

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Магнитогорский государственный технический университет им. Г.И. Носова»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ТЕОРИЯ ОБРАБОТКИ МЕТАЛЛОВ ДАВЛЕНИЕМ

Направление подготовки 22.03.02 Металлургия

Профиль программы Обработка металлов и сплавов давлением (метизное производство)

Уровень высшего образования – бакалавриат

Программа подготовки - академический бакалавриат

Форма обучения Очная

Институт/ факультет (

Металлургии, машиностроения и материалообработки

Кафедра

Технологий обработки материалов

Курс Семестр *3 5, 6*

٠, ١

Магнитогорск 2018 г.

Рабочая программа составлена на основе ФГОС ВО по направлению подготовки 22.03.02 Металлургия, утвержденного приказом МОиН-РФ от 04.12.2015 № 1427.

Рабочая программа рассмотрена и одобрена на заседании кафедры технологии обработки материалов 17 сентября 2018 г., протокол N_2 2.

Зав. кафедрой / А.Б. Моллер/

Рабочая программа одобрена методической комиссией института металлургии, машиностроения и материалообработки 2 октября 2018 г., протокол № 2.

Председатель Зеоб А.С. Савинов/

Рабочая программа составлена:

доцент, к.т.н., доцент

/ И.Г. Шубин/

Рецензент:

доцент, к.т.н., доцент

/ А.В. Анцупов/

Лист регистрации изменения и дополнений

№ п/п	Раздел программы	Краткое содержание изменения/дополнения	Дата, № протокола заседания кафедры	Подпись зав. кафедрой
1	п. 8	Актуализация учебно-методического и информационного обеспечения дисциплины	03.09.2019 Протокол №1	Ant Ant
2	п. 8	Актуализация учебно-методического и информационного обеспечения дисциплины	08.09.2020 Протокол №1	At
	,			

1 Цели освоения дисциплины (модуля)

Целями освоения дисциплины (модуля) «Теория обработки металлов давлением» являются: развитие у студентов личностных качеств, а также формирование общекультурных и профессиональных компетенций в соответствии с требованиями ФГОС ВО по направлению подготовки 22.03.02 Металлургия.

2 Место дисциплины (модуля) в структуре образовательной программы подготовки бакалавра (магистра, специалиста)

Дисциплина «Теория обработки металлов давлением» входит в вариативную часть блока 1 образовательной программы по направлению подготовки 22.03.02 Металлургия

Для изучения дисциплины необходимы знания (умения, владения), сформированные в результате изучения следующих дисциплин базовой и вариативной частей блока 1 образовательной программы:

- математика:
- физика;
- введение в направление / введение в металлургию.

Знания (умения, владения), полученные при изучении данной дисциплины будут необходимы при дальнейшем изучении дисциплин базовой и вариативной частей блока 1 образовательной программы:

- оборудование цехов ОМД;
- производство сортового проката;
- производство листового проката;
- технологические процессы ОМД;
- технология производства проволоки;
- технология производства калиброванного металла;
- технология производства металлоизделий;
- технология глубокой переработки металлов.

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) и планируемые результаты обучения

В результате освоения дисциплины (модуля) «Теория обработки металлов давлением» обучающийся должен обладать следующими компетенциями:

Структурный элемент компетенции	Планируемые результаты обучения				
ОПК-4: готові	ностью сочетать теорию и практику для решения инженерных задач				
Знать	- теорию ОМД - практику применения теории ОМД - уровень инженерных задач в ОМД				
Уметь	- применять теорию ОМД - сочетать теорию и практику ОМД - решать инженерные задачи ОМД				
Владеть	- аппаратом теории ОМД - навыками применения теории ОМД на практике - навыками решения инженерных задач ОМД				
ПК-3: готовно	ПК-3: готовностью использовать физико-математический аппарат для решения за-				
дач, возникающих в ходе профессиональной деятельности					
Знать	- методы решения задач теории ОМД - физико- математический аппарат используемый в теории ОМД - задачи решаемые в теории ОМД				

Структурный элемент компетенции	Планируемые результаты обучения
Уметь	- применять методы решения задач теории ОМД - применять физико-математический аппарат используемый в теории ОМД - обосновать выбор задач решаемых в теории ОМД
Владеть	- навыками применения методов решения задач теории ОМД - навыками применения физико-математическим аппаратом используемым в теории ОМД - навыками выбора задач решаемых в теории ОМД

4 Структура и содержание дисциплины (модуля)

Общая трудоемкость дисциплины составляет 10 зачетных единиц 360 акад. часов, в том числе:

- контактная работа 179,85 акад. часов:
 - аудиторная –170 акад. часов;
 - внеаудиторная 9,85 акад. часов
- самостоятельная работа 108,75 акад. часов;
- подготовка к экзамену 71,4 акад. часа

Раздел/ тема	Семестр	конт	удиторн актная р акад. час	абота	льная ра- д. часах)	Вид самостоятельной	Форма текущего контроля	структурный элемент ппетенции
дисциплины	Сем	лекции	лаборат. занятия	практич. занятия	Самостоятельная ра бота (в акад. часах)	работы	успеваемости и промежуточной аттестации	Код и структурн элемент компетенции
1. Теория напряжений и деформаций в об-	5	6	4	2/1	5	Самостоятельное изучение	Устный опрос – беседа по	ПК-3 -зув
работке металлов давлением (ОМД). Не-						учебной и научно литературы.	литературным источникам	ОПК-4 зув
равномерность деформации								
2. Физические основы пластической де-	5	6	4/2	2	5	Подготовка к лабораторной ра-	=	ПК-3 -зув
формации						боте	1 71	ОПК-4 зув
3. Холодная и горячая деформация	5	7	4/2	2/1	4	Подготовка к лабораторной ра-	Устный опрос – беседа по	ПК-3 -зув
						боте	литературным источникам	ОПК-4 зув
4. Текстура и анизотропия свойств метал-	5	6	4	2/1	4	Самостоятельное изучение	Устный опрос – беседа по	ПК-3 -зув
лов и сплавов в результате пластической						учебной и научно литературы.	литературным источникам	ОПК-4 зув
деформации								
5. Формирование физических и механиче-	5	7	4/4	2/1	5	Самостоятельное изучение	Устный опрос – беседа по	ПК-3 -зув
ских свойств металлов и сплавов в процес-						учебной и научно литературы.	литературным источникам	ОПК-4 зув
сах ОМД								

Раздел/ тема дисциплины	Семестр	конт	Аудиторн гактная р акад. час занялкя занялка	абота	Самостоятельная ра- бота (в акад. часах)	Вид самостоятельной работы	Форма текущего контроля успеваемости и промежуточной аттестации	Код и структурный элемент компетенции
			•					
6. Понятия скорости в теории ОМД. Со- противление металлов и сплавов деформа- ции	5	7	4/2	2	5	Самостоятельное изучение учебной и научно литературы.	Устный опрос – беседа по литературным источникам	ПК-3 -зув ОПК-4 зув
7. Основные законы теории ОМД	5	6	6/2	3/2	5	Подготовка к лабораторной работе	Устный опрос – беседа по литературным источникам	ПК-3 -зув ОПК-4 зув
8. Трение в процессах ОМД	5	6	4/2	2	4,45	Подготовка к лабораторной работе	Устный опрос – беседа по литературным источникам	ПК-3 -зув ОПК-4 зув
Итого за семестр	5	51	34/14И	17/6И	37,45		Экзамен	
1. Методы расчета формоизменения и энергосиловых параметров при ОМД	6	6	33	2/2	6	Выполнение индивидуального задания по расчёту формоизменения и энергосиловых параметров при ОМД	Проверка индивидуального задания по расчёту формоизменения и энергосиловых параметров при ОМД	ПК-3 -зув ОПК-4 зув
2. Основы теории процессов ОМД	6	4	3/3	2/2	6	Подготовка к лабораторной работе	Устный опрос – беседа по литературным источникам	ПК-3 -зув ОПК-4 зув
3. Продольная прокатка на гладкой бочке	6	4	2/2	2	6	1	Проверка индивидуаль- ного задания по расчёту формоизменения при про- дольной прокатке на глад- кой бочке	ПК-3 -зув ОПК-4 зув
4. Прокатка в калибрах	6	4	2/2	2	6	Выполнение индивидуального задания по расчёту формоизменения при прокатке в калибрах	Проверка индивидуаль- ного задания по расчёту	ПК-3 -зув ОПК-4 зув

Раздел/ тема	Семестр	конт	худиторн гактная р акад. ча	работа	льная ра- д. часах)	Вид самостоятельной	Форма текущего контроля	структурный лемент петенции
дисциплины	Сем	лекции	лаборат. занятия	практич. занятия	Самостоятельная ра- бота (в акад. часах)	работы	успеваемости и промежуточной аттестации	Код и структурн элемент компетенции
							формоизменения при прокатке в калибрах	
5. Волочение	6	4	2/2	2	6	Самостоятельное изучение учебной и научно литературы.	Устный опрос – беседа по литературным источникам	ПК-3 -зув ОПК-4 зув
6. Прокатка труб, прессование, свободная ковка, объемная и листовая штамповки	6	4	3/2	2/2	6	Подготовка к лабораторной работе	Устный опрос – беседа по литературным источникам	ПК-3 -зув ОПК-4 зув
7. Энерго- и ресурсосбережение в процес- сах ОМД	6	4	2/2	2	5,3	Самостоятельное изучение учебной и научно литературы.	Устный опрос – беседа по литературным источникам	ПК-3 -зув ОПК-4 зув
8. Принципы разработки технологических режимов процессов деформации	6	4		3	30	Выполнение курсовой работы	Проверка курсовой работы	ПК-3 -зув ОПК-4 зув
Итого за семестр	6	34	17/16И	17/6И	71,3		Экзамен	
Итого по дисциплине		105	51/30И	34/12И	108,75			

И – в том числе, часы, отведенные на работу в интерактивной форме.

5 Образовательные и информационные технологии

Для усвоения студентами знаний по дисциплине «Теория обработки металлов давлением» применяются традиционная и компетентностно-модульная технологии обучения, включающие в себя объяснения преподавателя на лекциях, самостоятельную работу с учебной и справочной литературой по дисциплине, выполнение лабораторных работ по методическим указаниям, подготовка к практическим занятиям и т.п.

В качестве интерактивных методов обучения используются:

- опережающая самостоятельная работа и работа в команде при выполнении лабораторных работ;
- проблемное обучение при поиске информационных источников, подготовка, расчет, написание и оформление курсовой работы по полученным индивидуальным заданиям.

Самостоятельная работа студентов стимулирует студентов к самостоятельной проработке тем в процессе подготовки к практическим работам и выполнении домашних заданий.

В ходе занятий предполагается использование комплекса инновационных методов интерактивного обучения студентов, включающего в себя:

- создание проблемных ситуаций с показательным решением проблемы преподавателем;
- самостоятельную поисковую деятельность в решении учебных проблем, направляемую преподавателем;
 - самостоятельное решение проблем студентами под контролем преподавателя;
- проблемное обучение стимулирование студентов к самостоятельной «добыче» знаний, необходимых для решения конкретной проблемы;
- контекстное обучение мотивация студентов к усвоению знаний путем выявления связей между конкретным знанием и его применением;
- обучение на основе опыта активизация познавательной деятельности студентов за счет ассоциации их собственного опыта с предметом изучения;
- индивидуальное обучение выстраивание студентами собственных образовательных траекторий на основе формирования индивидуальных учебных планов и программ с учетом интересов и предпочтений студентов;
- междисциплинарное обучение использование знаний из разных областей, их группировка и концентрация в контексте конкретной решаемой задачи;
- опережающая самостоятельная работа изучение студентами нового материала до его изложения преподавателем на лекции и других аудиторных занятиях.

6 Учебно-методическое обеспечение самостоятельной работы обучающихся

По дисциплине «Теория обработки металлов давлением» предусмотрена аудиторная и внеаудиторная самостоятельная работа обучающихся.

Аудиторная и внеаудиторная самостоятельная работа студентов предполагает подготовку к устным опросам — беседам по литературным источникам и индивидуальным заданиям по различным расчётам на практических занятиях.

Примерный перечень вопросов для устных опросов – бесед по темам

- Теория напряжений и деформаций в обработке металлов давлением. Неравномерность деформации;
 - Физические основы пластической деформации;
 - Холодная и горячая деформация:
- Текстура и анизотропия свойств металлов и сплавов в результате пластической деформации;
- Формирование физических и механических свойств металлов и сплавов в процессах ОМД;
 - Понятия скорости в теории ОМД. Сопротивление металлов и сплавов деформации;
 - Основные законы теории ОМД;

- Трение в процессах ОМД;
- Волочение:
- Прокатка труб, прессование, свободная ковка, объемная и листовая штамповки;
- Энерго- и ресурсосбережение в процессах ОМД
- 1. Метод совместного решения дифференциальных уравнений равновесия и условия пластичности (сущность метода, исходные уравнения).
- 2. Решение задачи Прандтля (исходные уравнения, граничные условия, поля напряжений, эпюры напряжений).
- 3. Среднее давление на контактной поверхности в задаче Прандтля. Факторы, влияющие на среднее давление в процессах ОМД.
- 4. Плоская осадка прямоугольной полосы (исходные уравнения, граничные условия, законы трения, основное дифференциальное уравнение).
- 5. Решение основного дифференциального уравнения для зоны скольжения. Протяженность зоны скольжения.
- 6. Решение основного дифференциального уравнения для зоны торможения. Протяженность зоны торможения.
- 7. Решение основного дифференциального уравнения для зоны прилипания. Протяженность зоны прилипания.
- 8. Условия существования трех зон на контактной поверхности. Условия существования двух зон и одной зоны прилипания.
 - 9. Эпюра контактного давления при плоской осадке прямоугольной полосы.
- 10. Среднее давление на контактной поверхности при плоской осадке прямоугольной полосы и влияние на него различных факторов.
- 11. Сущность метода линий скольжения. Исходные уравнения. Дифференциальные уравнения линий скольжения. Сетки линий скольжения.
- 12. Выражение компонент тензора напряжений σ_{xx} , σ_{yy} , σ_{xy} через среднее напряжение σ и угол θ = $\angle(x, S_1)$.
- 13. Интегралы линий скольжения. Изменение среднего напряжения вдоль линий скольжения.
 - 14. Свойства линий скольжения.
- 15. Решение задачи о вдавливании плоского штампа в пластическое полупространство.
 - 16. Линии скольжения в толстостенной трубе.
 - 17. Линии скольжения в задаче Прандтля.
- 18. Сущность метода характеристик. Характеристики дифференциальных уравнений равновесия.
 - 19. Решение начальной характеристической задачи Римани.
 - 20. Задача о волочении полосы. Постановка задачи. Допущения.
 - 21. Сетка линий скольжения (характеристик) в задаче о волочении полосы.
 - 22. Расчет полей напряжений в задаче о волочении полосы.
 - 23. Связь поля скоростей с полем линий скольжения. Уравнения Гейренгер.
 - 24. Решение начальной характеристической задачи для скоростей.
 - 25. Поле скоростей при волочении полосы. Кинематические граничные условия.
 - 26. Сущность метода работ. Закон сохранения механической энергии.
 - 27. Решение методом работ задачи о плоской осадке прямоугольной полосы.
- 28. Мощность сил среза. Решение задачи о кузнечной вытяжке полосы. Влияние различных факторов на среднее контактное давление.
- 29. Сущность процесса волочения. Показатели деформации. Параметры очага деформации. Разновидности процесса волочения.
 - 30. Дифференциальное уравнение волочения.
 - 31. Сила и напряжение волочения, влияние на них различных факторов.
- 32. Давление на контактной поверхности при волочении, влияние различных факторов.

- 33. Элементы продольного профиля волоки. Влияние продольного профиля волоки на силу и напряжение волочения.
- 34. Наибольшая возможная вытяжка при волочении, влияние на нее различных факторов.
 - 35. Сущность процесса прокатки Виды процесса прокатки.
 - 36. Характеристики деформации при прокатке.
 - 37. Характерные зоны прокатываемой полосы.
 - 38. Геометрические параметры очага деформации при прокатке.
 - 39. Опережение при прокатке. Выражение опережения через нейтральный угол.
- 40. Вывод формулы Павлова (соотношение между углом захвата, углом трения и нейтральным углом).
 - 41. Уширение при прокатке.
 - 42. Неравномерность деформации при прокатке.
 - 43. Дифференциальные уравнения прокатки Т. Кармана.
- 44. Интегрирование дифференциального уравнения прокатки для зон отставания и опережения.
- 45. Эпюра контактного давления при прокатке. Среднее давление на контактной поверхности. Учет сплющивания волков.
 - 46. Момент, работа и мощность прокатки.

Примерные индивидуальные задания (ИЗ):

- по расчёту формоизменения и энергосиловых параметров при ОМД;
- по расчёту формоизменения при продольной прокатке на гладкой бочке;
- по расчёту формоизменения при прокатке в калибрах;
- 1. Толщина заготовки до прокатки $h_0 = 90$ мм, коэффициент вытяжки за проход 1 = 1,47. Прокатка ведется без уширения. Определить толщину заготовки после прокатки h_1 .
- 2. Толщина заготовки до прокатки $h_0=140$ мм, обжатие $\Delta h=36$ мм, ширина заготовки b0=700 мм, уширение $\Delta b=9$ мм, длина заготовки до прокатки $l_0=1500$ мм. Определить коэффициенты осадки h, уширения b, вытяжки l и длину полосы после прокатки l_1 .
- 3. Размеры полосы до прокатки $h_0 = 10$ мм, ширина b0 = 640 мм, длина $l_0 = 4000$ мм, после прохода толщина полосы изменилась на 2 мм, т.е. $\Delta h = 2$ мм, ширина осталась прежняя. Определить длину полосы после прокатки l_0 .
- 4. Толщина ленты до прокатки $h_0 = 2$ мм, после прокатки $h_1 = 1,5$ мм, ширина не изменилась. Определить относительное обжатие е и коэффициент вытяжки 1.
- 5. Относительное обжатие за проход составляет e = 37%, толщина полосы после проход $h_1 = 43$ мм. Определить абсолютное обжатие за проход Δh и коэффициент вытяжки 1.

7 Оценочные средства для проведения промежуточной аттестации

а) Планируемые результаты обучения и оценочные средства для проведения промежуточной аттестации:

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
ОПК-4: готовн	остью сочетать теорию и практику для ре	шения инженерных задач
Знать	 теорию ОМД практику применения теории ОМД уровень инженерных задач в ОМД 	 Перечень теоретических вопросов для устных опросов – бесед по темам: Метод совместного решения дифференциальных уравнений равновесия и условия пластичности (сущность метода, исходные уравнения). Решение задачи Прандтля (исходные уравнения, граничные условия, поля напряжений, эпюры напряжений). Среднее давление в контактной поверхности в задаче Прандтля. Факторы, влияющие на среднее давление в процессах ОМД. Плоская осадка прямоугольной полосы (исходные уравнения, граничные условия, законы трения, основное дифференциальное уравнение). Решение основного дифференциального уравнения для зоны скольжения. Протяженность зоны скольжения. Решение основного дифференциального уравнения для зоны прилипания. Протяженность зоны торможения. Решение основного дифференциального уравнения для зоны прилипания. Протяженность зоны прилипания. Условия существования трех зон на контактной поверхности. Условия существования двух зон и одной зоны прилипания. Эпюра контактного давления при плоской осадке прямоугольной полосы. Среднее давление на контактной поверхности при плоской осадке прямоугольной полосы и влияние на него различных факторов. Сущность метода линий скольжения. Исходные уравнения. Дифференциальные уравнения линий скольжения. Сетки линий скольжения. Выражение компонент тензора напряжений σ_{xx}, σ_{yy}, σ_{xy} через среднее напряжение σ и угол θ=∠(x, S₁).

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		13. Интегралы линий скольжения. Изменение среднего напряжения вдоль линий
		скольжения.
		14. Свойства линий скольжения.
		15. Решение задачи о вдавливании плоского штампа в пластическое полупростран-
		ство.
		16. Линии скольжения в толстостенной трубе.
		17. Линии скольжения в задаче Прандтля.
		18. Сущность метода характеристик. Характеристики дифференциальных уравнений
		равновесия.
		19. Решение начальной характеристической задачи Римани.
		20. Задача о волочении полосы. Постановка задачи. Допущения.
		21. Сетка линий скольжения (характеристик) в задаче о волочении полосы.
		22. Расчет полей напряжений в задаче о волочении полосы.
		23. Связь поля скоростей с полем линий скольжения. Уравнения Гейренгер.
		24. Решение начальной характеристической задачи для скоростей.
		25. Поле скоростей при волочении полосы. Кинематические граничные условия.
		26. Сущность метода работ. Закон сохранения механической энергии.
		27. Решение методом работ задачи о плоской осадке прямоугольной полосы.
		28. Мощность сил среза. Решение задачи о кузнечной вытяжке полосы. Влияние раз-
		личных факторов на среднее контактное давление.
		29. Сущность процесса волочения. Показатели деформации. Параметры очага де-
		формации. Разновидности процесса волочения.
		30. Дифференциальное уравнение волочения.
		31. Сила и напряжение волочения, влияние на них различных факторов.
		32. Давление на контактной поверхности при волочении, влияние различных факто-
		ров.
		33. Элементы продольного профиля волоки. Влияние продольного профиля волоки
		на силу и напряжение волочения.
		34. Наибольшая возможная вытяжка при волочении, влияние на нее различных фак-
		торов.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		 35. Сущность процесса прокатки Виды процесса прокатки. 36. Характеристики деформации при прокатке. 37. Характерные зоны прокатываемой полосы. 38. Геометрические параметры очага деформации при прокатке. 39. Опережение при прокатке. Выражение опережения через нейтральный угол. 40. Вывод формулы Павлова (соотношение между углом захвата, углом трения и нейтральным углом). 41. Уширение при прокатке. 42. Неравномерность деформации при прокатке. 43. Дифференциальные уравнения прокатки Т. Кармана. 44. Интегрирование дифференциального уравнения прокатки для зон отставания и опережения. 45. Эпюра контактного давления при прокатке. Среднее давление на контактной поверхности. Учет сплющивания волков. Момент, работа и мощность прокатки.
Уметь	- применять теорию ОМД - сочетать теорию и практику ОМД - решать инженерные задачи ОМД	Примерные практические индивидуальные задания: 1. Площадь поперечного сечения полосы перед прокаткой $F_0 = 96000$ мм2, толщина $h0 = 160$ мм, относительное обжатие за проход $e = 42\%$, ширина после прохода $b_1 = 615$ мм. Определить толщину полосы после прокатки h_1 и ширину полосы до прокатки b_0 . 2. При горячей прокатке с уширением коэффициент вытяжки $1 = 1,5,$ толщина полосы после горячей прокатки $h_1 = 18$ мм, площадь поперечного сечения после прокатки $F_1 = 12600$ мм2. Определить толщину полосы до прокатки $h0$, если ширина ее до прокатки $h0 = 695$ мм. 3. Коэффициент вытяжки за проход $h0 = 1,58$; толщина листа после прохода $h0 = 1,58$ мм, уширение $h0 = 1,58$ равно нулю. Определить толщину листа до прохода $h0 = 1,58$ и относительное обжатие $h0 = 1,58$ равно нулю. Определить толщину листа до прохода $h0 = 1,58$ и относительное обжатие $h0 = 1,58$ равно нулю. Определить толщину листа до прохода $h0 = 1,58$ и относительное обжатие $h0 = 1,58$ равно нулю. Определить толщину листа до прохода $h0 = 1,58$ и относительное обжатие $h0 = 1,58$ равно нулю.
Владеть	- аппаратом теории ОМД - навыками применения теории ОМД на практике	Примерный перечень тем для устных опросов-бесед: - Законы обработки металлов давлением; - Подходы к решению инженерных задач ОМД;

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
	- навыками решения инженерных задач ОМД	- Область применения законов ОМД.
ПК-3: готовнос	тью использовать физико-математический	й аппарат для решения задач, возникающих в ходе профессиональной деятельности
Знать	- методы решения задач теории ОМД	Перечень теоретических вопросов к экзамену:
	- физико- математический аппарат ис-	1. Механизм упругой деформации.
	пользуемый в теории ОМД	2. Механизм пластической деформации путем скольжения.
	- задачи решаемые в теории ОМД	3. Закон критического скалывающего напряжения Шмида.
		4. Геометрическое упрочнение монокристалла.
		5. Механизм пластической деформации путем двойникования.
		6. Теоретическая прочность монокристалла.
		7. Дислокационный механизм пластической деформации.
		8. Межкристаллитная и внутрикристаллитная деформация.
		9. Предел текучести и его физический смысл.
		10. Полосчатость структуры и текстура деформации.
		11. Деформация в пределах площадки текучести.
		12. Физическая сущность образования линий текучести.
		13. Сопротивление металла пластической деформации.
		14. Показатели пластичности металла.
		15. Наклеп металла при холодной пластической деформации.
		16. Изменение физических и химических свойств металла при холодной пластической
		деформации.
		17. Фазовые превращения при холодной пластической деформации.
		18. Механизм появления остаточных микронапряжений при холодной пластической
		деформации.
		19. Сопротивление металла деформации при холодной прокатке.
		20. Влияние напряженного состояния на пластичность металла.
		21. Диаграмма пластичности.
		22. Разрушение металла в результате холодной пластической деформации.
		23. Критерий хрупкого разрушения Гриффитса.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		 24. Разрушение в технологических операциях. 25. Способы повышения прочности и пластичности металла. 26. Механизм пластической деформации при высоких температурах. 27. Влияние температуры на прочность и пластичность металла. 28. Возврат и рекристаллизация. 29. Образование текстуры рекристаллизации. 30. Виды ОМД в зависимости от температуры. 31. Влияние горячей обработки давлением на свойства металла. 32. Сверхпластичность. 33. Влияние скорости деформации при холодной пластической деформации. 34. Влияние скорости деформации при горячей пластической деформации. 35. Метод термомеханических коэффициентов. 36. Сопротивление деформации при горячей прокатке. 37. Основные закономерности обработки металлов давлением. 38. Сущность вариационных методов решения задач ОМД. 39. Основные положения вариационного исчисления. 40. Решение задачи о брахистохроне. 41. Прямые методы решения вариационных задач, метод Ритца. 42. Кинематически возможные перемещения. 43. Принцип минимума полной энергии Лагранжа, вариационные уравнения для жестко-пластической среды.
Уметь	- применять методы решения задач теории ОМД - применять физико-математический аппарат используемый в теории ОМД - обосновать выбор задач решаемых в теории ОМД	Примерные практические задания для экзамена: 1. Площадь поперечного сечения полосы перед прокаткой $F0 = 96000$ мм2, толщина $h0 = 160$ мм, относительное обжатие за проход $e = 42\%$, ширина после прохода $b1 = 615$ мм. Определить толщину полосы после прокатки $h1$ и ширину полосы до прокатки $b0$. 2. При горячей прокатке с уширением коэффициент вытяжки $1 = 1,5,$ толщина полосы после горячей прокатки $h1 = 18$ мм, площадь поперечного сечения после прокатки $F1 = 12600$ мм2. Определить толщину полосы до прокатки $h0$, если ширина ее до прокатки $b0 = 695$ мм.

Структурный элемент компетенции	Планируемые результаты обучения	Оценочные средства
		3. Коэффициент вытяжки за проход $1 = 1,58$; толщина листа после прохода $h1 = 3$ мм, уширение Db равно нулю. Определить толщину листа до прохода $h0$ и относительное обжатие е.
Владеть	- навыками применения методов решения задач теории ОМД - навыками применения физико-математическим аппаратом используемым в теории ОМД - навыками выбора задач решаемых в теории ОМД	Примерный перечень тем курсовых работ: - Определение механических свойств металла методом испытания на растяжение. - Определение механических свойств металла методом испытания на сжатие - Расчет контактных напряжений при осадке Пример задания по теме курсовой работы: - Стальной пруток диаметром 10 мм при растяжении получил остаточную деформацию 0,2 % при нагрузке 2000 н. Определить предел теку чести материала и марку стали. - Прямоугольная призма 20х20х30 мм из стали 10 подвергалась осадке на 10 мм при коэффициенте трения 0,2. Определить контактные напряжения.

б) Порядок проведения промежуточной аттестации, показатели и критерии оценивания:

Промежуточная аттестация по дисциплине «Теория обработки металлов давлением» включает теоретические вопросы, позволяющие оценить уровень усвоения обучающимися знаний, и практические задания, выявляющие степень сформированности умений и владений, проводится в форме экзамена и в форме выполнения и защиты курсовой работы.

Экзамен по данной дисциплине проводится в устной форме по экзаменационным билетам, каждый из которых включает 2 теоретических вопроса и одно практическое задание.

Показатели и критерии оценивания экзамена:

- на оценку **«отлично»** (5 баллов) обучающийся демонстрирует высокий уровень сформированности компетенций, всестороннее, систематическое и глубокое знание учебного материала, свободно выполняет практические задания, свободно оперирует знаниями, умениями, применяет их в ситуациях повышенной сложности.
- на оценку **«хорошо»** (4 балла) обучающийся демонстрирует средний уровень сформированности компетенций: основные знания, умения освоены, но допускаются незначительные ошибки, неточности, затруднения при аналитических операциях, переносе знаний и умений на новые, нестандартные ситуации.
- на оценку **«удовлетворительно»** (3 балла) обучающийся демонстрирует пороговый уровень сформированности компетенций: в ходе контрольных мероприятий допускаются ошибки, проявляется отсутствие отдельных знаний, умений, навыков, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
- на оценку **«неудовлетворительно»** (2 балла) обучающийся демонстрирует знания не более 20% теоретического материала, допускает существенные ошибки, не может показать интеллектуальные навыки решения простых задач.
- на оценку **«неудовлетворительно»** (1 балл) обучающийся не может показать знания на уровне воспроизведения и объяснения информации, не может показать интеллектуальные навыки решения простых задач.

Курсовая работа выполняется под руководством преподавателя, в процессе ее написания обучающийся развивает навыки к научной работе, закрепляя и одновременно расширяя знания, полученные при изучении курса «Математическая логика и теория алгоритмов». При выполнении курсовой работы обучающийся должен показать свое умение работать с нормативным материалом и другими литературными источниками, а также возможность систематизировать и анализировать фактический материал и самостоятельно творчески его осмысливать.

В процессе написания курсовой работы обучающийся должен разобраться в теоретических вопросах избранной темы, самостоятельно проанализировать практический материал, разобрать и обосновать практические предложения.

Показатели и критерии оценивания курсовой работы:

- на оценку «**отлично**» (5 баллов) работа выполнена в соответствии с заданием, обучающийся показывает высокий уровень знаний не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам, оценки и вынесения критических суждений;
- на оценку «хорошо» (4 балла) работа выполнена в соответствии с заданием, обучающийся показывает знания не только на уровне воспроизведения и объяснения информации, но и интеллектуальные навыки решения проблем и задач, нахождения уникальных ответов к проблемам;
- на оценку **«удовлетворительно»** (3 балла) работа выполнена в соответствии с заданием, обучающийся показывает знания на уровне воспроизведения и объяснения информации, интеллектуальные навыки решения простых задач;
 - на оценку «неудовлетворительно» (2 балла) задание преподавателя выполнено

частично, в процессе защиты работы обучающийся допускает существенные ошибки, не может показать интеллектуальные навыки решения поставленной задачи.

– на оценку «неудовлетворительно» (1 балл) – задание преподавателя выполнено частично, обучающийся не может воспроизвести и объяснить содержание, не может показать интеллектуальные навыки решения поставленной задачи.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля)

а) Основная литература:

Дорогобид, В. Г. Теоретические основы обработки металлов давлением: учебное пособие / В. Г. Дорогобид, А. Г. Корчунов, К. Г. Пивоварова; МГТУ. - Магнитогорск: МГТУ, 2015. - 1 электрон. опт. диск (CD-ROM). - Загл. с титул. экрана. - URL: https://magtu.informsystema.ru/uploader/fileUpload?name=1415.pdf&show=dcatalogues/1/1123 930/1415.pdf&view=true (дата обращения: 25.09.2020). - Макрообъект. - Текст: электронный. - Сведения доступны также на CD-ROM.

б) Дополнительная литература:

- 1. Загиров, Н.Н. Теория обработки металлов давлением: учеб. пособие / Н.Н. Загиров, С.Б. Сидельников, Е.В. Иванов. 3-е изд., перераб. и доп. Красноярск: Сиб. федер. ун-т, 2018. 148 с. ISBN 978-5-7638-3894-7. Текст: электронный. URL: https://new.znanium.com/catalog/product/1032175 (дата обращения: 25.09.2020).
- 2. Дорогобид, В. Г. Механика сплошной среды : учебное пособие. Ч. 1 / В. Г. Дорогобид, К. Г. Пивоварова. 2-е изд., испр. и доп. Магнитогорск : МГТУ, 2011. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=990.pdf&show=dcatalogues/1/1119155/990.pdf&view=true (дата обращения: 25.09.2020). Макрообъект. Текст : электронный. Сведения доступны также на CD-ROM.
- 3. Дорогобид, В. Г. Механика сплошной среды: учебное пособие. Ч. 2. / В. Г. Дорогобид, М. И. Румянцев, К. И. Пивоварова. 2-е изд., испр. и доп. Магнитогорск: МГТУ, 2012. 1 электрон. опт. диск (CD-ROM). Загл. с титул. экрана. URL: https://magtu.informsystema.ru/uploader/fileUpload?name=991.pdf&show=dcatalogues/1/11191 56/991.pdf&view=true (дата обращения: 25.09.2020). Макрообъект. Текст: электронный. Сведения доступны также на CD-ROM.
- 4. Панов, В.С. Теоретические основы прочности спеченных твердых сплавов : учебное пособие / В.С. Панов. Москва : МИСИС, 2011. 83 с. ISBN 978-5-87623-399-8. Текст : электронный // Электронно-библиотечная система «Лань» : [сайт]. URL: https://e.lanbook.com/book/2070 (дата обращения: 25.09.2020). Режим доступа: для авториз. пользователей.

в) Методические указания:

- 1. Исследование и расчет напряженного состояния: Метод. указ. / Дорогобид В.Г. Магнитогрск: МГТУ, 2007 45 с.
- 2. Исследование напряженно-деформированного состояния толстостенной трубы по теории упругопластических деформаций: Метод. указ. / Дорогобид В.Г. Магнитогорск: МГТУ, 2006.-33 с.
- 3. Исследование процессов пластической деформации при растяжении: Метод. указ. / Харитонов В.А., Иванцов А.Б., Мустафина В.Г., Головизнин С.М. Магнитогорск: ГОУ ВПО «МГТУ», 2009.-44 с.
- 4. Определение механических свойств металла и построение кривых упрочнения по диаграмме растяжения: Метод. указ. / Дорогобид В.Г. Магнитогорск: МГТУ, 2008. 50 с.

г) Программное обеспечение и Интернет-ресурсы:

Наименование ПО	№ договора	Срок действия лицен-
		зии
MS Windows 7	Д-1227 от 08.10.2018	11.10.2021
	Д-757-17 от	27.07.2018
	27.06.2017	
MS Office 2007	№ 135 от 17.09.2007	Бессрочно
FAR Manager	Свободно распространяе-	Бессрочно
	мое	
7Zip	Свободно	бессрочно
	распространяемое	

- 1. Российская Государственная библиотека URL: http://www.rsl.ru/.
- 2. Российская национальная библиотека URL: http://www.nlr.ru/.
- 3. Государственная публичная научно-техническая библиотека России URL: http://www.gpntb.ru/.
 - 4. Public.Ru публичная интернет-библиотека URL: http://www.public.ru/.
- <u> 5. Lib.students.ru Студенческая библиотека lib.students.ru</u> URL: http://www.lib.students.ru dents.ru.
- <u>6. Научная библиотека Санкт-Петербургского Государственного Университета</u> URL: http://www.lib.pu.ru/.
 - 7. Программа SIGMA «Исследование напряжённого состояния».
- 8. Корчунов А.Г., Дорогобид В.Г., Андреев В.В., Кириченко А.Д. Автоматизированный расчёт напряжённо-деформированного состояния методом линий скольжения при волочении // Свидетельство об официальной регистрации программы для ЭВМ № 2006614009 от 22.11.2006.
 - 9. Программа «Расчет НДС толстостенной трубы» на языке DELPHI.

9 Материально-техническое обеспечение дисциплины (модуля)

Материально-техническое обеспечение дисциплины включает:

Тип и название аудитории	Оснащение аудитории	
Учебная аудитория для	Технические средства обучения, служащие для представ-	
проведения занятий лек-	ления учебной информации большой аудитории: мульти-	
ционного типа	медийные средства хранения, передачи и представления	
	учебной информации. Специализированная мебель	
Учебная аудитория для	Технические средства обучения, служащие для представ-	
проведения практических	ления учебной информации большой аудитории: мульти-	
занятий	медийные средства хранения, передачи и представления	
	учебной информации. Специализированная мебель	
Учебная аудитория для	Лабораторное оборудование:	
проведения лабораторных	Машины универсальные испытательные на растяжение,	
занятий.	сжатие, скручивание; Мерительный инструмент; Приборы	
Лаборатория механиче-	для измерения твердости по методам Бринелля и Роквелла;	
ских испытаний.	Копер; Микротвердомер	
	Специализированная мебель	
Учебная аудитория для	Лабораторное оборудование:	
проведения лабораторных	Волочильный стан; Прокатный стан; Камерная печь СНО;	
занятий.	Действующая модель сортопрокатного стана; Меритель-	
Лаборатория прокатки и	ный инструмент	
волочения.	Специализированная мебель	

Учебная аудитория для проведения лабораторных занятий. Лаборатория метизных изделий. Учебная аудитория для проведения лабораторных занятий. Лаборатория металлогра-	Лабораторное оборудование: Вертикальный сверлильный станок; Автомат гайконарезной; Автомат проволочно-гвоздильный; Автомат холодновысадочный; Пресс кривошипный; Ротационно-ковочная машина; Волочильный стан; Машины острильные Специализированная мебель Лабораторное оборудование: Микроскопы МИМ-6, МИМ-7; Станки полировальные; Станки шлифовальные Специализированная мебель
фии.	-
Учебная аудитория для выполнения курсовых проектов (работ) Учебная аудитория для	Компьютерная техника с пакетом MS Office, с подключением к сети «Интернет» и с доступом в электронную информационно-образовательную среду университета. Специализированная мебель Компьютерная техника с пакетом MS Office, с подключе-
групповых и индивиду- альных консультаций, те- кущего контроля и проме- жуточной аттестации	нием к сети «Интернет» и с доступом в электронную информационно-образовательную среду университета. Специализированная мебель
Помещение для самостоятельной работы	Компьютерная техника с пакетом MS Office, с подключением к сети «Интернет» и с доступом в электронную информационно-образовательную среду университета. Специализированная мебель
Помещение для хранения	Специализированная мебель.
и профилактического об- служивания учебного обо- рудования	Оборудование, инструменты лабораторий механических испытаний, прокатки и волочения, метизных изделий и металлографии:
	Стеллажи, штангенциркули, микрометры, линейки, тиски, слесарный инструмент