
МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Магнитогорский государственный технический университет им. Г.И. Носова»

26.02.2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

АВТОНОМНЫЕ ПРЕОБРАЗОВАТЕЛИ

Направление подготовки (специальность) 11.04.04 Электроника и наноэлектроника

Направленность (профиль/специализация) программы Промышленная электроника и автоматика электротехнических комплексов

Уровень высшего образования - магистратура

Форма обучения очная

Институт/ факультет Институт энергетики и автоматизированных систем

Кафедра Электроники и микроэлектроники

Курс 2

Семестр 3

> Магнитогорск 2020 год

Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 11.04.04 Электроника и наноэлектроника (уровень магистратуры) (приказ Минобрнауки России от 22.09.2017 г. № 959)

	Рабочая программа рассмотрена и одобрена на заседании кафедры Электроники
микро	электроники
aarv	13.02.2020, протокол № 6 Зав. кафедрой С.И. Лукьяно
	Рабочая программа одобрена методической комиссией ИЭиАС
	26.02.2020 г. протокол № 5 Председатель С.И. Лукьяно
	Рабочая программа составлена: профессор кафедры ЭиМЭ, д-р техн. наук М.Ю. Петушков
	Рецензент: директор СЦ, ООО "ТЕХНОАП Инжиниринг", канд. техн. наук Е.С. Суспицын
	Е.с. Суспицын

Лист актуализации рабочей программы

Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2020 - 2021 учебном году на заседании кафедры Электроники и микроэлектроники							
	ротокол от ав. кафедрой	_20 г. № С.И. Лукьянов					
Рабочая программа пересмотрена, обсуждена и одобрена для реализации в 2021 - 2022 учебном году на заседании кафедры Электроники и микроэлектроники							
	ротокол от ав. кафедрой	_ 20 г. № С.И. Лукьянов					

1 Цели освоения дисциплины (модуля)

Целями освоения дисциплины (модуля) «автономные преобразователи» являются:

- 1. изучение студентами теоретических и методологических основ автономных преобразователей;
- 2. изучение свойств и характеристик различных видов преобразования электрической энергии с помощью вентилей;
- 3. изучение теоретически обоснованных общих методов практического выбора, расчета и управления автономными преобразователями, используемых в различных областях современного автоматизированного производства.

2 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина Автономные преобразователи входит в часть учебного плана формируемую участниками образовательных отношений образовательной программы.

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения дисциплин/ практик: математическое моделирование и энергетическая электроника

Изучение данной дисциплины базируется на следующих освоенных в рамках ООП подготовки бакалавра по направлению 11.03.04 — Электроника и наноэлектроника: Теоретические основы электротехники;

Основы преобразовательной техники;

Электрические машины;

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Автономные преобразователи» обучающийся должен обладать следующими компетенциями:

Код индикатора	Индикатор достижения компетенции							
ПК-2 Способен раз	рабатывать структурные и функциональные схемы электронных систем							
и комплексов, принципиальные схемы устройств с использованием средств компьютерного								
проектирования,	проведением проектных расчетов и технико-экономическим							
обоснованием прин	нимаемых решений							
ПК-2.1	Разрабатывает эскизный проект, включающей: выбор структурной							
	схемы электронного устройства или системы путем сопоставления							
	различных вариантов и их оценки с точки зрения технических и							
	экономических требований; расчет всех необходимых показателей							
	структурной схемы электронного устройства или системы, в том числе							
	показателей качества; выбор и обоснование схемы вспомогательных							
	устройств							
ПК-2.2	Подготавливает технический проект, включающего: разработку							
	принципиальной схемы всего электронного устройства и отдельных его							
	деталей и узлов; выбор типа элементов с учетом технических							
	требований к разрабатываемому устройству, экономической							
	целесообразности и предполагаемой технологии его изготовления							

ПК-2.3	Производит технико-экономическое обоснование принятого решения с
	расчетами себестоимости устройства и стоимости его эксплуатации;
	сравнение с аналогами по технико-экономическим характеристикам

4. Структура, объём и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 4 зачетных единиц 144 акад. часов, в том числе:

- контактная работа 58,2 акад. часов:
- аудиторная 54 акад. часов;
- внеаудиторная 4,2 акад. часов
- самостоятельная работа 50,1 акад. часов;
- подготовка к экзамену 35,7 акад. часа

Форма аттестации - курсовая работа, экзамен

Раздел/ тема дисциплины	Семестр	Аудиторная контактная работа (в акад. часах)		Самостоятельная работа студента	Вид самостоятельной	Форма текущего контроля успеваемости и	Код компетенции	
дисциплины	Ce	Лек.	лаб. зан.	практ. зан.	Самосто работа о	работы	промежуточной аттестации	компетенции
1Исследова двухкомплектного реверсива преобразователя								
1.1 Исследование двухкомплектного реверсивного преобразователя	3	2	4/2И		6	Отчет по лабораторной работе	Устный опрос	ПК-2.1
Итого по разделу		2	4/2И		6			
2. Исследование трехфазавтономного инвер напряжения								
2.1 Исследование трехфазного автономного инвертора напряжения	3	2	4/2И		6	Отчет по лабораторной работе	Устный опрос	ПК-2.2
Итого по разделу		2	4/2И		6			
3. Исследование двухзвени преобразователя частоты	ного							
3.1 Исследование двухзвенного преобразователя частоты	3	2	4/2И		6	Отчет по лабораторной работе	Устный опрос	ПК-2.3
Итого по разделу		2	4/2И		6			
4. Исследование однофазного преобразователя переменного напряжения								
4.1 Исследование однофазного преобразователя переменного напряжения	3	2	4/2И		7	Отчет по лабораторной работе	Устный опрос	ПК-2.1, ПК-2.2, ПК-2.3
Итого по разделу	2	4/2И		7				
5. Исследование однофазимостового выпрямителя корректором коэффицимощности	c							

5.1 Исследование однофазного мостового выпрямителя с корректором коэффициента мощности	3	2	4/2И	6	Отчет по лабораторной работе	Устный опрос	ПК-2.1
Итого по разделу		2	4/2И	6			
6. Исследование понижают широтно-импульсного преобразователя постояни напряжения							
6.1 Исследование понижающего широтно-импульсного преобразователя постоянного напряжения	3	2	4/2И	7,1	Отчет по лабораторной работе	Устный опрос	ПК-2.2
Итого по разделу		2	4/2И	7,1			
7. Исследование повышают широтно-импульсного преобразователя постояни напряжения							
7.1 Исследование повышающего широтно-импульсного преобразователя постоянного напряжения	3	2	4/2И	6	Отчет по лабораторной работе	Устный опрос	ПК-2.3
Итого по разделу		2	4/2И	6			
8. Исследова понижающе-повышающего широтно-импульсного преобразователя постояни напряжения 8.1 Исследование понижающе-повышающего широтно-импульсного		2	4	6	Отчет по лабораторной	Устный опрос	ПК-2.1, ПК-2.2,
преобразователя	J	2	_	U	работе	эстный опрос	ПК-2.3
постоянного напряжения					•		
Итого по разделу		2	4	 6			
9. Исследование импульс преобразователей стабилизаторов постояни напряжения	И						
9.1 Исследование импульсных преобразователей и стабилизаторов постоянного напряжения	3	2	4/2И		Отчет по лабораторной работе	Устный опрос	ПК-2.1
Итого по разделу		2	4/2И				
Итого за семестр		18	36/16И	50,1		экзамен,кр	
Итого по дисциплине		18	36/16И	50,1		курсовая работа, экзамен	

5 Образовательные технологии

Для реализации предусмотренных видов учебной работы в качестве образовательных технологий в преподавании дисциплины «Автономные преобразователи» используются традиционная и модульно-компетентностная технологии.

Передача необходимых теоретических знаний и формирование основных представлений по курсу «Автономные преобразователи» происходит с использованием мультимедийного оборудования.

Весь материал закрепляется в ходе лабораторных работ, на которых выполняются групповые или индивидуальные задания по пройденной теме. При этом часть лабораторных занятий проводится в интерактивной форме с использованием следующих методов интерактивного обучения:

- актуализация познавательной деятельности учащихся путем побуждения к осмыслению логики и последовательности проведения научного исследования, к выделению в нем главных и наиболее существенных этапов; при этом определяется конечная цель исследования, а пути его проведения и формы представления результата обучающийся выбирает сам;
- отсутствие жестко регламентированного порядка выполнения работы по обработке экспериментальных данных, когда обучающийся оперирует вспомогательной информацией о способах поиска необходимых программных средств, функций, протоколов передачи и обработки данных, что вырабатывает способность к познанию;
- при постановке и анализе результатов исследования для достижения поставленных целей обучающиеся должны делать сравнения, сопоставлять новые факты, приемы использованные другими участниками группы, обращать внимание на причины, вызывающие то или иное явление и быть способными продемонстрировать индивидуальность своего подхода к решению задачи;
- проведение занятий в форме поиска причин допущенных ошибок при проведении исследования, причин несовпадения результатов с полученными другими группами обучающихся, побуждение к стремлению находить и устранять чужие и свои ошибки.

Самостоятельная работа стимулирует студентов к самостоятельной проработке тем в процессе выполнения контрольных работ, а также в процессе подготовки к устному опросу, тестированию и итоговой аттестации.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся Представлено в приложении 1.

7 Оценочные средства для проведения промежуточной аттестации Представлены в приложении 2.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля) а) Основная литература:

- 1. Фролов, В. Я. Устройства силовой электроники и преобразовательной техники с разомкнутыми и замкнутыми системами управления в среде Matlab Simulink : учебное пособие / В. Я. Фролов, В. В. Смородинов. 2-е изд., стер. Санкт-Петербург : Лань, 2018. 332 с. ISBN 978-5-8114-2583-9. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/106890 (дата обращения: 23.09.2020).
- 2. Никитин, В. В. Преобразовательная техника: учебное пособие / В. В. Никитин, Е. Г. Середа, Б. А. Трифонов. Санкт-Петербург: ПГУПС, 2014. 100 с. ISBN 978-5-7641-0589-5. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/64391 (дата обращения: 23.09.2020).

б) Дополнительная литература:

- 1. Зиновьев Г.С., Электромагнитная совместимость устройств силовой электроники. Часть 5 : учеб.-метод. пособие / Зиновьев Г.С. Новосибирск : Изд-во НГТУ, 2013. 56 с. ISBN 978-5-7782-2354-7 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN 9785778223547.html
- 2.. Подгорный В.В., Источники вторичного электропитания. Практикум: Учебное по-собие для вузов / Подгорный В.В., Семенов Е.С. М.: Горячая линия Телеком, 2013. 150 с. ISBN 978-5-9912-0308-1 Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785991203081.html
- 3. Белоус А.И., Полупроводниковая силовая электроника / Белоус А.И., Ефименко С.А., Турцевич А.С. М.: Техносфера, 2013. 12 с. ISBN 978-5-94836-367-7 Текст: электронный // ЭБС "Консультант студента" : [сайт]. URL: http://www.studentlibrary.ru/book/ISBN9785948363677.html
- 4. Журнал Электричество www.libma.ru/tehnicheskie_nauki/russkie_yelektrotehniki/p14.php
- 5. Журнал Практическая силовая электроника http://www.mmp-irbis.ru/content/journal1.php
- 6. Кашкаров А.П. Импульсные источники питания: схемотехника и ремонт. "ДМК Пресс"2012. . http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=4147

в) Методические указания:

- 1. Петушков М.Ю., Евдокимов С.А. Исследование трехфазных управляемых выпрямителей и их систем управления. Методические указания для студентов специальности 2004 «Промышленная электроника» по курсу «Устройства преобразовательной технике». Магнитогорск: МГТУ, 2002.
- 2. Петушков М.Ю. Исследование однофазных неуправляемых выпрямителей. Методи-ческие указания к лабораторной работе по курсу «Преобразовательная техника» для студентов специальности 2005. Магнитогорск, 1992.
- 3. Петушков М.Ю. Исследование полупроводниковых стабилизаторов напряжения. Методические указания к лабораторной работе по курсу «Преобразовательная техника» для студентов специальности 2005. Магнитогорск, 1993.
- 4. Петушков М.Ю. Интегральные стабилизаторы напряжения. Методические указания к лабораторным работам по курсу «преобразовательная техника» для студентов специальности 2005. Магнитогорск, 1993.
- 5. Петушков М.Ю. Исследование трехфазных выпрямителей. Методические указания для студентов специальности 2004 «Промышленная электроника». Магнитогорск: МГТУ, 2002. с.
- 6. Петушков М.Ю. Преобразователи постоянного напряжения. Учебное пособие. Магнитогорск. МГТУ, 2005.
- 7. Петушков М.Ю., Сарваров А.С.Анализ работы однополупериодного управляемого выпрямителя. Метод. разработка по дисциплине «Основы преобразовательной тех-ники» для студентов специальности 210106. Магнитогорск. МГТУ, 2006.

г) Программное обеспечение и Интернет-ресурсы:

Программное обеспечение

Наименование ПО	№ договора	Срок действия лицензии
NI MultiSim Education	К-68-08 от 29.05.2008	бессрочно
MathWorks MathLab v.2014 Classroom License	К-89-14 от 08.12.2014	бессрочно
MathCAD v.15 Education University Edition	Д-1662-13 от 22.11.2013	бессрочно
Windows 7	Д-1227 от 8.10.2018 Д-757-17 от 27.06.2017 Д-593-16 от 20.05.2016	11.10.2021 27.07.2018 20.05.2017
7 Zip	Свободно распространяемое	бессрочно
MS Office 2007	№ 135 от 17.09.2007	бессрочно
FAR Manager	свободно распространяемое ПО	бессрочно

Профессиональные базы данных и информационные справочные системы

Название курса	Ссылка
Национальная информационно-аналитическая система — Российский индекс научного цитирования (рини)	

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Лекционная аудитория: мультимедийные средства хранения, передачи и представления информации.

Лаборатория методов математического моделирования и компьютерных технологий в научных исследованиях: Лабораторные стенды с комплектом «Преобразовательная лабораторных работ техника $\Pi T-2$ », «Автономные преобразователи». Персональные компьютеры, объединенные в локальные сети с Internet, оснащенные современными программно-методическими выходом комплексами для решения задач в области преобразовательной техники Multisim 11.1 (EWB 5.12).

Аудитории для групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации: аудитории кафедры электроники и микроэлектроники (ауд. 457,458,459,460).

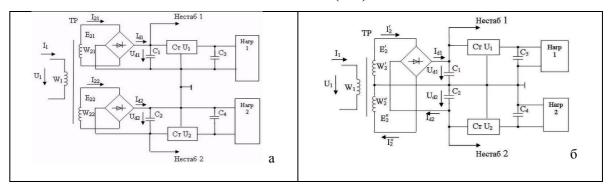
Компьютерный класс: персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

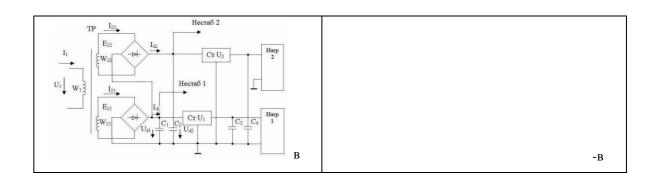
Аудитории для самостоятельной работы: компьютерные классы; читальные залы библиотеки: персональные компьютеры с пакетом MS Office, выходом в Интернет и с доступом в электронную информационно-образовательную среду университета.

Помещение для хранения и профилактического обслуживания учебного оборудования: Стеллажи, сейфы для хранения учебного оборудования. Инструменты для ремонта оборудования.

Учебно-методическое обеспечение самостоятельной работы обучающихся

Методические указания по выполнению курсовой работы


«РАЗРАБОТКА МНОГОКАНАЛЬНОГО ИСТОЧНИКА ПИТАНИЯ С МНОГООБМОТОЧНЫМ ТРАНСФОРМАТОРОМ»


- 1. Выбрать ИМС стабилизаторов и схемы их включения
- 2. Рассчитать U_d , I_d и $U^{(1)}_m$ для каждого канала с учетом нестабилизированных каналов.
- 3. Выбрать выпрямительные диоды или мосты
- 4. Рассчитать параметры выпрямителей, фильтров и трансформатора.
- 4.1. Приближенным методом
- 4.2. Методом Терентьева (приближенный расчет использовать для проверки).
- 5. Подобрать стандартный трансформатор. Нарисовать схему соединения обмоток, соот- ветствующую схеме БП . Проверить правильность выбора стабилизаторов и диодов по макси- мально допустимому напряжению и току для наихудшего сочетания параметров.
- 6. Рассчитать мощности потерь на стабилизаторах и дополнительных транзисторах для наи- худшего случая. Рассчитать радиаторы.
- 7. Выбрать конденсаторы фильтров по величине емкости, рабочему напряжению и допус- тимым пульсациям напряжения или эффективному значению тока.
- 8. Разработать принципиальную схему, печатную плату и сборочный чертеж блока питания в соответствии с ЕСКД.

К защите курсового проекта в виде презентации:

- 1. Сформулировать проблематику, актуальность, цель и задачи работы;
- 2. Кратко изложить принцип работы, используя временные диаграммы, поясняющие работу;
- 3. Представить принципиальную схему, оформленную по ЕСКД, и показать соответствие уз- лов и блоков функциональной схеме;
- 4. Показать результаты расчетов и пояснить, какие делались упрощения и допущения;
- 5. Представить печатную плату и сборочный чертеж блока питания в соответствии с ЕСКЛ.
- 6. Сформулировать выводы по работе.

Схемы блоков питания (БП)

Примерный перечень тем курсового проекта

	Сеть,		К	анал 1	(**)	Канал 2 (**)			Нестаб (**)	
№ п/п	Гц (*)	Сх. БП	Uн, B	Iн, А	ΔUн, мВ	Uн, B	Ін, А	ΔUн, мВ	R_d^{1}/I_d^{1}	R_d^2/I_d^2
1.	50	-В	-6	0.8	25	-(9÷15)	0.25	25	0 A	200Ом
2.	400	a	5÷7	1.5	25	-5	0.6	50	50 Ом	0.3 A
3.	400	б	9÷12	0.3	25	-12	0.3	50	0 A	50 Ом
4.	400	-В	-(5÷8)	0.5	25	-15	0.3	20	∞ Ом	0.5 A
5.	50	a	5÷7	1.5	50	-6	0.8	50	0.3 A	50 Ом
6.	50	б	15	0.5	50	-(9÷15)	0.2	50	0.3 A	∞ Ом
7.	50	-В	-6	0.8	25	-(9÷15)	0.3	50	0.8 A	25 Ом
8.	400	a	5÷7	1.3	25	-5	0.8	50	0.3 A	100 Ом
9.	400	б	5÷6	1.3	50	-6	0.3	50	0 A	50 Ом
10.	400	В	5	1.3	15	9÷12	0.25	25	0.3 A	∞ Ом
11.	50	a	9÷12	1.0	25	-5	0.8	15	50 Ом	0.6 A
12.	50	б	12	0.5	25	-(9÷12)	0.4	15	75 Ом	0 A
13.	50	-В	-6	0.8	25	-(9÷15)	0.25	25	∞ Ом	0.4 A
14.	400	a	9÷12	1.5	25	-5	0.6	15	50 Ом	0.3 A
15.	400	б	12	0.3	25	-(9÷12)	0.3	50	50 Ом	0 A
16.	400	В	6÷9	0.3	20	15	0.3	20	∞ Ом	0.3 A
17.	50	a	5÷7	1.5	25	-5	0.6	50	0.3 A	100 Ом
18.	50	б	15	0.5	50	-(9÷15)	0.4	50	0.3 A	∞ Ом
19.	50	В	5÷8	0.8	20	15	0.25	15	0.4 A	∞ Ом
20.	400	a	9÷12	1.5	25	-5	0.6	15	0.3 A	50 Ом
21.	400	б	12÷15	0.35	25	-15	0.4	20	∞ Ом	0.1 A
22.	400	В	6÷9	0.3	20	15	0.3	50	0.3 A	∞ Ом
23.	50	В	5÷8	0.8	20	15	0.25	15	∞ Ом	0.4 A

^{(*) -} Сеть 50Γ ц -220/127В $\pm 15\%$; сеть 400Γ ц -115/40В $\pm 10\%$.

^(**)- Возможна работа каналов на хол. ходу, допуск на Uн сост. $\pm 2\%$, пульсации Δ Uн не должны превышать заданные.

Методические указания по выполнению расчетно-графической работы

«АНАЛИЗ ДИНАМИЧЕСКИХ И СТАТИЧЕСКИХ ХАРАКТЕРИСТИК ВЫПРЯМИТЕЛЯ С ФИЛЬТРОМ»

- 1. Нарисовать принципиальную схему выпрямителя с фильтром, указанную в индивидуальном задании. На схеме привести позиционные обозначения элементов и их параметры.
- 2. Разработать схему-модель для анализа выпрямителя в среде Multisim.
- 3. Проанализировать переходные процессы выхода на режим из нулевых начальных условий при включении выпрямителя:
- 3.а на холостом ходу;
- 3.б при номинальной нагрузке;
- 3. в подобрать оптимальный шаг интегрирования для получения минимального времени расчета при приемлемой точности.
- 4. Для номинального питающего напряжения построить:
- 4.а статическую внешнюю характеристику выпрямителя; 4.б зависимость коэффициента пульсаций от тока нагрузки.
- 5. Оформить отчет по расчетно-графической работе. В отчете привести принципиальную схему, схему модели, распечатки временных диаграмм напряжений и токов в характерных точках, распечатки внешней характеристики и зависимости коэффициента пульсаций от тока нагрузки, снятые в автоматическом режиме.
- 6. Сдать электронную версию отчета на диске (можно один общий диск на две группы).

К защите расчетно-графической работы на РС:

- 1. Уметь вывести любую временную диаграмму, либо комбинацию из нескольких временных диаграмм в отдельном окне;
- 2. Уметь в автоматическом режиме перестраивать статические внешние характеристики при изменении каких либо параметров;
- 3. Уметь изменять точность расчетов.

Перечень схем выпрямителей к расчетно-графической работе:

- 1. Однополупериодный выпрямитель.
- 2. Схемы умножения напряжения.
- 3. Двухполупериодный выпрямитель со средней точкой трансформатора.
- 4. Однофазный мостовой выпрямитель.
- 5. Трехфазный нулевой выпрямитель.
- 6. Трехфазный мостовой выпрямитель.

Индивидуальные задания на расчетно-графическую работу по дисциплине "автономныепреобразователи"

№ π/π	Гр. студент	Питание, Е2	Трансфор- матор	Выпрями- тель	Фильтр	Номинальная нагрузка
1.		12В, 50Гц, синусоид.	r тр=1 Ом, Ls=0,1мГн	1п/п без В0	С=100мкФ	Rн=1кОм
2.		12В, 400Гц, синусоид.	r тp=1 Ом, Ls=30мкГн	Сх. х 3, несим., 2-го рода	C1=3C2=5C3 =10мкФ	Rн=5кОм
3.		12В, 20кГц, прямоуголь.	r тр=1 Ом, Ls=3мкГн	1п/п без B0	С=1мкФ	Rн=1кОм

№ п/п	Гр. студент	Питание, Е2	Трансфор- матор	Выпрями-	Фильтр	Номинальная нагрузка
4.		12B, 400Гц, синусоид.	r тp=0,3 Ом, Ls=30мкГн	1Ф"0"	С=20мкФ	R _H =100 Ом
5.		12B, 400Гц, синусоид.	r тp=1 Ом, Ls=30мкГн	1п/п с В0	L=10мГн	Rн=50 Ом
6.		12В, 50Гц, синусоид.	r тp=0,3 Ом, Ls=0,1мГн	1Ф"0"	L=100мГн	Rн=50 Ом
7.		12В, 50Гц, синусоид.	r тр=1 Ом, Ls=0,1мГн	1п/п с В0	Г: L=50мГн, С=200мкФ	Rн=100 Ом
8.		12В, 20кГц, прямоуголь.	r тp=0,3 Ом, Ls=3мкГн	1Ф"0"	L=0,5мГн	Rн=50 Ом
9.		12В, 20кГц, прямоуголь.	r тp=1 Ом, Ls=3мкГн	1п/п с В0	Г: L=1мГн, С=3мкФ	R _H =100 Ом
10.		12B, 400Гц, синусоид.	r тp=0,3 Ом, Ls=10мкГн	1Ф"0"	L=0,5мГн	Аккумулятор, Ео=12,6В
11.		12B, 400Гц, синусоид.	r тp=0,3 Ом, Ls=10мкГн	1п/п с В0	L=0,5мГн	Аккумулятор, Ео=12,6В
12.		12В, 50Гц, синусоид.	r тр=0,3 Ом, Ls=0,1мГн	1Ф"0"	Г: L=50мГн, С=200мкФ	Rн=50 Ом
13.		12В, 50Гц, синусоид.	r тр=1 Ом, Ls=0,1мГн	Сх. х 2, симметричная	C1=C2= =100мкФ	Rн=2кОм
14.		12В, 20кГц, прямоуголь.	r тр=0,3 Ом, Ls=3мкГн	1Ф"0"	Г: L=1мГн, С=3мкФ	Rн=50 Ом
15.		12В, 50Гц, синусоид.	r тр=1 Ом, Ls=0,1мГн	Сх. х 3, несим., 2-го рода	C1=3C2=5C3 =100мкФ	Rн=5кОм
16.		12В, 50Гц, синусоид.	r тр=0,3 Ом, Ls=0,1мГн	1Ф"М"	L=3мГн	Аккумулятор, Ео=12,6В
17.		12B, 400Гц, синусоид.	r тp=1 Ом, Ls=30мкГн	Сх. х 2, несимметрич.	C1=3C2= =10мкФ	Rн=3кОм
18.		12B, 400Гц, синусоид.	r тp=0,3 Ом, Ls=10мкГн	1Ф"М"	L=0,5мГн	Аккумулятор, Ео=12,6В
19.		12В, 20кГц, прямоуголь.	r тр=1 Ом, Ls=3мкГн	Сх. х 2, симметричная	C1=C2= =1мкФ	Rн=2кОм
20.		12В, 20кГц, прямоуголь.	r тp=0,3 Ом, Ls=1мкГн	1Ф"М"	L=50мкГн	Аккумулятор, Ео=12,6В
21.		12В, 20кГц, прямоуголь.	r тр=1 Ом, Ls=3мкГн	Сх. х 3, несим., 2-го рода	C1=3C2=5C3 =1 _{мк} Ф	Rн=5кОм
22.		12B, 400Гц, синусоид.	r тp=1 Ом, Ls=30мкГн	1п/п без В0	С=10мкФ	Rн=1кОм
23.		12B, 20кГц, прямоуголь.	r тр=1 Ом, Ls=3мкГн	Сх. х 2, несимметрич.	C1=3C2= =1мкФ	Rн=3кОм
24.		12B, 50Гц, синусоид.	rтp=1 Ом, Ls=0,1мГн	1п/п с В0	L=100мГн С=200мкФ	R _H =50 O _M
25.		12B, 50Гц, синусоид. 12B, 20кГц,	r _{тp} =0,3 Ом, Ls=0,1мГн r _{тp} =1 Ом,	1Ф"0" 1п/п	С=200мкФ L=0,5мГн	Rн=100 Ом Rн=50 Ом
26.		12В, 20к1 ц, прямоуголь. 12В, 20кГц,	Ттр=1 Ом, Ls=3мкГн Ттр=0,3 Ом,	с В0 1Ф"0"	С=1мкФ	RH=100 Ом
27.		прямоуголь. 12B, 400Гц,	11p-0,3 Ом, Ls=3мкГн 1тp=1 Ом,	1Ф 0	Г: L=10мГн,	Rн=100 Ом
28.		синусоид.	11p=1 Ом, Ls=30мкГн	c B0	С=50мкФ	10001

№ п/п	Гр. студент	Питание, Е2	Трансфор- матор	Выпрями- тель	Фильтр	Номинальная нагрузка
29.		12B, 400Гц, синусоид.	r тp=0,3 Ом, Ls=30мкГн	1Ф"0"	L=10мГн	Rн=50 Ом
30.		12B, 50Гц, синусоид.	r тр=0,3 Ом, Ls=0,1мГн	1п/п с В0	L=3мГн	Аккумулятор, Ео=12,6В
31.		12B, 50Гц, синусоид.	r тр=0,3 Ом, Ls=0,1мГн	1Ф"0"	L=3мГн	Аккумулятор, Ео=12,6В
32.		12В, 20кГц, прямоуголь.	r тp=0,3 Ом, Ls=1мкГн	1п/п с В0	L=50мкГн	Аккумулятор, Ео=12,6В
33.		12В, 20кГц, прямоуголь.	r тр=0,3 Ом, Ls=1мкГн	1Ф"0"	L=50мкГн	Аккумулятор, Ео=12,6В
34.		12B, 50Гц, синусоид.	r тр=1 Ом, Ls=0,1мГн	Сх. х 2, несимметрич.	C1=3C2= =100мкФ	Rн=3кОм
35.		12В, 400Гц, синусоид.	r тp=0,3 Ом, Ls=30мкГн	1Ф"0"	Г: L=10мГн, С=50мкФ	Rн=50 Ом
36.		12В, 400Гц, синусоид.	r тр=1 Ом, Ls=30мкГн	Сх. х 2, симметричная	C1=C2= =10мкФ	Rн=2кОм

Вопросы по формированию и развитию теоретических знаний, предусмотренных компетенциями, закрепленными за дисциплиной (примеры вопросов по материалам лекций и самостоятельной работы студентов):

- 1. Виды преобразования энергии, структурная схема и эксплуатационные характеристики вы- прямителей.
- 2. Однополупериодная схема выпрямления, активная нагрузка.
- 3. Схема удвоения напряжения.
- 4. Двухполупериодный выпрямитель с выводом нуля трансформатора, активная нагрузка.
- 5. Однофазная мостовая схема выпрямления.
- 6. Расчет линейного ИП. Основные определения.
- 7. Постановка задачи для расчета выпрямителя и фильтра.
- 8. Анализ схем включения стабилизаторов.
- 9. Расчет выходных параметров фильтра.
- 10. Основные типы фильтров.
- 11. Расчет выпрямителя с С-фильтром методом Терентьева.
- 12. Расчет выходного сопротивления выпрямителя.
- 13. Определение выходного сопротивления трансформатора по справочным данным.
- 14. Определение выходного сопротивления трансформатора по показаниям приборов.
- 15. Оценка выходного сопротивления трансформатора по прогнозу.
- 16. Выбор конденсатора С-фильтра по справочным данным.
- 17. Особенности применения метода Терентьева для расчета многоканальных ИП с многооб- моточными трансформаторами.
- 18. Выбор унифицированного трансформатора.
- 19. Особенности расчета многоканальных ИП с независимыми каналами.
- 20. Особенности расчета многоканальных ИП с вольтдобавкой.
- 21. Особенности расчета многоканального ИП с совмещенными каналами.

- 22. Приближенный расчет выпрямителя с С-фильтром.
- 23. Трехфазный выпрямитель с выводом нуля трансформатора (3Ф0).
- 24. Трехфазная мостовая (3ФМ) схема выпрямления.
- 25. Особенности мощных выпрямителей.
- 26. Однофазный управляемый выпрямитель.
- 27. Управляемый выпрямитель с полным числом управляемых вентилей.
- 28. Расчет Г-образного LC-фильтра.
- 29. Особенности внешней характеристики Г-образного LC-фильтра.
- 30. Расчет L-фильтра.
- 31. Эффективные значения напряжения и тока вторичной обмотки трансформатора при индуктивной реакции нагрузки выпрямителя.
- 32. Регулятор переменного напряжения.
- 33. Инвертирование.
- 34. Зависимые (ведомые сетью) инверторы
- 35. Однофазный зависимый инвертор со средней точкой трансформатора.
- 36. Автономные инверторы.
- 37. Импульсные регуляторы постоянного напряжения.
- 38. Регулятор первого типа (понижающий).
- 39. Второго типа (повышающий).
- 40. Третьего типа (инвертирующий).
- 41. Последовательно-параллельный регулятор.
- 42. Фазосдвигающие устройства вертикального типа.
- 43. Фазосдвигающие устройства горизонтального типа.
- 44. Цифровые фазосдвигающие устройства.
- 45. Асинхронные системы управления (СУ).
- 46. Многоканальные и одноканальные СУ.
- 47. Влияние вентильных преобразователей на питающую сеть.
- 48. Искажение формы.
- 49. Потребление реактивной мощности.
- 50. Мощность искажения.
- 51. Обобщенный коэффициент мощности.
- 52. Корректоры коэффициента мощности (ККМ).
- 53. ККМ на основе регулятора третьего типа (ККМ-3).
- 54. ККМ на основе регулятора второго типа (ККМ-2) в режиме прерывистых токов.
- 55. ККМ-2 в режиме непрерывных токов.
- 56. СУ со скользящими режимами управления.
- 57. Разновидности схем ККМ.
- 58. ККМ с заземленным выходом (безмостовой корректор).
- 59. Активный выпрямитель.
- 60. Совмещение функций ККМ и вторичного преобразователя на основе трансформаторных аналогов преобразователя Кука и SEPIC конвертора.
- 61. Особенности применения блоков питания (БП) с балластным конденсатором.
- 62. Принцип работы и внешние характеристики БП с мостовым выпрямителем.
- 63. Непосредственные АС/DC преобразователи серии 1182EM 1, 2, 3.

Вопросы по приобретению и развитие практических умений, предусмотренных компетенциями, закрепленными за дисциплиной (примеры вопросов к лабораторным работам)

- 1. Активно-емкостная нагрузка однополупериодного выпрямителя.
- 2. Активно-индуктивная нагрузка однополупериодного выпрямителя.
- 3. Обобщенные характеристики однополупериодного выпрямителя.
- 4. Постоянное подмагничивание трансформатора однополупериодного

- выпрямителя.
- 5. Схемы умножения напряжения.
- 6. Разновидности схем умножения.
- 7. Активно-емкостная нагрузка двухполупериодного выпрямителя.
- 8. Активно-индуктивная нагрузка двухполупериодного выпрямителя.
- 9. Обобщенные характеристики двухполупериодного выпрямителя.
- 11. Расчет линейного ИП.
- 12. Расчет выпрямителя с С-фильтром методом Терентьева.
- 13. Выбор конденсатора С-фильтра по допустимой амплитуде напряжения пульсаций.
- 14. Выбор конденсатора С-фильтра по допустимой переменной составляющей тока пульсаций.
- 15. приближенного расчета выпрямителя с С-фильтром.
- 16. Аварийные режимы в 3Ф0 схеме.
- 17. Аварийные режимы в 3ФМ схеме.
- 18. Мостовой управляемый выпрямитель.
- 19. Мостовой управляемый выпрямитель с неполным числом управляемых вентилей.
- 20. Регулирование переменного напряжения.
- 21. Регуляторы с улучшенной формой выходного напряжения.
- 22. Расчет и выбор элементов LC-фильтра.
- 23. Расчет и выбор элементов L-фильтра.
- 24. Обобщенная регулировочная характеристика ведомого преобразователя.
- 25. Обобщенные внешние характеристики ведомого преобразователя.
- 26. Реверсивные тиристорные преобразователи.
- 27. Непосредственные преобразователи частоты.
- 28. Автономный параллельный инвертор тока.
- 29. Сравнительная характеристика импульсных регуляторов различного типа.
- 30. Разновидности импульсных

регуляторов

- 31. Управляемый выпрямитель с СУ вертикального типа с разомкнутым контуром управления.
- 32. Управляемый выпрямитель с СУ вертикального типа с замкнутым контуром управления.
- 33. Управляемый выпрямитель с асинхронной СУ с замкнутым контуром управления.
- 34. Управляемый выпрямитель с цифровой одноканальной СУ с автоподстройкой частоты.
- 35. Расчет средних и эффективных (действующих) значений токов в ключевых схемах прити- повых формах токов.
- 36. Расчèт ККМ-3.
- 37. Энергетические соотношения при использовании ККМ.
- 38. Реализации совмещенных с ККМ преобразователей на основе трансформаторных аналогов преобразователя Кука.
- 39. Реализации совмещенных с ККМ преобразователей на основе трансформаторных аналогов SEPIC конвертора.
- 40. Расчет БП с мостовым выпрямителем.
- 41. Расчет БП с однополупериодным выпрямителем.
- 42. Расчет БП с двуполярным выходом.
- 43. Учет нестабильности питающей сети и разброса параметров элементов.

Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

	Identification and appropriate to	T	
Код	Индикатор достижения	0	
индикатора	компетенции	Оценочные средства	
ПК-2 Способ	ен разрабатывать структур	рные и функциональные схемы электронных систем	
и комплексов, принципиальные схемы устройств с использованием средств			
компьютерного проектирования, проведением проектных расчетов и			
технико-экономическим обоснованием принимаемых решений			
ПК-2.1	Разрабатывает эскизный		
	проект, включающей:	: 1. Изобразить временные диаграммы токов и	
	выбор структурной	напряжений однофазного мостового АИН на	
	схемы электронного	<u> </u>	
	устройства или системы		
	1		
	путем сопоставления		
	различных вариантов и		
	их оценки с точки		
	зрения технических и	напряжения АИН.	
	экономических	4. Устройства защиты от перенапряжений в ТП.	
	требований; расчет всех		
	необходимых	реверсивного преобразователя.	
	показателей	6. Привести схему одного из устройств контроля	
	структурной схемы	*	
	электронного	7. Привести противопараллельную силовук	
	устройства или	схему реверсивного преобразователя с	
	системы, в том числе		
	· ·	3. Привести Н-схему реверсивного	
	выбор и обоснование		
	схемы вспомогательных	1 31	
	устройств	реверсивном преобразователе.	
		10. Структура средств диагностирования	
		преобразовательных установок.	
ПК-2.2	Почтоторумпост	· · ·	
11K-2.2	Подготавливает	Перечень примерных вопросов к экзамену:	
	технический проект,	, 11. Классификация датчиков аварийного	
	включающего:	состояния моста.	
	разработку	12. Привести временные диаграммы поясняющие	
	принципиальной схемы	1 -	
	всего электронного		
	устройства и отдельных	1	
	7 -	•	
	его деталей и узлов;	1 1	
	выбор типа элементов с	1 -	
	учетом технических	принцип вертикального управления при	
	требований к	линейно изменяющимся опорном	
	разрабатываемому	напряжении.	
	устройству,	15. Привести схему ЛПУ автоколебательного	
		-	
	экономической	типа.	
	целесообразности и	1 1 1	
	предполагаемой	принцип горизонтального управления.	
	технологии его	17. Регулирование частоты в НПЧ. Верхний	
	1	1 2 1	

Код индикатора	Индикатор достижения компетенции	Оценочные средства
	изготовления	диапазон частоты. 18. Назначение синхронизации преобразователя с сетью. Определить динамическую погрешность синхронизации для трехфазной мостовой схемы выпрямления. 19. Принципы построения НПЧ-АД 20. Привести временную диаграмму уравнительного напряжения в ТП при совместном управлении.
ПК-2.3	Производит технико-экономическое обоснование принятого решения с расчетами себестоимости устройства и стоимости его эксплуатации; сравнение с аналогами по технико-экономическим характеристикам	Вопросы по закреплению теоретических знаний, умений и практических навыков, предусмотренных компетенциями (Типовые задачи) 1. Показания приборов в схемах с выпрямителями. 2. Расчет линейного источника питания. 3. Расчет выпрямителя с С-фильтром методом Терентьева. 4. Расчет активной и индуктивной составляющих выходного сопротивления трансформатора. 5. Расчет выпрямителя с С-фильтром приближенным методом. 6. Расчет выпрямителя с LС-фильтром. 7. Расчет выпрямителя с L-фильтром. 8. Выбор конденсатора С-фильтра по справочным данным. 9. Расчет корректора коэффициента мощности. 10. Расчет средних и эффективных (действующих) значений токов в ключевых схемах при типовых формах токов. 11. Расчет бестрансформаторных блоков питания с балластным конденсатором.

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие оценить степень сформированности умений и владений, проводится в форме экзамена и защиты курсовой работы.

Экзамен по данной дисциплине проводится в устной форме по экзаменационным билетам, каждый из которых включает 2 теоретических вопроса и одно практическое задание.

Показатели и критерии оценивания экзамена:

- на оценку **«отлично»** (5 баллов) обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку **«хорошо»** (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку **«удовлетворительно»** (3 балла) обучающийся демонстрирует пороговый уровень сформированности компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку **«неудовлетворительно»** (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку **«неудовлетворительно»** (1 балл) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.

Показатели и критерии оценивания курсовой работы:

- на оценку **«отлично»** (5 баллов) обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку **«хорошо»** (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку **«удовлетворительно»** (3 балла) обучающийся демонстрирует пороговый уровень сформированности компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку **«неудовлетворительно»** (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку **«неудовлетворительно»** (1 балл) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.