile.php/1452667/mod_resource/content/1/%D0%A1%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5%20%D1%85%D0%B0%D1%80%D0%B0%D0%BA%D1%82%D0%B5%D1%80%D0%B8%D1%81%D1%82%D0%B8%D0%BA%D0%B8.pdf— Режим доступа: для авториз. пользователей.
- 3. Статические характеристики элементов измерительных систем методические указания.

 URL: https://newlms.magtu.ru/pluginfile.php/1452671/mod_resource/content/1/%D1%81%D1%82%D0%BA%D0%B5%D0%B5%D1%81%D0%BA%D0%B5%D0%B5%D0%B5%D0%B5%D0%B5%D0%B5%D0%B5%D0%B5%D0%B5%D0%B5%D0%B5%D0%B5%D0%B5%D0%B5%D0%B5%D0%B5%D0%B5%D0%B5%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8.pdf— Режим доступа: для авториз. пользователей.
- 5. Динамические характеристики элементов измерительных систем методические указания.

 URL: https://newlms.magtu.ru/pluginfile.php/1452676/mod_resource/content/1/%D0%B4%D0%B8.pdf
 Режим доступа: для авториз. пользователей.
- 6. Динамическая ошибка. Способы снижения динамической ошибки методические указания. URL: https://newlms.magtu.ru/pluginfile.php/1452679/mod_resource/content/1/%D0%B4%D0%B8%D0%B8%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F%20%D0%BE%D1%88%D0%B8%D0%B1%D0%BA%D0%B0.pdf Режим доступа: для авториз. пользователей.

7. Теория четырёхполюсников. Влияние нагрузки. URL:

https://newlms.magtu.ru/pluginfile.php/1452680/mod_resource/content/1/%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F%20%D1%87%D0%B5%D1%82%D1%8B%D1%80%D1%91%D1%85%D0%BF%D0%BE%D0%BB%D1%8E%D1%81%D0%BD%D0%B8%D0%BA%D0%BE%D0%B2.pdf — Режим доступа: для авториз. пользователей.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

iipoi pammioe ocene ienie					
Наименование ПО	№ договора	Срок действия лицензии			
MS Windows 7 Professional(для классов)	Д-1227-18 от 08.10.2018	11.10.2021			
MS Office 2007 Professional	№ 135 от 17.09.2007	бессрочно			
NI MultiSim Education	К-68-08 от 29.05.2008	бессрочно			
MathWorks MathLab v.2014 Classroom License	К-89-14 от 08.12.2014	бессрочно			
NI Developer Suite	К-118-08 от 20.10.2008	бессрочно			

Профессиональные базы данных и информационные справочные системы

профессиональные оазы данных и	информационные справочиве системы
Название курса	Ссылка
Поисковая система Академия Google (Google Scholar)	URL: https://scholar.google.ru/
Электронная база периодических изданий East View Information Services, OOO	https://dlib.eastview.com/
Национальная информационно-аналитическая система — Российский индекс научного цитирования	
Информационная система - Единое окно доступа к информационным ресурсам	URL: http://window.edu.ru/
Российская Государственная библиотека. Каталоги	https://www.rsl.ru/ru/4readers/catalogues/
Электронные ресурсы библиотеки МГТУ им. Г.И. Носова	mup://magtu.ru.8085/marcwe02/Derauit.asp
Университетская информационная система РОССИЯ	https://uisrussia.msu.ru

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

- 1. Учебные аудитории для проведения занятий лекционного типа.
- 1.1. Мультимедийные средства хранения, передачи и представления информации, демонстрационные плакаты.
- 1.2. Персональные компьютеры с установленным ПО для проектирования и моделирования измерительных систем (MathLab и NI Multisim).
 - 2. Помещения для самостоятельной работы обучающихся.

Персональные компьютеры с пакетом MS Office, ПО для проектирования и моделирования измерительных систем (MathLab и NI Multisim) локальной сетью и доступом в электронную информационно-образовательную среду университета.

Учебно-методическое обеспечение самостоятельной работы студентов

По дисциплине «Сенсорные датчики» предусмотрена аудиторная и внеаудиторная самостоятельная работа обучающихся.

Аудиторная самостоятельная работа студентов предполагает решение контрольных задач на практических занятиях.

Примерные аудиторные контрольные работы (АКР):

- АКР №1 «Обобщённая структура измерительной системы. Статические характеристики элементов измерительной системы: систематические и статистические. Ошибка измерения в установившемся режиме. Способы уменьшения статической ошибки измерения.»:
- 1. Датчик усилия имеет выходной диапазон от 1 до 5 B, соответствующий входному диапазону от 0 до 2×105 H. Найдите уравнение аппроксимирующей прямой.
- 2. Датчик перепада давления имеет входной диапазон от 0 до 2×10^4 Па и выходной диапазон от 4 до 20 мА. Найдите уравнение аппроксимирующей прямой.
- 3. Нелинейный датчик давления имеет входной диапазон от 0 до 10 бар и выходной диапазон от 0 до 5 В. При давлении в 4 бара выходное напряжение составляет 2,2 В. Рассчитайте нелинейность в вольтах и в процентах относительно выходного диапазона.
- 4. Нелинейный датчик температуры имеет входной диапазон от 0 до 400 $^{\rm o}$ C и выходной диапазон от 0 до 20 мВ. При температуре в 100 $^{\rm o}$ C выходной сигнал равен 4,5 мВ. Определите нелинейность при $100^{\rm o}$ C в милливольтах и в процентах от выходного лиапазона.
- 5. Термопара используется для измерения температуры в диапазоне от 0 до 500 °C. При калибровке были получены следующие значения:

T,oC	0	100	200	300	500
Е, мкВ	0	5286	10 777	16 325	27 388

- 6. Датчик давления имеет выходной диапазон от 1,0 до 5,0В при стандартной температуре окружающей среды в 20° С, и выходной диапазон от 1,2 до 5,2В при температуре 30° С. Оцените количественно влияние данной внешней помехи на передаточную характеристику.
- 7. Датчик давления имеет входной диапазон от 0 до $10^4\Pi a$ и выходной диапазон от 4 до 20мA при стандартной температуре окружающей среды 20°C . Если температура окружающей среды вырастает до 30°C , то выходной диапазон становится равным от 4,2 до 20,8mA. Найдите значения параметров K_I и K_M влияния данной внешней помехи.
- 8. Аналогово-цифровой преобразователь имеет входной диапазон от 0 до 5В. Рассчитайте разрешающую способность (ошибку) в вольтах и в процентах относительно входного диапазона:
 - для 8-разрядного АЦП;
 - для 16-разрядного АЦП.
- 9. Датчик уровня имеет выходной диапазон от 0 до 10В. Для уровня 3 метра, выходной сигнал имеет значения 3,05В и 2,95В для случаев падения и возрастания уровня соответственно. Найдите значение гистерезиса в процентах относительно выходного диапазона.

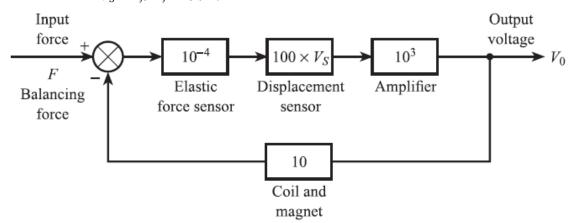
- 10. ЭДС спая термопары принимает значение 645мкВ для точки пара, 3375мкВ для точки цинка и 9149мкВ для точки серебра. Принимая, что зависимость ЭДС от температуры имеет вид E(t)=a1T+a2T2+a3T3 (T в $^{\circ}$ С), найдите a1, a2 u a3.
- 11. Зависимость сопротивления термистора от температуры имеет вид $R(\theta) = \alpha \cdot \exp(\beta/\theta)$ (θ в K). Сопротивление термистора для точки льда (273,15K) составляет 9,00кОм, а сопротивление в точке пара 0,50кОм. Определите сопротивление термистора при 25°C.
- 12. Датчик смещения имеет входной диапазон от 0,0 до 3,0см и стандартное напряжение питания V_S 0,5В. Используя результаты калибровки, приведённые в таблице, определите:
 - максимальную нелинейность в процентах относительно выходного диапазона;
 - коэффициенты K_I, K_M, характеризующие влияние изменения напряжения питания;
 - коэффициент наклона аппроксимирующей прямой.

Смещение х, см	0,0	0,5	1,0	1,5	2,0	2,5	3,0
Выходное напряжение,	0,0	16,5	32,0	44,0	51,5	55,5	58,0
$MB (V_S = 0.5)$							
Выходное напряжение,	0,0	21,0	41,5	56,0	65,0	70,5	74,0
мВ (V_S = 0,6)							

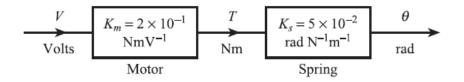
13. Измерительная система состоит из термопары типа хромель-аллюмель (с компенсацией холодного спая), преобразователя в токовый сигнал (А/мВ) и самописца. В таблице приведены уравнения и параметры данных элементов. Предполагая, что все распределения вероятностей являются нормальными, рассчитайте среднее и стандартное отклонение распределения вероятности ошибки измерения, при входной температуре 117°C.

	Chromel–alumel thermocouple	e.m.f-to-current converter	Recorder
Model equation	$E = C_0 + C_1 T + C_2 T^2$	$i = K_1 E + K_M E \Delta T_a + K_I \Delta T_a + a_1$	$T_M = K_2 i + a_2$
Mean values	$\begin{split} \bar{C}_0 &= 0.00 \\ \bar{C}_1 &= 4.017 \times 10^{-2} \\ \bar{C}_2 &= 4.66 \times 10^{-6} \end{split}$	$ar{K}_1 = 3.893$ $\Delta T_a = -10$ $ar{a}_1 = -3.864$ $ar{K}_M = 1.95 \times 10^{-4}$ $ar{K}_I = 2.00 \times 10^{-3}$	$\bar{K}_2 = 6.25$ $\bar{a}_2 = 25.0$
Standard deviations	$\sigma_{C_0} = 6.93 \times 10^{-2}$ $\sigma_{C_1} = \sigma_{C_2} = 0$	$\sigma_{a_1} = 0.14, \ \sigma_{\Delta T_a} = 10$ $\sigma_{K_1} = \sigma_{K_M} = \sigma_{K_I} = 0$	$\sigma_{a_2} = 0.30$ $\sigma_{K_2} = 0.0$

- 14. Схема измерения давления состоит из датчика давления, измерительного моста, усилителя и самописца. В таблице приведены коэффициенты K передаточных линейных характеристик всех элементов системы и соответствующие диапазоны ошибок h.
 - Рассчитайте стандартное отклонение G_E функции распределения ошибки измерения.


– Учитывая, что самописец настроен неправильно, так что его чувствительность составляет $225\Pi a/mB$, рассчитайте среднее значение ошибки измерения \bar{E} при входном давлении $5\cdot 10^3\Pi a$.

Element	Linear sensitivity K	Error bandwidth $\pm h$
Pressure sensor	$10^{-4} \Omega Pa^{-1}$	$\pm 0.005 \Omega$
Deflection bridge	$4 \times 10^{-2} \text{ mV } \Omega^{-1}$	$\pm 5 \times 10^{-4} \text{ mV}$
Amplifier	10^3 mV mV^{-1}	$\pm 0.5 \text{ mV}$
Recorder	250 Pa mV^{-1}	$\pm 100 \text{ Pa}$

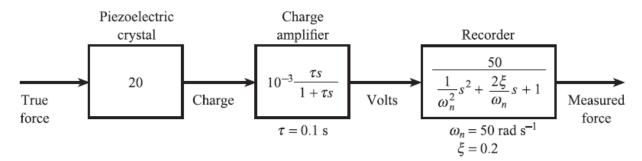

15. На рисунке приведена структурная схема датчика усилия, охваченного отрицательной обратной связью. Сенсор (пружина) преобразует усилие в перемещение; датчик перемещения преобразует полученное перемещение в сигнал напряжения. V_S —напряжение источника питания датчика перемещения. Источник питания нестабилен.

Рассчитайте выходное напряжение V_0 при:

- $-V_S = 1B; F = 50H;$
- $-V_S = 1.5B; F=50H.$

- 16. На рисунке приведена структурная схема вольтметра. Мотор создаёт момент T пропорциональный входному напряжению V, а угловое смещение пружины θ пропорционально моменту T. Жёсткость пружины K_S может варьироваться в диапазоне $\pm 10\%$ относительно номинального значения $5\cdot 10^{-2}$ рад/Нм. Дополнительно доступны следующие элементы:
 - усилитель постоянного тока с коэффициентом усиления *K*=1000;
 - вычитатель напряжения;
 - стабильный датчик угловых перемещений с передаточным коэффициентом 100В/рад.
- Используя дополнительные элементы, нарисуйте модифицированную схему, в которой уменьшено влияние изменения жёсткости пружины.
- Рассчитайте влияние увеличения жёсткости пружины K_S на 10% на чувствительность модифицированной системы.

АКР №2 «Динамические характеристики элементов измерительной системы. Динамическая ошибка при измерении. Способы уменьшения динамической ошибки измерения».


1. Система измерения температуры состоит из линейных элементов и обладает общей чувствительностью K, равной единице. Динамика системы определяется передаточной функцией первого порядка чувствительного элемента. В момент времени t=0 чувствительный элемент внезапно переносится из воздуха при 20° С в кипящую воду. Через минуту элемент возвращается в воздушную среду. Используя данные, приведенные ниже, рассчитайте динамическую ошибку системы в следующие моменты времени: t=10, 20, 50, 120 и 300с.

Параметры сенсора:

- масса = 5×10^{-2} кг;
- площадь поверхности = $10^{-3} \,\mathrm{m}^2$;
- удельная теплоемкость = $0.2 \, \text{Дж/(кг}^{\circ}\text{C});$
- коэффициент теплопередачи для воздуха = $0.2 \text{ Br/(m}^2 \text{°C})$;
- коэффициент теплопередачи для воды = $1.0 \text{ Br/(M}^{2\circ}\text{C})$.
- 2. Система измерения усилия состоит из линейных элементов и обладает общей чувствительностью K, равной единице. Динамика системы определяется передаточной функцией второго порядка чувствительного элемента, которая имеет собственную частоту ω_n =40рад/с и коэффициент демпфирования ξ =0,1. Вычислите динамическую ошибку системы при измерении усилия, изменяющегося по следующему закону:

$$F(t) = 50(\sin 10t + \frac{1}{3}\sin 30t + \frac{1}{5}\sin 50t)$$

- 3. Термопара, измеряющая температуру в быстро движущейся жидкости имеет постоянную времени 10с.
 - Рассчитайте ширину полосы частотной характеристики термопары.
 - Найдите диапазон частот, для которых отношение амплитуд находится в пределах $\pm 5\%$.
 - Для компенсации инерционности термопары используется схема с передаточной функцией G(s)=(1+10s)/(1+s). Рассчитайте диапазон частот, для которых отношение амплитуд компенсированной системы находится в пределах $\pm 5\%$.
 - Скорость жидкости уменьшается, в результате чего постоянная времени термопары увеличивается до 20с. Зарисуйте $AYX|G(j\omega)|$ и объясните, почему эффективность вышеуказанной компенсации снижается.
- 4. Система измерения усилия, состоящая из пьезоэлектрического кристалла, усилителя заряда (интегратора) и регистратора, показана на рисунке:

Рассчитайте динамическую ошибку системы при изменении усилия по следующему закону:

$$F(t) = 50(\sin 10t + \frac{1}{3}\sin 30t + \frac{1}{5}\sin 50t)$$

- Объясните какие параметры нужно изменить в системе для уменьшения динамической ошибки, полученной в предыдущем задании.
- 5. Система измерения температуры для газового реактора состоит из линейных элементов и обладает общей чувствительностью K, равной единице. Датчик температуры имеет постоянную времени 5,0c; также используется идеальный фильтр нижних частот с частотой среза $0,05\Gamma$ ц. Входной температурный сигнал является периодическим с периодом 63c и может быть аппроксимирован рядом Фурье:

$$T(t) = 10(\sin \omega_0 t + \frac{1}{2}\sin 2\omega_0 t + \frac{1}{3}\sin 3\omega_0 t + \frac{1}{4}\sin 4\omega_0 t)$$

где ω_0 – угловая частота основной гармоники.

- Рассчитайте изменение выходного сигнала;
- Рассчитайте изменение динамической ошибки;
- Объясните какие параметры нужно изменить в системе для уменьшения полученной динамической ошибки.

Внеаудиторная самостоятельная работа обучающихся осуществляется в виде изучения литературы по соответствующему разделу с проработкой материала.

ПРИЛОЖЕНИЕ 2

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Код	Индикатор достижения	
индикатора	компетенции	Оценочные средства
ПК-6: Способе	ен проводить аппаратное макетирова	ания и экспериментальные работы по
проверке дост	ижимости технических характеристи	ик, планируемых при проектировании
электронной а	ппаратуры	
ПК-6.1:	Проводит экспериментальные	Примерный перечень вопросов
	исследования электронных	для подготовки к экзамену:
	устройств и систем по проверке	– какова структура обобщённой
	достижимости технических	измерительной системы?
	характеристик, планируемых при	– что такое «ошибка
	проектировании электронной	измерительной системы?
	аппаратуры	– каково назначение сенсора
		(чувствительного элемента) в
		обобщенной измерительной
		системе? Приведите примеры
		сенсоров.
		– каково назначение
		формирователя сигнала в
		обобщенной измерительной
		системе? Приведите примеры
		формирователей сигналов.
		– каково назначение обработчика
		сигнала в обобщенной
		измерительной системе?
		Приведите примеры обработчиков сигналов.
		– каково назначение элемента
		отображения в обобщенной
		измерительной системе?
		Приведите примеры элементов
		отображения.
		– что такое «статическая
		характеристика элемента
		измерительной системы»?
		– что такое систематические
		характеристики элементов
		измерительной системы?
		Приведите примеры
		систематических характеристик.
		– что такое нелинейность
		элемента измерительной системы? Как рассчитывается?
		– что такое чувствительность
		элемента измерительной системы?
		Как рассчитывается?
		– каков эффект влияния внешних
		помех на измерения: что такое
		эффект приращения и изменение

чувствительности относительно характеристики элемента измерительной системы?

- в чём заключается эффект гистерезиса? Приведите примеры.
- что такое разрешающая способность?
- каким образом изменяются характеристики элементов при старении и износе?
- что такое «диапазон ошибки»?
- что такое статистические характеристики элементов измерительной системы?
 Приведите примеры статистических характеристик.
- что такое повторяемость?
- что такое «комбинирование погрешностей»?
- что такое «допуск»?
- как рассчитывается среднее значение и стандартное отклонение выхода элемента при условии нормального распределения отклонений в измерениях?
- что такое калибровка?
- чем отличается точность от погрешности?
- назовите способы уменьшения статической ошибки.
- объясните способ компенсации нелинейности.
- перечислите способы компенсации внешнего возмущения.
- в чём заключается метод противодействия внешнему возмущению?
- каким образом ООС компенсирует внешнее возмущение?
- каким образом использование дифференциальных схем компенсирует внешнее возмущение?
- что такое «динамическая характеристика элемента измерительной системы»?
- что такое «звено первого порядка»? Какова передаточная функция?
- для чего применяется преобразование Лапласа?

		аналогии при описании различных физических процессов звеньями первого и второго порядка? — каким образом выполняется идентификация передаточной функции элемента, по реакции на единичный сигнал?
		 – каким образом выполняется идентификация передаточной функции элемента, по реакции на гармонический сигнал? – что такое «динамическая ошибка»?
		 перечислите способы уменьшения динамической ошибки. в чём заключаются конструктивные способы
		снижения динамической ошибки? — в чём заключается способ динамической компенсации. — каким образом ООС уменьшает динамическую ошибку? Что такое глубина ООС?
		 - что такое четырёхполюсник? - в чём заключается теорема об эквивалентном источнике напряжения (теорема Тевенина)? - в чём заключается теорема об эквивалентном источнике тока (теорема Норточа)?
		(теорема Нортона)? — перечислите методы снижения влияния шума и помех на измерение. — перечислите способы повышения надёжности измерительной системы.
ПК-6.2:	Осуществляет контроль соответствия разрабатываемых проектов и технической документации стандартам, техническим условиям и другим нормативным документам	Перечень практических заданий для текущего контроля: — Датчик усилия имеет выходной диапазон от 1 до 5 В, соответствующий входному диапазону от 0 до 2 ×10 ⁵ H. Найдите уравнение
		аппроксимирующей прямой. — Датчик перепада давления имеет входной диапазон от 0 до 2 × 10 ⁴ Па и выходной диапазон от 4 до 20 мА. Найдите уравнение аппроксимирующей прямой.

- Нелинейный датчик давления имеет входной диапазон от 0 до 10 бар и выходной диапазон от 0 до 5 В. При давлении в 4 бара выходное напряжение составляет 2,2 В. Рассчитайте нелинейность в вольтах и в процентах относительно выходного диапазона.
- Нелинейный датчик температуры имеет входной диапазон от 0 до 400 °С и выходной диапазон от 0 до 20 мВ. При температуре в 100 °С выходной сигнал равен 4,5 мВ. Определите нелинейность при 100°С в милливольтах и в процентах от выходного диапазона.
- Датчик давления имеет выходной диапазон от 1,0 до 5,0В при стандартной температуре окружающей среды в 20°С, и выходной диапазон от 1,2 до 5,2В при температуре 30°С. Оцените количественно влияние данной внешней помехи на передаточную характеристику.
- Датчик давления имеет входной диапазон от 0 до 10^4 Па и выходной диапазон от 4 до 20мА при стандартной температуре окружающей среды 20° С. Если температура окружающей среды вырастает до 30° С, то выходной диапазон становится равным от 4,2 до 20,8мА. Найдите значения параметров KI и KM влияния данной внешней помехи.
- Аналогово-цифровой преобразователь имеет входной диапазон от 0 до 5В. Рассчитайте разрешающую способность (ошибку) в вольтах и в процентах относительно входного диапазона:
 - для 8-разрядного АЦП;
 - для 16-разрядного АЦП.
- Датчик уровня имеет выходной диапазон от 0 до 10В. Для уровня 3 метра, выходной сигнал имеет значения 3,05В и 2,95В для случаев

падения и возрастания уровня соответственно. Найдите значение гистерезиса в процентах относительно выходного диапазона.

- ЭДС спая термопары принимает значение 645мкВ для точки пара, 3375мкВ для точки цинка и 9149мкВ для точки серебра. Принимая, что зависимость ЭДС от температуры имеет вид E(t)=a1T+a2T2+a3T3 (T в oC), найдите a1, a2 и a3.
- Зависимость сопротивления термистора от температуры имеет вид $R(\theta) = \alpha \cdot \exp(\beta/\theta)$ (θ в K). Сопротивление термистора для точки льда (273,15K) составляет 9,00KОм, а сопротивление в точке пара 0,50KОм. Определите сопротивление термистора при $25^{\circ}C$.
- Система измерения температуры состоит из линейных элементов и обладает общей чувствительностью К, равной единице. Динамика системы определяется передаточной функцией первого порядка чувствительного элемента. В момент времени t = 0чувствительный элемент внезапно переносится из воздуха при 20°С в кипящую воду. Через минуту элемент возвращается в воздушную среду. Используя данные, приведенные ниже, рассчитайте динамическую ошибку системы в следующие моменты времени: t =10, 20, 50, 120 u 300c.
- Параметры сенсора:
- $macca = 5 \times 10^{-2} \text{ Kz}$:
- площадь поверхности = 10^{-3} м2;
- удельная теплоемкость = 0.2 Дж/(кг $^{\circ}$ C);
- коэффициент теплопередачи для воздуха = 0,2 Вт/(м2°С);
- $\kappa оэ \phi \phi ициент теплопередачи для воды = 1,0 Вт/(м2°C).$
- Система измерения усилия состоит из линейных элементов и обладает общей чувствительностью K, равной

единице. Динамика системы определяется передаточной функцией второго порядка чувствительного элемента, которая имеет собственную частоту $\omega n=40$ рад/с и коэффициент демпфирования $\xi=0,1$. Вычислите динамическую ошибку системы при измерении усилия, изменяющегося по следующему закону:

— F(t)=50 (sin $10t+\frac{1}{2}$ sin $30t+\frac{1}{2}$

 $-F(t) = 50(\sin 10t + \frac{1}{3}\sin 30t + \frac{1}{5}\sin 50t)$

- Термопара, измеряющая температуру в быстро движущейся жидкости имеет постоянную времени 10с.
- Рассчитайте ширину полосы частотной характеристики термопары.
- Найдите диапазон частот, для которых отношение амплитуд находится в пределах $\pm 5\%$.
- Для компенсации инерционности термопары используется схема с передаточной функцией G(s)=(1+10s)/(1+s). Рассчитайте диапазон частот, для которых отношение амплитуд компенсированной системы находится в пределах $\pm 5\%$.
- Скорость жидкости уменьшается, в результате чего постоянная времени термопары увеличивается до 20с. Зарисуйте AЧХ|G(jω)| и объясните, почему эффективность вышеуказанной компенсации снижается.
- Система измерения температуры для газового реактора состоит из линейных элементов и обладает общей чувствительностью К, равной единице. Датчик температуры имеет постоянную времени 5,0c; также используется идеальный фильтр нижних частот с частотой среза 0,05Гц. Входной температурный сигнал является периодическим с периодом 63c и

может быть аппроксимирован
рядом Фурье:
$-T(t) = 10(\sin \omega_0 t + \frac{1}{2}\sin 2\omega_0 t +$
$\frac{1}{3}\sin 3\omega_0 t + \frac{1}{4}\sin 4\omega_0 t$
где ω0 – угловая частота основной
гармоники.
– Рассчитайте изменение
выходного сигнала;
– Рассчитайте изменение
динамической ошибки;
– Объясните какие параметры
нужно изменить в системе для
уменьшения полученной
динамической ошибки.

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Сенсорные датчики» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме зачета.

Экзамен по данной дисциплине проводится в устной форме по экзаменационным билетам, каждый из которых включает 2 теоретических вопроса и 2 практических задания.

Показатели и критерии оценивания зачета:

- «зачтено» обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- «не зачтено» обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.